
OSCILLATOR REPRESENTATIONS AND SEMISIMPLE
PRE-TANNAKIAN CATEGORIES

SOPHIE KRIZ

Abstract. We investigate tensor products of oscillator represen-
tations of symplectic groups over finite fields, as well as of their
semidirect products with Heisenberg groups. As an application,
we construct non-trivial semisimple pre-Tannakian categories with
an object of generic dimension whose second exterior and symmet-
ric powers are simple, while determining the decomposition of its
third tensor power into simple objects, thus answering a question
by P. Deligne. We also define a related model suggested by P.
Deligne based on interpolating initial segments generated by os-
cillator and linearized vector representations of symplectic groups
over finite fields. We prove that this construction gives, gener-
ally, semisimple pre-Tannakian categories graded by finite groups
of order 4.

1. Introduction

In this paper, we study questions at the intersection of representation
theory and category theory. We begin with the latter perspective,
which is easier to describe in general terms.

Recall that by a pre-Tannakian category over C, we mean a C-linear
abelian category with a C-bilinear associative, commutative, unital ten-
sor product, which is locally finite in the sense that Hom-sets are
finite-dimensional C-vector spaces, is rigid in the sense that objects
have strong duals [3], and satisfies End(1) = C. An abelian category
is semisimple if every object is a direct sum of finitely many simple
objects. Examples of semisimple pre-Tannakian categories with given
properties are often difficult to construct.

Our first result on pre-Tannakian categories is the following theorem,
answering a question of P. Deligne:

The author was supported by a 2023 National Science Foundation Graduate
Research Fellowship, no. 2023350430.
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Theorem 1. For every natural number q which is a power of a prime
not equal to 2 or 3 and every t ∈ C such that qt ̸= ±1,±q, there exists a
semisimple pre-Tannakian category Cq,t over C generated by an object
X of dimension qt such that X, Λ2(X), Sym2(X) are simple and

(1) dim(End(X⊗3)) = 2q + 2.

This theorem is proved by applying the technique of interpolation
(see [1, 4, 11, 12]) to the category of direct summands of tensor powers
of oscillator representations. We use the technique of T-algebras, which
was introduced by the author in [11, 12].

The main input is the oscillator, or Weil-Shale, representation ωa
of Sp(VN)⋉HN(Fq), where VN is a 2N -dimensional vector space over
a finite field Fq with a symplectic form and HN(Fq) is the Heisenberg
group determined by VN , depends on a choice of a ∈ F×

q (detemining,
by Pontrjagin duality, a character ψa : F×

q → C×). More detail on
these objects is given in Secion 2 below. The proof of Theorem 1
uses certain facts about the oscillator representation, due to R. Howe
[7, 8, 13]. The main point is a passage from representations of Sp(VN)⋉
HN(Fq) to representations of Sp(VN), which has the effect of reducing
the exponent of tensor power of an oscillator representation by 1.

This allows us to prove the statements of Theorem 1 about semisim-
plicity of Λ2(X) and Sym2(X), as well as formula (1).

On the other hand, (1) raises the question [2] of decomposing X⊗3

into simple summands which, in return, turns into a question of de-
compositionn of ωa ⊗ ωb as a representation of Sp(VN) into simple
summands. These endomorphism algebras can be studied using T-
algebra data.

Using this approach, we prove

Theorem 2. For q a power of a prime not equal to 2 or 3, as repre-
sentations of Sp(2N,Fq) = Sp(VN), for a, b ∈ F×

q , the decomposition
of ωa ⊗ ωb into irreducible representations can be calculated as follows:

• Case 1: If a ≡ −b ∈ (F×
q )/(F×

q )
2, then, letting χ : F×

q → C×

denote a general multiplicative character of F×
q and letting ϵ

denote the quadratic character, we have

(2)

ωa ⊗ ωb ∼= ⊕
{χ|χ2 ̸=1}/χ∼1/χ

2 · Zχ

⊕ (Z+
ϵ ⊕ Z−

ϵ )⊕ (2 · 1⊕ Z̃+
1 ⊕ Z̃−

1 )
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for simple non-isomorphic Sp(2N,Fq)-representations Zχ, Z±
ϵ , Z̃

±
1

of dimensions

dim(Zχ) =
q2N − 1

q − 1

dim(Z+
ϵ ) = dim(Z−

ϵ ) =
q2N − 1

2(q − 1)

dim(Z̃±
1 ) =

1

2
·
(
q2N − q

q − 1
± qN

)
.

• Case 2: If a ̸≡ −b ∈ (F×
q )/(F×

q )
2, then, letting θ : µq+1 → C×

denote a general character of the group µq+1 of (q + 1)th roots
of unity in C× and letting σ denote the character of order 2, we
have

(3)

ωa ⊗ ωb ∼= ⊕
{θ|θ2 ̸=1}/θ∼1/θ

2 · Yθ

⊕ (Y +
σ ⊕ Y −

σ )⊕ (Y +
1 ⊕ Y −

1 )

for simple, non-isomorphic Sp(2N,Fq)-representations Yθ, Y ±
σ , Y

±
1

of dimensions

dim(Yθ) =
q2N − 1

q + 1

dim(Y +
σ ) = dim(Y −

σ ) =
q2N − 1

2(q + 1)

dim(Y ±
1 ) =

1

2
·
(
q2N + q

q + 1
± qN

)
.

Comments: 1. The statement of the theorem remains valid for N = 1
(where Sp(VN) = SL2(Fq)) with the modification that one of the Z̃±

1 ,
Y ±
1 is 0.
2. Case 1 is more classical and uses a result of Howe that ωa⊗ω−a is

isomorphic to the C linearization Ω of the basic (vector) representation
VN of Sp(2N,Fq). The characters χ involved in (2) are of “Harish-
Chandra” type.

Case 2 involves constructing a µq+1-action on

(4) EndSp(2N,Fq)(ωa ⊗ ωb)

when a ̸≡ −b ∈ (F×
q )/(F×

q )
2. Correspondingly, the characters θ in (3)

are of “Deligne-Lusztig type,” although we construct them directly by
studying idempotents in (4).
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P. Deligne [2] remarked that one can interpolate tensor products of
the representations ωa, ωb (for a ̸≡ b ∈ (F×

q )/(F×
q )

2) and ωa ⊗ ωb with
summands of the nth tesnor powers of the linearized vector represen-
tation of Sp(2N,Fq) = Sp(VN), n < N . The resulting model is graded
by Z/2 × Z/2 resp. Z/4 depending on whether q ≡ 1 mod 4 or q ≡ 3
mod 4. In Secions 7 and 8, we construct this model using T-algebras,
and prove the grading. We also show that the resulting category is
always semisimpifiable and is already semisimple pre-Tannakian when
qt ̸= ±qn, n ∈ N0. Following an idea of A. Snowden, we also show that
this model Dq,t does not come from a measure on oligomorphic group
in the sense of [4].

Finally, translating back into representations of Sp(VN) ⋉ HN(Fq)
and applying interpolation, we obtain the following result about the
category Cq,t of Theorem 1:

Theorem 3. In the category Cq,t, q
t ̸= ±1,±q, the decomposition of

X⊗3 into simple summands is as follows:

• Case 1: If q ≡ 1 mod 3, then
(5)

X⊗3 ∼= ⊕
{χ:F×

q →C×|χ2 ̸=1}/(χ∼1/χ)

2 ·Xχ

⊕ (X+
ϵ ⊕X−

ϵ )⊕ (2 ·X0
1 ⊕ X̃+

1 ⊕ X̃−
1 )

for simple non-isomorphic objects Xχ, X
±
ϵ , X

0
1 , and X̃

±
1 of di-

mensions

dim(Xχ) = qt · q
2t − 1

q − 1

dim(X+
ϵ ) = dim(X−

ϵ ) = qt · q
2t − 1

2(q − 1)

dim(X0
1 ) = qt

dim(X̃±
1 ) =

qt

2
·
(
q2t − q

q − 1
± qt

)
.

• Case 2: If q ≡ −1 mod 3, then

(6)

X⊗3 ∼= ⊕
{θ:µq+1→C×|θ ̸=1,σ}/(θ∼1/θ)

2 ·Xθ

⊕ (X+
σ ⊕X−

σ )⊕ (X+
1 ⊕X−

1 )
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for simple non-isomorphic objects Xθ (for θ ̸= 1, σ), X±
σ , and

X±
1 of dimensionss

dim(Xθ) = qt · q
2t − 1

q + 1

dim(X+
σ ) = dim(X−

σ ) = qt · q
2t − 1

2(q + 1)

dim(X±
1 ) =

qt

2
·
(
q2t + q

q + 1
± qt

)
.

Comment: Again, the statement of Theorem 3 remains valid for

qt = ±q with the modification that one of the objects X̃±
1 , resp. X

±
1 ,

becomes 0. Therefore, in this case, dim(EndCq,t(X
⊗3)) = 2q + 1.

The present paper is organized as follows: Section 2 contains pre-
liminary computations with the oscillator representation. Section 3
discusses the proof of Case 1 of Theorem 2. The proof of Case 2 of The-
orem 2 is completed in Section 4. Sections 5 and 6 treat interpolation:
In Section 5, we discuss the T-algebra method and its applications; in
Section 6, we discuss semisimplicity and prove Theorem 3. In Sections
7 and 8, we treat the graded models Dq,t.

2. The Oscillator Representation and its Powers

The purpose of this section is to introduce the Weil-Shale represen-
tation and its restriction to the symplectic group, and record some
general computations, old and new, with the products of Weil-Shale
representations. The key point is to establish the interplay between
representations of Sp(VN) ⋉ HN(Fq) and of Sp(VN) which is intrinsic
throughout our discussion.

We also prove the claim of Theorem 1 for t = N > 1 ∈ N, ver-
ifying (1) for basic object X = ω in the category of representations
Rep(Sp(VN) ⋉ HN(Fq)). To do this, we use a passage from the endo-
morphism algebras of tensor powers of ω in Rep(Sp(VN)⋉HN(Fq)) to
the endomorphism algebras of tensor powers of ω of one degree less
in Rep(Sp(VN)). This comes from the classical fact [6] that the ten-
sor product of ω with its dual is the permutation representation CVN ,
which we include an explicit proof of. We also include a preliminary
result of P. Deligne [2] (Theorem 6 below) about a tensor product of
non-dual Weil-Shale representations, which will be needed later to ex-
plicitly decompose ω⊗3.
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2.1. Construction of the Weil-Shale representation. The con-
struction of the classical Weil-Shale representation [13, 7, 8] goes as
follows: For a q which is a power of a prime not equal to 2, suppose
VN is a 2N -dimensional vector space over Fq endowed with a symplec-
tic form. To avoid confusion, we specify VN in the notation of the
symplectic group Sp(2N,Fq) = Sp(VN) from now on. Recall that the
Heisenberg group is

HN(Fq) = VN × Fq
with the operation that for v, w ∈ VN , λ, µ ∈ Fq,

(v, λ)(w, µ) = (w + w, λ+ µ+ ⟨v, w⟩)

(and therefore 0 × Fq is the center of HN(Fq)). The symplectic group
Sp(VN) acts on HN(Fq) by acting tautologically on the factor of VN
and trivially on the center. Consider the group

Sp(VN)⋉HN(Fq).

For a non-trivial character

ψ : Fq → C×,

there is a unique qN -dimensional irreducible HN(Fq)-representation ωψ
(over C). Then ωψ forms a representation of Sp(VN) ⋉ HN(Fq) called
the Weil-Shale representation (a priori projective but an actual repre-
sentation for a finite field Fq, see [7]). For the remainder of this note,
when ψ is fixed, and we will omit it from the notation. When ψ is not
fixed, we may also write ωa where a ∈ F×

q is the element corresponding
to ψ under a fixed identification of F×

q with its non-trivial multiplicative
characters.

To avoid confusion, we write ω to denote the restriction of ω to
Sp(VN) and the inflation of this restriction to a representation of Sp(VN)⋉
HN(Fq) by letting HN(Fq) act trivially.

Considering the usual inclusion GLN(Fq) ⊂ Sp(VN), the restric-
tion of ω to GLN(Fq) gives the permutation representation CFNq where

GLN(Fq) acts on FNq by matrix multiplication, tensored with

(7) ϵ(det)

where det : GLN(Fq) → F×
q is the determinant map and ϵ : F×

q → C×

is the character of order 2.
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2.2. Decomposition of the third power. We need to study the
endomorphism algebras of tensor powers of ω. We begin by proving
the claim of Theorem 1 for t = N > 1 ∈ N, i.e. the following

Proposition 4. For any N > 1 ∈ N, for any Weil-Shale representation
ω of Sp(VN)⋉HN(Fq), we have

(8) dim(EndSp(VN )⋉HN (Fq)(ω
⊗2)) = 2

and

(9) dim(EndSp(VN )⋉HN (Fq)(ω
⊗3)) = 2q + 2.

To calculate dim(EndSp(VN )⋉HN (Fq)(ω
⊗n)), write

Ω := ω ⊗ (ω∨)

We first claim the following

Lemma 5. For N > 1, as a representation of Sp(VN) ⋉ VN , Ω is
isomorphic to the space of functions on VN :

Res
Sp(VN )⋉HN (Fq)

Sp(VN )⋉VN (Ω) ∼= {f : VN → C}

where an element (A,w) ∈ Sp(VN)⋉VN acts on a function f : VN → C
by sending it to the function

(A,w)[f ] : VN → C
where for v ∈ VN

((A,w)[f ])(v) = ψ(⟨v, w⟩) · f(A(v)).

Proof. First note that we may write

Ω =
⊕
v∈VN

Ωv

for lines Ωv such that an element w ∈ VN = VN × {0} ⊂ HN(Fq)
preserves each Ωv and acts by multiplication by the character

x 7→ ψ(⟨v, w⟩) · x.
Ω can then be considered as the space of global sections of an Sp(VN)-

equivariant line bundle Ωv over VN (as a discrete set) where the action
of Sp(VN) on Ω induces an action of Sp(VN) on the line bungle, i.e. for
γ ∈ Sp(VN),

γ(Ωv) = Ωγ(v).
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However, Ωv forms a trivial Sp(VN)-equivariant line bundle, meaning
that for every v ∈ VN , the stabilizer subgroup Sp(VN)

v ⊆ Sp(VN) fixing
v acts trivially on Ωv: At v = 0, forN > 0, Sp(VN)

0 = Sp(VN), which is
a perfect group (meaning that it has no non-trivial abelian quotients),
and therefore acts trivially on Ω0. For v ̸= 0, taking Wv to be the
quotient of the orthogonal space V ⊥v

N of vectors perpendicular to v by
Fq-multiples of v,

Sp(VN)
v = Sp(Wv),

which again is a perfect group (for N > 0).
Therefore, Ω is the space of global sections of the trivial Sp(VN)-

equivariant line bundle, i.e. a space of functions

(10) Ω = {f : VN → C},

and the action of Sp(VN)⋉ VN ⊂ Sp(VN)⋉Hn(Fq) on a function f in
(10) is given by Sp(VN) acting by composition, and w ∈ VN acting by
sending f to the function

VN → C
v 7→ ψ(⟨v, w⟩) · f(v)

□

By Lemma 5, we therefore have

Res
Sp(VN )⋉HN (Fq)

Sp(VN )⋉VN (Ω⊗k) ∼= {f : V k
N → C},

which is generated by the character functions 1(v1,...,vk+1) for vi ∈ VN
(which is 1 at (v1, . . . , vk+1) and 0 at all other elements of V k+1

N ).
The fixed points

(11) (Ω⊗k+1)HN (Fq) ∼= (Res
Sp(VN )⋉HN (Fq)

Sp(VN )⋉VN (Ω⊗k+1))VN

(the isomorphism follows since Fq ⊂ HN(Fq) acts trivially on Ω) are
then generated by 1(v1,...,vk+1) for vi ∈ VN such that for every u ∈ VN ,

1(v1,...,vk+1) = u(1(v1,...,vk+1)) =

ψ(⟨u, v1⟩) · · · · · ψ(⟨u, vk+1⟩) · 1(v1,...,vk+1) =

ψ(⟨u, v1 + . . . , vk+1⟩) · 1(v1,...,vk+1)

meaning that for every u ∈ VN

⟨u, v1 + . . . , vk+1⟩ = 0,

which is equivalent to v1 + · · ·+ vk+1 = 0.
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Therefore, (11) is identified with the space of functions on V k+1
N with

support on

(12) {(v1, . . . , vk+1) ∈ V k+1
N | v1 + · · ·+ vk+1 = 0 ∈ VN}.

Thus, for every k ∈ N, there is an isomorphism

(13) Res
Sp(VN )⋉HN (Fq)

Sp(VN ) (Ω⊗k) ∼= (Ω⊗k+1)HN (Fq)

as representations of Sp(VN) for N >> 0 following from Lemma 5 and
the isomorphism between (12) and V k

N .

Now, by duality,

EndSp(VN )⋉HN (Fq)(ω
⊗k+1) ∼= HomSp(VN )⋉HN (Fq)(1,Ω

⊗k+1),

which is identified with the fixed points

(14) (Ω⊗k+1)Sp(VN )⋉HN (Fq) ∼= ((Ω⊗k+1)HN (Fq))Sp(VN ).

By (13), (14) is isomorphic to the Sp(VN) fixed points

(Res
Sp(VN )⋉HN (Fq)

Sp(VN ) (Ω⊗k))Sp(VN ),

which are isomorphic to

HomSp(VN )(1,Ω
⊗k).

Therefore, for t ∈ C∖ Z, for N >> 0,

EndSp(VN )⋉HN (Fq)(ω
⊗k+1) ∼=

HomSp(VN )⋉HN (Fq)(1,Ω
⊗k+1) ∼= HomSp(VN )(1,Ω

⊗k)

the dimension of which, by Lemma 5, can be calculated as the number
of orbits of Sp(VN) on V

k
N .

For example, we can verify that

EndSp(VN )⋉HN (Fq)(ω) = 1

(the number of Sp(VN) orbits of V 0
N = 0), and therefore that ω is

simple.

The proof of Proposition 4 is also similarly elementary:

Proof of Proposition 4. We get (8) since the dimension of

EndSp(VN )⋉HN (Fq)(ω
⊗2) = 2

because VN has two Sp(VN)-orbits: 0 and VN ∖ 0.
Finally, we get (9) since

EndSp(VN )⋉HN (Fq)(ω
⊗3) = 2q + 2

because V 2
N has 2q + 2 Sp(VN)-orbits, which are as follows:
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(A) 1 orbit of the form

{(0, 0)},

(B) q + 1 orbits of the form

{(v, 0) | v ∈ VN}, {(0, v) | v ∈ VN},
{(v, λ · v) | v ∈ VN}, for λ ∈ F×

q

corresponding to “slopes” λ ∈ P1(Fq).
(C) q orbits of the form

{(v, w) | ⟨v, w⟩ = µ, v, w linearly independent}, for µ ∈ Fq.

□

2.3. A tensor product formula. To more explicitly calculate de-
composition of tensor powers of the Weil-Shale representations, we will
also need the following computation:

Theorem 6 (following P. Deligne, [2]). For a, b ∈ F×
q such that a+b ̸=

0, as representations of Sp(VN) ⋉ HN(Fq) for any N ∈ N (as long as
VN ̸= F2

3),

(15) ωa ⊗ ωb ∼= ωab(a+b) ⊗ ωa+b.

Proof. N is fixed. To simplify notation, in this proof, we omit the
subscript N of V . Let us denote by S(v, w) for v, w ∈ V the symplectic
form of V . Write V1, V2 for two copies of V , with symplectic forms S1,
S2 equivalent to S, and isomorphisms

V
∼= // Vi

v 7→ vi

for i = 1, 2.
It is enough to consider ωa, ωb as projective representation of the

quotient

(Sp(V )⋉HN(Fq))/Z(Sp(V )⋉HN(Fq)),
which is the affine symplectic group

Sp(V )⋉ V.

For every a ∈ F×
q , the representation ωa for (V, S) is isomorphic

to ω1 for (V, a · S) (replacing the symplectic form S(v, w) on V by
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a · S(v, w)). Thus, ωa⊗ ωb for (V, S) can be considered the pullback of
ω1 for (V1 ⊕ V2, a · S1 + b · S2), using the diagonal embedding

∆ : V ↪→ V1 ⊕ V2

v 7→ (v1, v2)

Note that the pullback of the symplectic form a · S1 + b · S2 on V1 ⊕ V2
along ∆ is the form (a+ b) · S on V .

Now we may also consider an antidiagonal embedding

∆′ : V ↪→ V1 ⊕ V2

v 7→ (bv1,−av2),
which has image Im(∆′) orthogonal to Im(∆) using the form a·S1+b·S2

on V1⊕V2. The pullback of the symplectic form a ·S1+b ·S2 on V1⊕V2
along ∆′ is the form a · b · (a+ b) · S on V . Reparametrizing using the
isomorphism

V1 ⊕ V2 ∼= Im(∆)⊕ Im(∆′),

we get an isomorphism between ω1 for (V1⊕V2, a·S1+b·S2) and a tensor
product of the pullbacks of ω1 from Im(∆) and Im(∆′). However, the
embedding

Sp(V )⋉ V // Sp(V1 ⊕ V2)⋉ (V1 ⊕ V2)

��
(Sp(Im(∆))⋉ Im(∆))× (Sp(Im(∆′))⋉ Im(∆′))

projects V bijectively into the first coordinate Im(∆) (and to 0 on
the second coordinate Im(∆′)), though it continues to map Sp(V ) ↪→
Sp(Im(∆′)) ⋉ Im(∆′) diagonally. Therefore, we obtain that as (pro-
jective) Sp(V )⋉ V -representations,

ωa ⊗ ωb ∼= ωab(a+b) ⊗ ωa+b

(where now ωab(a+b) is considered as the Sp(V )⋉V -representation from
letting V act trivially on the restriction of ωab(a+b) to Sp(V )).

Since there is only one way to extend back to representations of
Sp(V )⋉HN(Fq), we can conclude (15). □

By Theorem 6, in particular, ω⊗3 can be expressed as a tensor prod-
uct of two inflations of restrictions ω of some Weil-Shale representa-
tions, with one simple (unrestricted) Weil-Shale representation. There-
fore, to decompose ω⊗3 in Rep(Sp(VN)⋉HN(Fq), we must decompose
degree 2 tensor products of oscillator representations ω inRep(Sp(VN)).
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3. Proof of Theorem 2 - Case 1

In the current and next section, we will prove Theorem 2. We shall
replace a, b in the statement of the theorem by A,B, to avoid conflict
with some notation we will need later.

Theorem 2 concerns the tensor product

(16) ωA ⊗ ωB

for A,B ∈ F×
q . We approach this calculation separately depending

on whether ωA and ωB are dual Sp(VN)-representations. Recall two
classical facts about oscillator representations (see [7], for example):
that

(ωA)
∨ = ω−A

(and therefore, (ωA)
∨ = ω−A, as well) and

(17) ωA ∼= ωB if and only if A ≡ −B ∈ (F×
q )/(F×

q )
2.

Therefore, our cases of (16) separated based on whether or not

A ≡ −B ∈ (F×
q )/(F×

q )
2.

Proof of Case 1 of Theorem 2. Suppose A ≡ −B ∈ (F×
q )/(F×

q )
2 (i.e.

ωB ∼= (ωA)
∨). By Lemma 5, we then have

ωA ⊗ ωB ∼= CVN
where Sp(VN) acts on CVN by matrix multiplication (identifying the
character function ).

To decompose CVN , first note that for every λ ∈ F×
q , the multiplica-

tion map

CVN → CVN
(v) 7→ (λv)

commutes with the action of Sp(VN). Therefore, for a multiplicative
character

χ : F×
q → C×,

we may consider the Sp(VN)-equivariant map

eχ : CVN → CVN

(v) 7→ 1

q − 1

∑
λ∈F×

q

χ(λ) · (λv).
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For multiplicative characters χ : F×
q → C×, the endomorphisms

eχ ∈ EndSp(VN )(CVN)
form a system of disjoint commuting idempotents, and therefore, de-
noting their images by

Zχ := eχ(CVN),
we obtain a decomposition

(18) CVN ∼=
⊕

χ:F×
q →C×

Zχ.

Note that for every non-trivial χ ̸= 1,

(19) dim(Zχ) =
q2N − 1

q − 1
,

and

(20) dim(Z1) =
q2N − 1

q − 1
+ 1

(the extra dimension arising from (0)).
Now consider the Sp(VN)-equivariant map

f : CVN → CVN
(v) 7→

∑
S(v,w)=1

(w)

where the sum for f(v) runs over w ∈ VN for which S(v, w) = 1. We
find that for χ : F×

q → C×, v ∈ VN ,

f(eχ((v))) =
∑
λ∈F×

q

∑
S(λv,w)=1

χ(λ) · (w) =∑
λ∈F×

q

∑
S(v,u)=1

χ(λ) · (λ−1u) =
∑
µ∈F×

q

∑
S(v,u)=1

χ(µ−1) · (µu) =

e1/χ(f((v)))

and therefore, f restricts to isomorphisms

Zχ ∼= Z1/χ.

Therefore, we may rewrite (18) as

CVN =

 ⊕
{χ:F×

q →C×|χ ̸=1,ϵ}/(χ∼1/χ)

2 · Zχ

⊕ Zϵ ⊕ Z1.

For χ = ϵ, resp. 1, the map f restricts to an endomorphism of Zϵ,
Z1. On Zϵ, we can use f to compute a further decomposition of Zϵ:
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To find idempotents in End(Zϵ), we must first calculate f |◦2Zϵ
. For

v ∈ VN , we have

f(eϵ(v)) =
∑
λ∈F×

q

∑
S(v,u)=λ−1

ϵ(λ)(u)

and therefore

f ◦ f(eϵ(v)) =
∑
λ∈F×

q

∑
S(v,u)=λ−1

∑
S(u,w)=1

ϵ(λ) · (w).

Without loss of generality, (using the standard model for V = (Fq)N ⊕
(Fq)N), take v = (1, 0, . . . , 0 | 0, . . . , 0). Clearly, there are q2n−1 choices
of u such that

S(v, u) = λ−1,

given by

u = (?, . . . , ? | λ−1, ?, . . . , ?)

where the ? can be replaced by any element of Fq. For each such choice
of u, there is then one conributed term of the form

ϵ(λ) · (−λ, 0, . . . 0 | 0, . . . , 0),
since S(u, (−λ, 0, . . . 0 | 0, . . . , 0)) = 1. Terms involving vectors w ∈ VN
which are not of the form

(−λ, 0, . . . 0 | 0, . . . , 0)
for λ ∈ F×

q will arise (with equal multiplicity) from different choices
of u for each λ ∈ F×

q , and therefore, will have a coefficient which is a

multiple of
∑
λ∈F×

q

ϵ(λ) = 0. Therefore, terms of this form cancel, and we

have
f(f(eϵ(v))) = ϵ(−1) · q2n−1 · eϵ(v)

(note that ϵ(−1) =

(
−1

q

)
). In other words, we have

f |Zϵ ◦ f |Zϵ = ϵ(−1) · q2n−1 · eϵ.
We then have idempotents

e±ϵ :=
1

2

(
eϵ ±

f |Zχ√
ϵ(−1) · q2n−1

)
.

Since f has trace 0, both e+ϵ and e−ϵ have trace

q2n − 1

2(q − 1)
.
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Write

Z±
ϵ := Im(e±ϵ ).

Replacing Zϵ, we get

CVN =

 ⊕
{χ:F×

q →C×|χ ̸=1,ϵ}/(χ∼1/χ)

2 · Zχ

⊕ (Z+
ϵ ⊕ Z−

ϵ )⊕ Z1.

It remains to decompose Z1. First, we identify

Z1
∼= CP(VN)⊕ 1,

where 1 on the right hand side is generated by (0) ∈ VN , and P(VN)
consists of 1-dimensional subspaces of VN , by identifying an element
⟨v⟩ ∈ P(VN) with ∑

w∈⟨v⟩

(w) ∈ Z1 ⊆ CVN .

(Note that P(VN) ∼= P2N−1(Fq), and γ ∈ Sp(VN) acts on an ⟨v⟩ ∈ P(VN)
by sending it to ⟨γv⟩.) To decompose CP(VN) further, consider the
endomorphism

g : CVN → CVN
(v) 7→

∑
S(u,v)=0, dim(⟨v,u⟩)=2

(u).

On CP(VN), g acts by

g(⟨v⟩) =
∑

⟨w⟩⊥⟨v⟩, ⟨v⟩≠⟨w⟩

⟨w⟩,

where the sum runs over all lines different from and perpendicular to
⟨v⟩. Considering the ⟨v⟩ as a basis for CP(VN), we see that

(21) tr(g|CP(VN )) = 0

We additionally see another fixed point

(22)
∑

⟨v⟩∈P(VN )

⟨v⟩,

meaning that we may decompose

CP(VN) ∼= 1⊕ Z̃1.

On this summand 1, generated by (22), we see that

g(
∑

⟨v⟩∈P(VN )

⟨v⟩) = q2N − q

q − 1
· (

∑
⟨v⟩∈P(VN )

⟨v⟩)
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since the lines ⟨w⟩ orthogonal to and different from ⟨v⟩ are indexed by
P2N−2(Fq)∖ {⟨v⟩}, and

(23) |P2N−2(Fq)∖ {⟨v⟩}| = q2N−1 − 1

q − 1
− 1 =

q2N−1 − q

q − 1
.

Therefore, on the summand 1 ⊆ CP(VN), g acts as the identity multi-
plied by (23), and therefore has trace (23). Hence, combining this with
(21), we see that

tr(g|Z̃1
) = −q

2N−1 − q

q − 1
.

It remains to decompose Z̃1. First, we must calculate g|Z̃1
◦g|Z̃1

. We
begin by calculating

(24) g|CP(VN ) ◦ g|CP(VN )(⟨v⟩)
for some ⟨v⟩ ∈ P(VN).

As stated before, there are (23) elements ⟨w⟩ such that ⟨v⟩ ⊥ ⟨w⟩
and ⟨v⟩ ≠ ⟨w⟩. Since the roles of v and w are symmetric, each of these
choices contributes a term of ⟨v⟩ in (24). In other words, g|CP(VN ) ◦
g|CP(VN ) has a term of the form

(25)
q2N−1 − q

q − 1
· IdCP(VN ).

Next, for each ⟨w⟩ such that ⟨v⟩ ⊥ ⟨w⟩ and ⟨v⟩ ̸= ⟨w⟩, the choices
of ⟨u⟩ such that ⟨v⟩, ⟨w⟩ ⊥ ⟨u⟩ and ⟨u⟩ ̸= ⟨v⟩, ⟨w⟩ are indexed by
P2N−3 ∖ {⟨v⟩, ⟨w⟩}, and

|P2N−3 ∖ {⟨v⟩, ⟨w⟩}| = q2N−2 − 1

q − 1
− 2.

Each choice of ⟨u⟩ contributes one term of ⟨w⟩ in (24), giving in total,
a term of the form

(
q2N−2 − 1

q − 1
− 2) ·

 ∑
⟨w⟩⊥⟨v⟩, ⟨v⟩≠⟨w⟩

⟨w⟩

 = (
q2N−2 − 1

q − 1
− 2) · g(⟨v⟩).

Therefore, g|CP(VN ) ◦ g|CP(VN ) also has a term of the form

(26) (
q2N−2 − 1

q − 1
− 2) · g|CP(VN ).

All remaining terms ⟨w⟩ occuring in (24) must then satisfy that
⟨v⟩ ̸⊥ ⟨w⟩. We must count the number of ⟨u⟩ such that ⟨u⟩ ⊥ ⟨v⟩, ⟨w⟩,
which therefore implies that

⟨u⟩ ≠ ⟨v⟩, ⟨w⟩
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(by assumption on w), which are precisely indexed by P2N−3(Fq). We
have

|P2N−3(Fq)| =
q2N−2 − 1

q − 1
.

Therefore, g|CP(VN ) ◦ g|CP(VN ) has a term of the form

(27) (
q2N−2 − 1

q − 1
) ·

 ∑
⟨v⟩̸⊥⟨w⟩

⟨w⟩

 .

Hence, (24) is

(28)

q2N−1 − q

q − 1
· ⟨v⟩ + (

q2N−2 − 1

q − 1
− 2) · g(⟨v⟩) +

+ (
q2N−2 − 1

q − 1
) ·

 ∑
⟨v⟩̸⊥⟨w⟩

⟨w⟩

 .

To calculate, for v ∈ Z̃1,

(29) g|Z̃1
◦ g|Z̃1

(⟨v⟩),

note that in (28), as an element of Z̃1, we have

∑
⟨v⟩̸⊥⟨w⟩

⟨w⟩ = −

 ∑
⟨v⟩⊥⟨w⟩

⟨w⟩

 = −(⟨v⟩+ g|Z̃1
(⟨v⟩)).

Hence, collecting coefficients, we see that in Z̃1,

g|Z̃1
◦ g|Z̃1

= −2 · g(⟨v⟩) + q2N−1 − q − q2N−2 + 1

q − 1
· ⟨v⟩ =

= −2 · g(⟨v⟩) + (q2N−2 − 1) · ⟨v⟩.
Thus, the eigenvalues of g|Z̃1

are

qN−1 − 1 and − (qN−1 + 1),

and we can define idempotents

ẽ+1 :=
g|Z̃1

+ (qN−1 + 1) · IdZ̃1

2 · qN−1
,

and

ẽ−1 :=
−g|Z̃1

+ (qN−1 − 1) · IdZ̃1

2 · qN−1
.

Writing

Z̃±
1 := Im(ẽ±1 ),
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we have

dim(Z̃±
1 ) =

1

2
·
(
q2N − q

q − 1
± qN

)
.

To summarize, so far, we have decomposed the Sp(VN)-representation
CVN as
(30)

CVN = ⊕
{χ:F×

q →C×|χ ̸=1,ϵ}/(χ∼1/χ)

2 · Zχ

⊕ (Z+
ϵ ⊕ Z−

ϵ )⊕ (2 · 1⊕ Z̃+
1 ⊕ Z̃−

1 )
,

with

dim(Zχ) =
q2N − 1

q − 1
for χ ∈ {χ : F×

q → C× | χ ̸= 1, ϵ}/(χ ∼ 1/χ)

dim(Z+
ϵ ) = dim(X−

ϵ ) =
q2N − 1

2(q − 1)

dim(Z̃±
1 ) =

1

2
·
(
q2N − q

q − 1
± qN

)
,

giving the claimed decomposition in Case 1 of Theorem 2.
If all these summands are non-isomorphic and are simple, we then

can calculate that, as a C-vector space,

EndSp(VN )(ωA ⊗ ω−A) =(
q − 3

2
·M2(C)

)
⊕ (C⊕ C)⊕ (M2(C)⊕ C⊕ C)

where M2(C) denotes the 2 by 2 matrix algebra on C, and therefore
we recover that

dim(EndSp(VN )(ωA ⊗ ω−A)) = dim(EndSp(VN )(CVN)) =
dim(HomSp(VN )(1,C(VN ⊕ VN)) = 2q + 2,

(since CVn is self-dual), agreeing with the argument and count of
Sp(VN)-orbits in CVN at the end of Proof of Proposition 4. If any
of the summands of (30) are non-isomorphic or split further, the di-
mension of EndSp(VN )(ωA ⊗ ω−A) would larger, giving a contradiction.
Thus, we have proved Case 1 of Theorem 2. □
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4. Proof of Theorem 2 - Case 2

We now consider the case A ̸≡ −B ∈ (F×
q )/(F×

q )
2. Unlike in the case

of A ≡ −B ∈ (F×
q )/(F×

q )
2, now ωA ⊗ ωB is not isomorphic to Ω, so we

need to develop a new formula for composition in

(31) EndSp(VN )(ωA ⊗ ωB).

This will be done in Lemma 7 below.

4.1. The multiplicative structure of (31). We begin with some
preliminary dicussion.

By duality, we have an isommorphism of vector spaces

EndSp(VN )(ωA ⊗ ωB) ∼= HomSp(VN )(1, (ωA ⊗ ω∨
A)⊗ (ωB ⊗ ω∨

B)).

Again, we apply the classical fact that

ωA ⊗ ω∨
A
∼= ωB ⊗ ω∨

B
∼= CVN ,

to obtain an isomorphism

(32) EndSp(VN )(ωA ⊗ ωB) ∼= HomSp(VN )(1,C(VN ⊕ VN)).

The space HomSp(VN )(1,C(VN ⊕ VN)) can be considered as a subspace
of C(VN ⊕ VN) generated by fixed points of C(VN ⊕ VN) under the
(diagonal) action of Sp(VN), i.e. sums∑

(v,w)∈O

(v, w)

for Sp(VN)-orbits O ⊂ VN ⊕ VN . Equivalently, using the description of
the orbits of VN ⊕ VN in the proof of Proposition 4, we may consider
generators

ι := (0, 0),

fλ :=
∑
v∈VN

(v, λ · v), for λ ∈ P1(Fq), (taking f∞ :=
∑
v∈VN

(0, v))

gν :=
∑

v,w∈VN , S(v,w)=ν

(v, w) for ν ∈ Fq.

(note that here we consider “closed strata” elements, meaning that we
allow v to be 0 in the definition of fλ and allow v, w to be linearly
dependent in the definition of gν).

Write α = B/A. We claim the following
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Lemma 7. Using the identification (32), the endomorphism algebra
(EndSp(VN )(ωA⊗ωB), ◦), is isomorphic to a sub-algebra of C(VN⊕VN),
generated by ι, fλ for λ ∈ P1(Fq), and gν for ν ∈ Fq, with respect to
the algebra operation

⋆ : C(VN ⊕ VN)⊗ C(VN ⊕ VN) → C(VN ⊕ VN)

given by

(33) (v1, w1)⋆(v2, w2) = ψA(
S(v2, v1) + αS(w2, w1)

2
)·(v1+v2, w1+w2),

where ψA : Fq → C× denotes the non-trivial additive character corre-
sponding to A ∈ F×

q .

Proof. First note that, identifying

EndSp(VN )(ωA) ∼= HomSp(VN )(1, ωA ⊗ ω∨
A) ⊆ CVN ,

the composition operation

◦ : (EndSp(VN )(ωA))
⊗2 → EndSp(VN )(ωA)

can be described as the composition

(HomSp(VN )(1, ωA ⊗ ω∨
A))

⊗2

��
HomSp(VN )(1, ωA ⊗ ω∨

A ⊗ ωA︸ ︷︷ ︸⊗ω∨
A)

��
HomSp(VN )(1, ωA ⊗ ω∨

A)

with the top map being tensor product of morphisms (without re-
ordering) and the bottom map being composition with

IdωA
⊗ ϵ⊗ Idω∨

A
: ωA ⊗ ω∨

A ⊗ ωA︸ ︷︷ ︸⊗ω∨
A → ωA ⊗ ω∨

A

where
ϵ : ω∨

A ⊗ ωA → 1

denotes the unit map of the indicated tensor product of ω∨
A and ωA.

Now, let us consider ΩA to be the quotient of the group algebra
CHN(Fq) such that ΩA-modules are HN(Fq)-representations with cen-
tral character ψA. Then ΩA has basis (v) for v ∈ VN with operation

(v) ⋆A (w) = ψA(
S(w, v)

2
) · (v + w).
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Since ωA is the only irreducible representation of HN(Fq) with central
character ψA, its ΩA-module structure gives an isomorphism of algebras
from ΩA to the vector space endomorphisms of ωA

(34) ΩA
∼= EndC(ωA).

By the unique definition of Sp(VN)-action on ωA, (34) is an isomor-
phism of Sp(VN)-representations (with Sp(VN) acting ΩA as the per-
mutation representation and acting on EndC(ωA) as ωA ⊗ ω∨

A. There-
fore,

EndSp(VN )(ωA) = (EndC(ωA))
Sp(VN ),

with composition, is a sub-algebra of ΩA with ⋆A.

Now in EndSp(VN )(ωA ⊗ ωB), the composition operation

◦ : (EndSp(VN )(ωA ⊗ ωB))
⊗2 → EndSp(VN )(ωA ⊗ ωB)

f ⊗ g → f ◦ g

can be described as a composition of product, permutation, and trace:

(35)

(EndSp(VN )(ωA ⊗ ωB))
⊗2

π

��
EndSp(VN )((ωA ⊗ ωB)

⊗2)
?◦ς // EndSp(VN )((ωA ⊗ ωB)

⊗2)

τ

��
EndSp(VN )(ωA ⊗ ωB)

where π denotes tensor product of morphisms (with no re-ordering of
tensor factors), ? ◦ ς sends an h ∈ EndSp(VN )((ωA ⊗ ωB)

⊗2) to h ◦ ς
where

ς : (ωA ⊗ ωB)
⊗2 → (ωA ⊗ ωB)

⊗2

switches the two tensor factors (ωA ⊗ ωB), and τ maps an endomor-
phism h ∈ EndSp(VN )((ωA ⊗ ωB)

⊗2) to its trace, matching the second
factor of (ωA ⊗ ωB) in the source with the second factor of (ωA ⊗ ωB)
in the target.

Again, this corresponds to the algebra operation on

(36) HomSp(VN )(1, (ωA ⊗ ω∨
A)⊗ (ωB ⊗ ω∨

B)) ⊆ C(VN ⊕ VN).

Since in the composition (35) the factors ωA⊗ωB are preserved, the al-
gebra (36) is a sub-algebra of ΩA⊗ΩB with respect to algebra operation
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⋆ = ⋆A ⊗ ⋆B. Now for (v1, w1), (v2, w2) ∈ ΩA ⊗ ΩB, we have
(37)

(v1, w1) ⋆ (v2, w2) = ψA(
S(v2, v1)

2
) · ψB(

S(w2, w1)

2
) · (v1 + v2, w1 + w2).

By definition,

ψA(
S(v2, v1)

2
) · ψB(

S(w2, w1)

2
) = ψA(

S(v2, v1)

2
) · ψA(

α · S(w2, w1)

2
) =

ψA(
S(v2, v1) + α · S(w2, w1)

2
).

Applying this to (37), we obtain the operation (33).
□

4.2. Some idempotents. Now, since for every (v, w) ∈ VN ⊕ VN ,

(v, w) ⋆ (0, 0) = ψA(0) · (v, w) = (v, w),

the unit of ⋆ is ι = (0, 0). For λ ∈ P1(Fq), we have

fλ ⋆ fλ =
∑

v,w∈VN

(v, λv) ⋆ (w, λw) =

∑
v,w∈VN

ψA(
(1 + αλ2) · S(w, v)

2
) · (v + w, λ(v + w)).

Reparametrizing this sum using x = v + w, we obtain that

(38) fλ ⋆ fλ =
∑

v,x∈VN

ψA(
(1 + αλ2) · S(x, v)

2
) · (x, λx).

Since, by assumption, −α ∈ F×
q is not a square, there are no values of

λ ∈ P1(Fq) with 1+αλ2 = 0. Therefore, since in (38) the coefficient of
each (x, λx) is a sum over all v ∈ VN of an additive character, applied
to a non-zero multiple of S(x, v), the only surviving term with non-zero
coefficient is for x = 0. Thus,

fλ ⋆ fλ = q2n · (0, 0) = q2n · ι.

Therefore, for λ ∈ P1(Fq), we have idempotents

e±λ :=
ι± fλ/q

n

2
.

To calculate trace, note that the trace map

CVN ∼= ωA ⊗ ω∨
A → 1
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is defined by sending (0) to qn, and (v) to 0 for v ̸= 0 ∈ VN . Hence,
tr(ι) = tr((0, 0)) = q2n, and the only contributing term of fλ is also
(0, 0), so tr(fλ) = q2n, as well. Therefore,

tr(e±λ ) =
q2n ± qn

2
.

Now, for λ ̸= µ,

(39)

fλ ⋆ fµ =
∑

v,w∈VN

(v, λv) ⋆ (w, µw) =

∑
v,w∈VN

ψA(
(1 + αλµ) · S(w, v)

2
) · (v + w, λv + µw)).

Writing x = v + w, y = λv + µw, we have

v =
µx− y

µ− λ
, w =

λx− y

λ− µ
,

and therefore

S(w, v) =
S(y, x)

µ− λ
.

Reparametrizing (39), we have

(40)

fλ ⋆ fµ =
∑

x,y∈VN

ψA(
(1 + αλµ)S(w, v)

2(µ− λ)
) · (x, y) =∑

ν∈Fq

ψA(
ν

2
· 1 + αλµ

µ− λ
) · gν .

(Note that this implies that using ⋆, the fλ generate all the gν and
therefore all of EndSp(VN )(ωA ⊗ ωB).)

4.3. µq+1-character decomposition. For λ, µ ∈ P1(Fq), write

(41) λ ∗ µ =
µ+ λ

1− αλµ
.

We need −α to not be a quadratic remainder to avoid
0

0
when λ = −µ.

Otherwise, when the denominator is 0, we define the aswer to be ∞.
Further, we define

∞∗∞ = 0,

λ ∗∞ =
−1

αλ
for λ ̸= ∞.
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Comment: Except for the factor α, this operation models the addition
formula for tan(x). One may, in fact, define the operation ∗ on P1R
where tan(x)∗tan(y) = tan(x+y), x, y ∈ [−π/2, π/2] with π/2 ∼ −π/2.

From the point of view of Fq, the inclusion F×
q2 ⊂ GL2(Fq) in-

duces F×
q2/F

×
q ⊂ PGL2(Fq), which gives a simple transitive action of

Z/(q+1) on the rational points of P1(Fq), which is another way (up to
reparametrization) of describing the operation ∗.

Then (40) can be expressed as

fλ ⋆ fµ =
∑
ν∈Fq

ψA(
ν

2 · (µ ∗ (−λ))
) · gν .

We then make the following

Claim 1. The operation (41) gives P1(Fq) the structure of an abelian
group with unit 0 such that for every λ ∈ P1(Fq),

λ ∗ (−λ) = 0.

In fact,
(P1(Fq), ∗) ∼= (Z/(q + 1),+).

In particular, this claim implies that for every x, λ, µ ∈ P1(Fq),
fλ ⋆ fµ = fx∗λ ⋆ fx∗µ.

Therefore, since fλ algebra-generate all of EndSp(VN )(ωA ⊗ ωB) with
respect to ⋆, for every x ∈ P1(Fq),

x : EndSp(VN )(ωA ⊗ ωB) → EndSp(VN )(ωA ⊗ ωB)

fλ 7→ fx∗λ
is preserves the algebra structure. Thus EndSp(VN )(ωA ⊗ ωB) forms a
Z/(q + 1)-algebra, and similarly as before, one can find idempotents
ιθ ∈ EndSp(VN )(ωA ⊗ ωB) corresponding to characters

θ : Z/(q + 1) → C×,

with

tr(ιθ) =
q2N − 1

q + 1
for θ ̸= 1,

tr(ι1) =
q2N + q

q + 1
Writing

Yθ := Im(ιθ),
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the identification of θ = 1/θ gives an isomorphism Yθ ∼= Y1/θ for θ ̸= 1, σ
and splits Yσ into two non-isomorphic summands Y ±

σ of dimension

q2N + 1

2(q + 1)
.

Finally, using e±λ , we find that Y1 splits into two summands Y ±
1 , of

dimensions
1

2

(
q2N + q

q + 1
± qN

)
.

We therefore obtain that ωA ⊗ ωB decomposes as ⊕
{θ:Z/(q+1)→C×|θ ̸=1,σ}/(θ∼1/θ)

Yθ

⊕ (Y +
σ ⊕ Y −

σ )⊕ (Y +
1 ⊕ Y −

1 ),

As before, if these summands are non-isomorphic and simple, we
have

EndSp(VN )(ωA ⊗ ωB) =(
q − 1

2
·M2(C)

)
⊕ (C⊕ C)⊕ (C⊕ C),

which is consistent with (32) and the count of Sp(VN)-orbits of C(VN⊕
VN) in the end of the proof of Proposition 4. If any summands were
isomorphic or split further, the dimension of EndSp(VN )(ωA⊗ωB) would
become too large, giving the decomposition claimed in Case 2 of The-
orem 2.

Thus, it remains to prove Claim 1:

Proof of Claim 1. It is clear the ∗ is commutative and associative. It
is unital with respect to 0, since

λ ∗ 0 =
λ

1
= λ,

and for every λ ∈ P1(Fq),

λ ∗ (−λ) = 0

1 + αλ2
= 0

(again, using the fact that, by our assumptions, α is not a square in F×
q ,

so the denomintaor is not 0. Therefore, (P1(Fq), ∗) forms an abelian
group.

To prove that (P1(Fq), ∗) is cyclic, in then suffices to show that for
every prime ℓ, there is at most one copy of Z/ℓ forming a subgroup of
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it. For ℓ = 2, the only λ which are their own inverses (i.e. satisfies
λ = −λ, by above) are λ = 0,∞. For ℓ > 2,

∞∗ · · · ∗ ∞︸ ︷︷ ︸
ℓ

= ∞

since ∞ = −∞ and ℓ must be odd, and for λ ∈ Fq,
(42) λ ∗ · · · ∗ λ︸ ︷︷ ︸

ℓ

can be expressed as

λ · p1(λ)
p2(λ)

for polynomials p1 and p2 of degree ℓ − 1. Therefore, there for every
prime ℓ, there are at most ℓ elements of degree ℓ. Thus, (P1(Fq), ∗) is
cyclic, and therefore isomorphic to (Z/(q + 1),+).

□

Thus, we have proved both cases of Theorem 2.

5. Interpolation I: The T-Algebra Structure

In this section, we move away from classical rerpesentation theory,
and describe the method of interpolation using the technique of T-
algebras. The goal of this section is to begin constructing the categories
claimed in Theorem 1 for values of t ∈ C not natural numbers.

5.1. T-algebras. Recall that a C-linear additive category with a C-
bilinear associative, commutative, unital tensor product and strong
duality which is generated by a basic object X can be axiomatized by
its T-algebra

T (S, T ) = Hom(X⊗S, X⊗T )

(see [11, 12], following [1], Chapter 10):

A T-algebra T is a universal algebra structure which consists of the
data of vector spaces T (S, T ) corresponding (functorially) to pairs of
finite sets S, T , along with the data of partial trace operations

(43) τϕ : T (S, T ) → T (S ∖ S ′, T ∖ T ′)

corresponding (functorially) to bijections ϕ : S ′ → T ′ for subsets S ′ ⊆
S, T ′ ⊆ T , the data of product operations

π : T (S1, T1)⊗ T (S2, T2) → T (S1 ⨿ S2, T1 ⨿ T2)
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for finite sets S1, S2, T1, T2, and the data of two types of “units” 1 ∈
T (∅, ∅) and ι ∈ T ({1}, {1}) satisfying suitable axioms (see [11, 12] for
details).

For a T-algebra T , we may conversely construct an additive C-linear
category C (T ) with a C-bilinear associative, commutative, unital ten-
sor product and strong duality which is generated by a basic object X,
by first constructing a category C (T )0 with objects

Obj(C (T )0) = {X⊗S ⊗ (X∨)⊗T | S, T finite sets}

and morphisms

HomC (T )0(X
⊗S1 ⊗ (X∨)⊗T1 , X⊗S2 ⊗ (X∨)⊗T2) = T (S1 ⨿ T2, S2 ⨿ T1).

We construct C (T ) by formally adding direct sums to C (T )0 and tak-
ing a pseudo-abelian envelope (for more details, see [11, 12]).

Recall from F. Knop [9, 10] that there is an interpolationRep(GLt(Fq))
of the category of representations Rep(GLN(Fq)), which is generated
by a basic object X of dimension qt (interpolating CFNq ), which is
semisimple and pre-Tannakian for t ∈ C ∖ N0. One may consider the
spaces of morphisms

(44) HomRep(GLt(Fq))(X
⊗S, X⊗T ),

for finite sets S, T . As a vector space, note that (44) is isomorphic to

(45) HomRep(GLN (Fq))((CFNq )⊗S, (CFNq )⊗T ),

for N >> 0. Let us denote by

(46) V(S, T )

the subspace of (45) of morphisms that preserve the action of Sp(VN)⋉
HN(Fq) (taking VN to be a symplectic space of dimension 2N), for
N >> 0.

We claim that V(S, T ), considered as a subspace of (44), forms a sub-
T-algebra of the T-algebra corresponding to Rep(GLt(Fq)) generated
by X.

The T-algebra TRep(GLt(Fq)) corresponding to Rep(GLt(Fq)) gener-
ated by X is defined by taking spaces (44), describing partial trace
by using the strong duality of X and composition with evaluation and
coevaluation morphisms, and taking product to be the tensor product
of morphisms (the two “units” then being ι = IdX and 1 = Id1).
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To describe this approach in more detail, we can identify the vector
space TRep(GLt(Fq))(S, T ), for finite sets S, T , with the free C-vector space
generated by equivalence classes of quotients

(47) f : FS⨿Tq = Fq{ei | i ∈ S ⨿ T} ↠ V

with the equivalence relation that f is equivalent to any composition
of f with an automorphism of the target.

The product π of two quotient maps is a sum of all possible “amal-
gamations” of the target vector spaces. For more detail, see [12].

Partial trace can be defined by, for subsets S ′ ⊆ S, T ′ ⊆ T , and a
bijection ϕ : S ′ → T ′, describing τϕ(f) for f as in (47), and extending
linearly.

If there exists an i ∈ S ′ such that f(ei) ̸= f(eϕ(i)), then take τϕ(f) =
0.

If for every i ∈ S ′ we have f(ei) = f(eϕ(i)), then we take τϕ(f) to be
a multiple of the restriction of f |F(S⨿T )∖(S′⨿T ′)

q
, where the coefficient is

determined by the difference of dimensions

ℓ = dim(V )− dim(Im(f |F(S⨿T )∖(S′⨿T ′)
q

)),

by being 1 if ℓ = 0, and

(qt − qdim(V )−1) · · · · · (qt − qdim(V )−ℓ)

if ℓ ̸= 0. This formula for general t is obtained by polynomially (in qt)
interpolating the respective formulas for N >> 0.

5.2. The T-algebra for Cq,t. For the purposes of Theorem 1, we may
restrict attention to the Hom-spacesHomC (X

⊗S, X⊗T ) where |S| = |T |
(the graded context – we can set the other HomC (X

⊗S, X⊗T ) to 0.) We
shall assume this convention throughout the rest of this paper.

Now recall the space V(S, T ) of (46).

Lemma 8. For t ∈ C∖ N0, the restriction of the partial trace maps

τϕ : TRep(GLt(Fq))(S, T ) → TRep(GLt(Fq))(S ∖ S ′, T ∖ T ′)

for finite sets S ′ ⊆ S, T ′ ⊆ T , and bijections ϕ : S ′ → T ′ (|S| = |T |,
|S ′| = |T ′|), and the product maps

π : TRep(GLt(Fq))(S1, T1)⊗ TRep(GLt(Fq))(S2, T2) →
→ TRep(GLt(Fq))(S1 ⨿ S2, T1 ⨿ T2)
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for finite sets S1, S2, T1, T2, to V(S, T ) and V(S1, T1)⊗V(S2, T2), respec-
tively, have images contained in V(S∖S ′, T∖T ′) and V(S1⨿S2, T1⨿T2),
respectively.

Proof. The statement holds for N >> 0 (note that tensoring with (7)
can be neglected for our purposes since we are only considering the
graded part of the T-algebra for Rep(GLt(Fq))). Therefore, it holds
for a general t since the constants involved are polynomial in qt for
t = N . □

Write Vt for the T-algebra formed by the vector spaces V(S, T ) and
the partial trace and product maps of TRep(GLt(Fq)).

We may therefore consider the category C (V), which can be consid-
ered as generated by an interpolation ω of the Weil-Shale representa-
tion. We write

C q,t := C (Vt).
Since Vt forms a sub-T-algebra of TRep(GLt(Fq)), the category C q,t forms
a subcategory of Rep(GLt(Fq)).

6. Interpolation II: Semisimplicity

In this section, we complete the construction of the categories in
Theorem 1 and complete the proof of Theorem 1. We also prove the
decomposition of X⊗3 claimed in Theorem 3 using Theorem 2. We
begin with some general observations.

6.1. Some remarks on semisimplification. In an algebra A of the
form

(48) A =
n∏
k=1

Mk(C),

the general trace is of the form

t̃r(A) =
n∑
k=1

bk · tr(Ak),

for A = (A1, . . . , An) ∈ A with Ak ∈Mk(C), for some bk ̸= 0.
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Lemma 9. For A ∈ A, if t̃r(A) ̸= 0, then for every N ∈ N, there
exists an M > N such that t̃r(AM) ̸= 0.

Proof. Write A = (A1, . . . , An) ∈ A, for Ak ∈ Mk(C). Without loss of
generality, the matrices Ak are in Jordan form. Thus, our statement
reduces to the following:

Claim: Let λ1, . . . , λm ∈ C be different numbers. If, for some numbers
α1, . . . αm ∈ C

α1λ1 + · · ·+ αmλm ̸= 0,

then for all N , there exists an M > N such that

α1λ
M
1 + · · ·+ αmλ

M
m ̸= 0.

Without loss of generality λ1, . . . , λm ̸= 0. Then the matrix

Λ =

λN1 λN−1
1 . . . λN+m−1

1
...

...
...

λNm λN−1
m . . . λN+m−1

m


is non-singular by the Vandermonde determinant.

Thus, there exists a vector v = (v1, . . . vm)
T such that (λ1, . . . , λm)

T =
Λ · v. Thus, if

(α1, . . . , αm) · Λ = 0,

then
α1λ1 + · · ·+ αmλm = (α1, . . . , αm)Λv =

(α1, . . . , αm)0 = 0.

Contradiction.
□

Recall that, for a locally finite, C-linear additive category with a
C-bilinear associative, commutative, unital tensor product and strong
duality, one can form the semisimplification (see [1], Section 6.1) by
quotienting out negligible morphisms (i.e. morphisms f : X → Y such
that for every morphism g : Y → X, the trace tr(g ◦ f) is 0).

Lemma 9 then gives the following

Proposition 10. The (pseudo-abelian envelope of the) semisimplifica-
tion of a locally finite, C-linear additive category C with a C-bilinear as-
sociative, commutative, unital tensor product and strong duality which
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is generated by an object X, is semisimple if and only if for every
a ∈ End(X⊗n),

(49) tr(a) ̸= 0 ⇒ ∀N ∈ N ∃M > N tr(aM) ̸= 0.

Proof. Necessity follows from Lemma 9 (since this is a general form of
a trace in a semisimple algebra).

To prove sufficiency, given the assumption, if a ∈ End(X⊗n) is non-
negligible, say, tr(ab) ̸= 0 for a b ∈ End(X⊗n), then for every N ∈ N
there exists an M > N such that

tr((ab)M) ̸= 0,

and hence a /∈ Jac(End(X⊗n)). Thus, the semisimplification of C is
semisimple.

□

This implies the following

Proposition 11. If the category C (T ) for a T-algebra T is semisimple
(pre-Tannakian), then for every sub-T-algebra V ⊆ T , the (pseudo-
abelian envelope of the) semisimplification of C (V) is semisimple pre-
Tannakian.

Proof. The condition (49) remains true in V . □

6.2. Proofs of Theorem 1 and Theorem 3. Applying this to our
sub-T-algebra Vt (corresponding to the Weil-Shale representation) of
the T-algebra TRep(GLt(Fq)) corresponding to Rep(GLt(Fq)), we obtain
that the semisimplification

Cq,t

of C q,t is a semisimple category, giving the existence of a semisimple
pre-Tannakian category as claimed in Theorem 1.

What remains to show is that (1) holds for values of qt not equal to
±1,±q:

Lemma 12. For all t with qt ̸= ±1,±q,
(50) dim(EndCq,t(ω

⊗3)) = 2q + 2.
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Proof. Since we have proved that the semisimplification Cq,t of C q,t is
semisimple, it suffices to prove that

(51) det(tr(ai ◦ aj))

is non-zero, where a1, . . . , a2q+2 is a basis of EndC q,t
(ω⊗3).

The generators a1, . . . , a2q+2 can be identified with the orbits of types
(A), (B), (C) at the end of the proof of Proposition 4. The number

(52) tr(ai ◦ aj)

can be non-zero when the orbit ai contains a vector

(u, v) =

(
u1 v1
u2 v2

)
(where u1, u2, v1, v2 ∈ FNq ) and the orbit aj contains the vector(

u2 v2
u1 v1

)
.

In that case, the number (52) is equal to the number of vectors in the
orbit ai (equivalently aj). We shall refer to the orbits ai, aj as contra-
gradient. We find that each orbit of type (A), (B) is contragradient to
iteself, while the orbit of type (C) corresponding to λ is contragradient
to the orbit of type (C) corresponding to −λ.

The number of elements of the orbit of type (A) is 1. The number
of elements of an orbit of type (B) is equal to

q2n − 1.

The number of elements of the orbit of type (C) corresponding to a
λ ̸= 0 is equal to

(q2n − 1)q2n−1.

The number of elements of the orbit of type (C) corresponding to λ = 0
is

(q2n − 1)(q2n−1 − q).

Thus, the number (51) is a polynomial in q2n with factors q2n, q2n− 1,
q2n−q2. Therefore, its zeros in x = qn are x = 0,±1,±q. The statement
follows. □

We have therefore completed the proof of Theorem 1

Finally, we prove Theorem 3:
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Proof of Theorem 3. We begin by proving Theorem 3 for t = N . Fix
an a ∈ F×

q , and consider the representation ωa of Sp(VN)⋉HN(Fq).
In particular, we obtain that

ωa ⊗ ωa = ω2a3 ⊗ ω2a.

Therefore, by (17), we have

ωa ⊗ ωa = ω2a ⊗ ω2a.

Applying (15) again, we obtain that

(53) ω⊗3
a = ω2a ⊗ (ω2a ⊗ ωa) = ω2a ⊗ ω6a3 ⊗ ω3a = (ω2a ⊗ ω6a)⊗ ω3a.

Therefore, we need to calculate

ω2a ⊗ ω6a.

To apply Theorem 2, we must consider whether or not

2a ≡ −6a ∈ (F×
q )/(F×

q )
2,

or, equivalently, whether or not −3 is a square in F×
q , which is deter-

mined by q mod 3.

Case 1: q ≡ 1 mod 3.
Then since, by assumption, −3 is a square in Fq, we in fact have

ω6a
∼= ω∨

2a,

and therefore we get that a decomposition of ω⊗3
a as ω3a tensored with

(2) (where we consider Sp(VN) representations as representations of
Sp(VN)⋉HN(Fq) by letting HN(Fq) act trivially).

Therefore, by taking

Xχ = Zχ ⊗ ω3a for χ ∈ {χ : F×
q → C× | χ ̸= 1, ϵ}/(χ ∼ 1/χ)

X±
ϵ = Z±

ϵ ⊗ ω3a

X0
1 = 1⊗ ω3a = ω3a

X̃±
1 = Z̃±

1 ⊗ ω3a,

we obtain the decomposition and dimensions stated in Case 1 of The-
orem 3 for t = N , X = ω.

If all the summands of (5) are non-isomorphic and are simple, we
then can calculate that, as a C-vector space,

EndRep(Sp(VN )⋉HN (Fq))(ω
⊗3) =

(
q − 3

2
·M2(C)

)
⊕(C⊕C)⊕(M2(C)⊕C⊕C)
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(where M2(C) denotes the 2 by 2 matrix algebra on C), and therefore

dim(EndRep(Sp(VN )⋉HN (Fq))(ω
⊗3) = 2q + 2,

agreeing with Proposition 9. If there were further decompositions or
additional isomorphisms, we would obtain more terms or larger matrix
algebras, contradicting Proposition 4. Hence, we may conclude that all

Xχ for χ ∈ {χ : F×
q → C× | χ ̸= 1, ϵ}/(χ ∼ 1/χ), X±

ϵ , X
0
1 , and X̃±

1

are all simple and non-isomorphic, completing the proof of Case 1 of
Theorem 3 at t = N .

Case 2: q ≡ −1 mod 3.
Then −3 is not a square in Fq and therefore we get a decomposition

of ω⊗3
a as ω3a tensored with (3) (where again we consider Sp(VN) rep-

resentations as representations of Sp(VN)⋉HN(Fq) by letting HN(Fq)
act trivially).

Therefore, by taking

Xθ = Yθ ⊗ ω3a for θ ∈ {θ : µ×
q+1 → C× | θ ̸= 1, σ}/(θ ∼ 1/θ)

X±
σ = Y ±

σ ⊗ ω3a

X±
1 = Y ±

1 ⊗ ω3a

we obtain the decomposition and dimensions stated in Case 2 of The-
orem 3 for t = N , X = ω.

If all the summands of (6) are non-isomorphic and simple, then, as
a C-vector space,

EndRep(Sp(VN )⋉HN (Fq))(ω
⊗3) =

(
q − 1

2
·M2(C)

)
⊕ (C⊕ C)⊕ (C⊕ C)

(where, again, M2(C) denotes the 2 by 2 matrix algebra on C). There-
fore we again recover that

dim(EndRep(Sp(VN )⋉HN (Fq))(ω
⊗3) = 2q + 2,

agreeing with Proposition 9. As in the previous case, if there were fur-
ther decompositions or additional isomorphisms, we would obtain more
terms or larger matrix algebras, contradicting Proposition 4. Hence, we
may conclude that allXθ for χ ∈ {θ : µq+1 → C× | χ ̸= 1, σ}/(θ ∼ 1/θ),
X±
σ , and X

±
1 are all simple and non-isomorphic, completing the proof

of Case 2 of Theorem 3 at t = N .

Therefore we have proved Theorem 3 at t = N . Note the by defini-
tion, Theorem 3 also holds in

C q,t
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at all values of t ∈ C. In particular, we recover the bad values qt = ±1
and ±q for Lemma 12 and Theorem 1 since the dimensions of Xχ, Xθ,

and X̃±
1 , X

±
q are 0 precisely in these cases. Away from these bad values,

since the dimensions of all simple summands of X⊗3 we can conclude
that the decomposition of Theorem 3 holds in the semisimplification

Cq,t,

as well.
□

7. The Graded Model I: Preliminary Observations

The purpose of the next two sections is to define and study a G-
graded semisimple pre-Tannakian category Dq,t where G = Z/2× Z/2
when q ≡ 1 mod 4 and G = Z/4 when q ≡ 3 mod 4, and qt ̸= ±qn,
n ∈ N0. This model was suggested by P. Deligne [2]. It arises from
interpolating “initial segments of the category Rep(Sp(VN))” generated
by CVN and the oscillator representations. We shall describe this model
using our method of T-algebra. We will also show in Section 8 beow
that Dq,t does not come from a measure on an oligomorphic group.
This was an idea of A. Snowden.

To define this graded model, we begin with some preliminary facts,
including the construction of the T-algebra TSp,t (abbreviated to TSp
when t is fixed) defining Rep(Spt(Fq)) from taking the basic object
to be the permutation representation. In the next section, by exam-
ining the endomorphism algebras, we obtain a new T-algebra TOsc,t
(abbreviated to TOsc where t is fixed) with basic object interpolating
the sum of two non-dual oscillator representations. Using a result that
“grades” the initial segments of Rep(SpN(Fq)), we will see that this
T-algebra implements this extra grading, and prove that it in fact de-
fines a semisimple pre-Tannakian category. Finally, we note that this
category can not be constructed using the formalism of oligomorphic
groups (see [4]).

7.1. Reflections of Lemma 7. To motivate how the T-algebra TOsc
can be constructed from the T-algebra TSp, we recall the key observa-
tion in the proof of Theorem 2, namely Lemma 7 of Section 4, which
has a more general significance.
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Recall that the key point of the proof of Lemma 7 is that for any
A ∈ F×

q , the endomorphism algebra EndSp(VN )(ωA) with respect to
composition, is isomorphic to the subalgebra of CVN generated by ele-
ments fixed under Sp(VN) action, i.e.

(0),
∑
v∈VN

(v),

with respect to the operation

⋆ : CVN ⊗ CVN → CVN
given by

(v) ⋆ (w) = ψA(
S(w, v)

2
) · (v + w),

(where, again, ψA : Fq → C× denotes the character corresponding to
A by Pontryagin duality).

In fact, note that, since for any choice of A1, . . . , An ∈ F×
q , the en-

domorphism algebra

(54) (EndSp(VN )(ωA1 ⊗ · · · ⊗ ωAn), ◦)

is isomorphic to the tensor product of the EndSp(VN )(ωAi
) with com-

position each, it is easy to generalize the statement of Lemma 7: We
have that (54) is isomorphic to the subalgebra of

(C(
⊕
n

VN), ⋆),

generated by Sp(VN)-fixed elements, where

⋆ : C(
⊕
n

VN)⊗ C(
⊕
n

VN) → C(
⊕
n

VN)

is defined by

(v1, . . . , vn) ⋆ (w1, . . . , wn) =

ψA1(
S(w1, v1)

2
) · · · · · ψAn(

S(wn, vn)

2
) · (v1 + w1, . . . , vn + wn).

7.2. The T-algebra TSp. In this subsection, we shall describe the T-
algebra TSp defining Rep(Spt(Fq)) from the basic object CVt. In fact,
this is a sub-T-algebra of the T-algebra TGL defining Rep(GL2t(Fq)),
treated in [12]. This observation also can be used to construct the cate-
gory Rep(Spt(Fq)) using a measure on the oligomorphic group Sp∞(Fq)
by restricting the measure on GL∞(Fq) constructed in [4].
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The T-algebra TSp,t of Rep(Spt(Fq)) comes from taking basic object
equal to an interpolation of the permutation representation

X = CVN .
We omit t from the notation of the T-algebra, writing TSp,t = TSp, to
simplify notation. We define the vector spaces of morphisms of TSp as
follows:

Definition 13. For finite sets S, T , as a vector space, we define

TSp(S, T ) = HomSp(VN )((CVN)⊗S, (CVN)⊗T ) =

HomSp(VN )(1, (CVN)⊗S⨿T ) = HomSp(VN )(1,C(
⊕
S⨿T

VN)),

for some N >> |S|, |T |, which is the vector space of Sp(VN)-fixed ele-
ments of C(

⊕
S⨿T VN).

We have already discussed these spaces in detail for |S ⨿ T | = 1, 2
in the previous Sections. For general S, T , an alternate description of
this space, is the free C-vector space generated by surjections

(55) FS⨿Tq → W

where W is a vector space with a possibly degenerate anti-symmetric
form SW (over compositions of (55) with a form-preserving automor-
phism of W ). We use this description primarily in our definition of TSp
to emphasize the non-dependence on N .

To give TSp the structure of a T-algebra, recall that we must also
describe its product and trace operations, and the action of ΣS × ΣT

on each T (S, T ). Product and trace are described in a smiliar manner
as in the T-algebra description of Rep(GLt(Fq)) given above, with the
added data of the (possibly degenerate) forms on the quotient spaces.

For example, for two generators of T (S1, T1), T (S2, T2) of the form

f1 : FS1⨿T1
q ↠ W1, f2 : FS2⨿T2

q ↠ W2,

for spaces W1, W2 with forms SW1 , SW2 , we define their product

f1πf2 ∈ T (S1 ⨿ S2, T1 ⨿ T2)

to be the sum of compositions

FS1⨿S2⨿T1⨿T2
q

f1⊕f2 // W1 ⊕W2
g // W

of f1 ⊕ f2 with “gluing” maps of the form

g : W1 ⊕W2 → W
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for a spaceW with (possibly degenerate) fromW , where g is surjective
and sends the form SW1 ⊕ SW2 to SW , and its restrictions to W1 ⊕ 0,
0⊕W2 are injective.

Also similarly to as in Rep(GLt(Fq)), we define the partial trace of
a generator

f : FS⨿Tq ↠ W

along matching an element s ∈ S and t ∈ T to be 0 unless the images
of the corresponding coordinates match

f(F{s}
q ) = f(F{t}

q ),

in which case the partial trace is the restriction of f

f |FS⨿T∖{s,t}
q

∈ TSp(S ∖ {s}, T ∖ {t})

multiplied by a coefficient equal to 1 if we have not decreased the
dimension of the map’s image, i.e.

dim(Im(f |FS⨿T∖{s,t}
q

)) = dim(W ),

and equal to

qt − qdim(W )−1

if we have decreased the dimension and

dim(Im(f |FS⨿T∖{s,t}
q

)) = dim(W )− 1.

8. The Graded Model II: The Definition and Basic
Properties

We do not need any additional information to give TSp the struc-
ture of a T-algebra. In this description, the action of ΣS, ΣT is by
permuation of source coordinates of a generator

f : FS⨿Tq ↠ W

of TSp(S, T ).
However, for everyN , we can express the permutation representation

as

CVN = ωa ⊗ ω∨
a

for any choice of a ∈ F×
q . The description of the algebra structure ⋆

given in the remark at the beginning of this section allows us to see
this structure, since we may consider ωa ⊗ ω∨

a
∼= EndC(ωA), and

(EndC(ωA), ◦) ∼= (CVN , ⋆).
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This suggests that we may define another T-algebra TOsc,t ofRep(Spt(Fq))
where we consider basic object to be the interpolation of the sum of
the oscillator representations

X = ωa ⊕ ωb

for a, b ∈ F×
q . Again, fixing t, we omit it from the notation and write

TOsc = TOsc,t.

8.1. The definition of the T-algebra for Dq,t. We define the vector
spaces of morphisms of this T-algebra as follows:

Definition 14. For finite sets S, T we define

TOsc(S, T ) = HomSp(VN )((ωa ⊕ ωb)
⊗S, (ωa ⊕ ωb)

⊗T )

for N >> |S|, |T | (the space being again stable as N grows).

By duality, we have

TOsc(S, T ) = HomSp(VN )(1, (ωa ⊕ ωb)
⊗T ⊗ (ω−a ⊕ ω−b)

⊗S).

There are clear candidates for the action of product and trace, arising
from tensor product and trace on Rep(Sp(VN)) (describable explicitly,
again, using combinatorial descriptions as given above for TSp). For
example, to describe the trace

τ : TOsc({1}, {1}) → C

write
TOsc({1}, {1}) = EndSp(VN )(ωa ⊕ ωb) =

HomSp(VN )(1, (ωa ⊕ ωb)⊗ (ωa ⊕ ωb)
∨).

We have that

(ωa ⊕ ωb)⊗ (ωa ⊕ ωb)
∨ = 2 · CVN ⊕ (ωa ⊗ ω−b)⊕ (ωb ⊗ ω−a),

and the last two summands have no copies of 1 since by assumption
ωa and ωb are not dual (and have no dual summands). Therefore, we
in fact have

(56) TOsc({1}, {1}) = HomSp(VN )(1, 2 · CVN) ⊆ CVN ⊕ CVN
interpreting the copies of VN as ωa ⊗ ω∨

a and ωb ⊗ ω∨
b . We define τ by

taking it to be defined as

τ(0) = qt, and τ(v) = 0 for v ̸= 0 ∈ VN

on each summand CVN in (56).
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While the action of ΣS ×ΣT still can be understood simply through
the symmetric action on the tensor product in Rep(Spt(VN)), its con-
sistency (and independence of N) can be clarified using the ⋆ operation.

Specifically, by taking product with the unit and composing (accord-
ing to ⋆) it is enough to define the switch

σ : TOsc({1, 2}, {1, 2}) → TOsc({1, 2}, {1, 2}).
Rewrite (for N > 2)

(57)
TOsc({1, 2}, {1, 2}) = EndSp(VN )((ωa ⊕ ωb)

⊗2) =

= EndSp(VN )((ωa)
⊗2 ⊕ (ωb)

⊗2 ⊕ (ωb ⊗ ωa)⊕ (ωa ⊗ ωb)).

Since the switch operation is Sp(VN)-equivariant, it is composition ◦s
with an element

s ∈ EndSp(VN )((ωa)
⊗2 ⊕ (ωb)

⊗2 ⊕ (ωb ⊗ ωa)⊕ (ωa ⊗ ωb)).

This element is the sum of components in

(58) EndSp(VN )(ω
⊗2
a ), EndSp(VN )(ω

⊗2
b ),

and

(59) HomSp(VN )((ωb ⊗ ωa)⊕ (ωa ⊗ ωb))

all of which are isomorphic to the Sp(VN)-fixed points of C(VN ⊕ VN).
We define the component of s in EndSp(VN )(ω

⊗2
a ). The other compo-

nents are similar. Explicitly, Lemma 5 identifies C(VN ⊕ VN) with the
vector space endomorphisms of the oscillator representation

(60) C(VN ⊕ VN) ∼= EndC(ωa ⊗ ωa).

Now, as representations of

Sp(VN) ⊂ Sp(VN)× Sp(VN) ⊂ Sp(VN ⊕ VN),

ωa ⊗ ωa is isomorphic to the oscillator representation ωa for VN ⊕ VN .
Viewed as an element acting on the oscillator representation ωa for
VN ⊕ VN , considering s ∈ Sp(VN ⊕ VN), we have that s is order 2 and
commutes with switching the two copies of VN .

In particular, this implies that s is a scalar multiple of the switch of
coordinates

g : VN ⊕ VN → VN ⊕ VN
i.e. the matrix (

0 I
−I 0

)
.

In fact, since s is an involution, we have that

(61) s = (±1) · g.
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To determine how g acts on the level of C(VN ⊕ VN), since we are
studying the oscillator representation, restricted along the diagonal em-
bedding

VN ⊂ VN ⊕ VN ,

we need to consider the alternative orthogonal decomposition

VN ⊕ VN = ∆VN ⊕∆−
VN

where ∆VN and ∆−
VN

denote the diagonal and codiagonal

∆VN = {(v, v) | v ∈ VN}
∆−
VN

= {(v,−v) | v ∈ VN}.

Changing bases, therefore, s is expressed as the matrix(
I 0
0 −I

)
.

It remains to understand the composition action of−I ∈ Sp(VN) (using
∆−
VN

∼= VN) on ωa as the element of CVN . Recalling the Schrödinger
model of ωa as, for a decomposition into Lagrangians VN = Λ⊕Λ′, the
space of functions

f : Λ → C
(on which (ℓ, ℓ′) ∈ Λ⊕ Λ′ sends f to

((ℓ, ℓ′)[f ])(x) = ψa(⟨ℓ′, x⟩)f(x− ℓ).)

Therefore, it is clear that −I acts by

−I[f ](x) = ϵ(−1)Nf(−x).

Finally, for 1x the character function of x ∈ Λ,∑
(ℓ,ℓ′)∈VN

1x = qn · 1−x

Identifying the character function of a vector with the vector itself, and
using CVN , we see that −I ∈ Sp(VN) corresponds to the element

ϵ(−1)N

qN
·
∑
v∈VN

v ∈ CVN .

Therefore, as an element of C(VN ⊕ VN), g is

(62) g =
ϵ(−1)N

qN

∑
v∈VN

(v,−v).
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It remains to determine the sign of (61). We claim that

(63) s = ϵ(−1)N · g = 1

qN

∑
v∈VN

(v,−v).

For clarity, let us write (VN)1, (VN)2 for the two copies of VN ap-
pearing in (60) corresponding to the two factors of ωa. Again, using
the Schrödinger model, for decompositions into Lagrangians (VN)i =
Λi ⊕ Λ′

i, we can identify the two copies of ωa with the spaces of func-
tions f : Λ′

i → C for i = 1, 2. In particular, we identify ωa ⊗ ωa with
the space of functions

f : Λ′
1 ⊕ Λ′

2 → C.
On this level, the involution s : (ωa)

⊗2 → (ωa)
⊗2 acts by sending

f(x, y) 7→ f(y, x)

for (x, y) ∈ Λ′
1 ⊕ Λ′

2. To check (63), it suffices to prove that, for a pair
(x, y) ∈ Λ′

1 ⊕ Λ′
2, applying (63) i.e.

(64)
1

qN

∑
ℓ∈Λ,ℓ∈Λ′

(ℓ+ ℓ′)⊗ (−(ℓ+ ℓ′)))

to 1(x,y) : Λ
′
1 ⊕ Λ′

2 → C gives 1(y,x). Now as elements of CVN , we have

(ℓ+ ℓ′) = ψa(−
1

2
S(ℓ′, ℓ)) · (ℓ′) ⋆ (ℓ).

Therefore, applying (64) to 1(x,y) gives

(65)
1

qN
·
∑
ℓ∈Λ

∑
ℓ′∈Λ′

(ℓ′)⊗ (−ℓ′) (ψa(−S(ℓ′, ℓ)) · 1x+ℓ,y−ℓ) .

Now (ℓ′)⊗ (−ℓ′) is considered as an element of CVN⊗CVN here, and
it acts on 1x+ℓ,y−ℓ by

(ℓ′)⊗ (−ℓ′) (1x+ℓ,y−ℓ) = ψa(S(ℓ
′, x+ ℓ) + S(−ℓ′, y − ℓ)) · 1x+ℓ,y−ℓ.

Therefore, at each ℓ ∈ Λ, the corresponding term of (65) is

(66)

1

qN

∑
ℓ′∈Λ′

(ℓ′)⊗ (−ℓ′) (ψa(−S(ℓ′, ℓ)) · 1x+ℓ,y−ℓ) =

1

qN

∑
ℓ′∈Λ′

ψ(S(ℓ′, x− y + ℓ)) · 1x+ℓ,y−ℓ.

This sum vanishes for every choice of ℓ with x− y + ℓ ̸= 0. Thus, the
only surviving term occurs for ℓ = y − x, for which (66) is

1

qN
· qN · 1y,x = 1y,x,
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as required.

Hence, to summarize, on each of copy of C(VN⊕VN) in (57) appearing
as one of the summands in (58) or (59), σ is defined by applying ? ⋆ s,
where s ∈ C(VN ⊕ VN) denotes the “switch element” and is defined by
(63).

To further understand TOsc and verify that it indeed forms a T-
algebra, we recall the behavior of the oscillator representations under
the tensor product.

8.2. More observations on oscillator representations. First, note
the following elementary

Lemma 15. For all choices of c, d ∈ F×
q , we have an isomorphism of

Sp(VN)-representations

ωc ⊗ ωd ∼= ω−c ⊗ ω−d.

Proof. The claim is trivial if q ≡ 1 mod 4, since then −1 is a square
and

ωc ∼= ω−c, ωd ∼= ω−d.

Suppose q ≡ 3 mod 4. Since −1 /∈ (F×
q )/(F×

q )
2, we have either that

c ≡ d ∈ (F×
q )/(F×

q )
2 or c ≡ −d ∈ (F×

q )/(F×
q )

2.

Again, the claim is clear if c ≡ −d ∈ (F×
q )/(F×

q )
2. Therefore, it remains

to show that

(67) ωc ⊗ ωc ∼= ω−c ⊗ ω−c.

This fact follows from the fact that we may consider ωc ⊗ ωc as the
restriction

ωc ⊗ ωc ∼= Res
Sp(VN⊕VN )
Sp(VN ) (ωc)

using the diagonal inclusion

Sp(VN) ⊆ Sp(VN)× Sp(VN) ⊆ Sp(VN ⊕ VN).

In this inclusion, we embed VN ⊆ VN ⊕ VN diagonally, and tensor the
form SV by the diagonal identity matrix(

1 0
0 1

)
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It is equivalent to tensor SV by(
−1 0
0 −1,

)
which gives

ω−c ⊗ ω−c ∼= Res
Sp(VN⊕VN )
Sp(VN ) (ωc),

and therefore (67).
□

Using this Lemma, we observe that, in particular, ωa ⊗ ωb is always
self-dual. We may therefore consider it as a degree 2 element, “inverse
to itself” under the tensor product, up to copies of CVN . In fact, the
tensor product acts on small tensor products of the oscillator repre-
sentations of Sp(VN) as the operation of an abelian group of order 4,
depending on q mod 4:

Case 1: If q ≡ 1 mod 4, then fixing a, b ∈ F×
q such that b/a /∈ (F×

q )
2,

write

A = 1, B = ωa, C = ωb, D = ωa ⊗ ωb.

Here, we can see that A,B,C,D tensor corresponding for example
to addition on elements

(0, 0), (1, 0), (0, 1), (1, 1) ∈ Z/2× Z/2

since ωa and ωb are self-dual, (with an additional copy of CVN for every
two that is cancelled in this addition).

Case 2: If q ≡ 3 mod 4, then fixing an a ∈ F×
q , write

A = 1, B = ωa, C = ωa ⊗ ωa, D = ω−a.

In this case, we see that the classes act with respect to the tensor
product as a Z/4-grading in a similar way, corresponding to 0, 1, 2, 3 ∈
Z/4, respectively, since, by Lemma 15,

ωa ⊗ ωa ⊗ ωa = (ω−a ⊗ ω−a)⊗ ωa =

ω−a ⊗ CVN .

To give a grading of this category by “flavours of the oscillator rep-
resentation,” we begin with the following result.
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Proposition 16 (following P. Deligne, [2]). Suppose n < N . For all
a ∈ F×

q , we have

(68) HomSp(VN )(ωa, (CVN)⊗n) = 0.

For a, b ∈ F×
q such that −b/a /∈ (F×

q )
2, we have

(69) HomSp(VN )(ωa ⊗ ωb, (CVN)⊗n) = 0.

Proof. Consider for an n < N

(70) (CVN)⊗n = C(VN ⊕ · · · ⊕ VN).

Fix an a ∈ F×
q . We begin by proving (69).

First note that for W a vector space with alternating form SW , we

may consider the subspace Ŵ of linear embeddings in HomC(W,VN)

preserving the forms on W and VN . Then Ŵ has a natural transitive
action of Sp(VN) by composition, giving it the structure of a repre-

sentation of Sp(VN). For an inclusion ι ∈ Ŵ , we may consider the
stabilizer subgroup

(Sp(VN))
ι ⊆ Sp(VN)

fixing ι. By definition, we may also describe Ŵ as the induction of the
trivial representation of (Sp(VN))

ι to Sp(VN)

(71) Ŵ ∼= Ind
(Sp(VN ))ι

Sp(VN ) (1).

In fact, these premutation representations, for all W , SW of dimension
≤ n, form a decomposition of (70)

(72) (CVN)⊗n =
⊕

(W,SW ), dim(W )≤n

Ŵ .

Therefore, to prove the claimed statement, it suffices to prove that

HomSp(VN )(ωa, Ŵ ) = 0

for every choice of W , SW of dimensions ≤ n. Now, by (71), we have

HomSp(VN )(ωa, Ŵ ) = Hom(Sp(VN ))ι(ωa, 1).

Now given a W , SW with dim(W ) < N , for a choice of form-
preserving inclusion ι : W ↪→ V , there exists an orthogonal decom-
position

VN = V ′
N ⊕ V ′′

N

such that the image of ι is contained in V2. In particular, therefore, we
have that the subgroup

Sp(V ′
N) ⊂ Sp(V ′

N)× Sp(V ′′
N) ⊂ Sp(VN)
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contains the stabilizer subgroup (Sp(VN))
ι. Thus, it would suffice to

show that

HomSp(V ′
N )(Res

Sp(VN )

Sp(V ′
N )(ωa), 1) = 0.

This follows from the fact that the restriction

Res
Sp(VN )

Sp(V ′
N )(ωa)

decomposes as a sum of copies of the oscillator representation ωa for
V1, which does not contain any trivial representations.

Now fix a, b ∈ F×
q such that −b/a /∈ (F×

q )
2, i.e. such that ωa and ωb

are not dual to each other. Consider

HomSp(VN )(ωa ⊗ ωb, (CVN)⊗n) = HomSp(VN )(ωa, ω−b ⊗ (CVN)⊗n).

Again, using the decomposition (72) and (71), it suffices to prove, for

every W , SW of dimension dim(W ) ≤ n, for an ι ∈ Ŵ ,

HomSp(VN )(ωa, ω−b ⊗ Ŵ ) = HomSp(VN )(ωa, ω−b ⊗ Ind
(Sp(VN ))ι

Sp(VN ) (1)) =

Hom(Sp(VN ))ι(Res
Sp(VN )
(Sp(VN ))ι(ωa), Res

Sp(VN )
(Sp(VN ))ι(ω−b)).

As before, since dim(W ) < N , we can decompose VN = V ′
N ⊕ V ′′

N so
that the image of ι is contained in V ′

N , and therefore, it suffices to prove

HomSp(V ′
N )(Res

Sp(VN )

Sp(V ′
N )(ωa), Res

Sp(VN )

Sp(V ′
N )(ω−b)) = 0,

which again follows since the restriction of the oscillator representation
of Sp(VN) corresponding to a, resp. −b, to Sp(V ′

N) will consist of
copies of the oscillator representation on V ′

N corresponding to a, resp.
−b, which are not isomorphic (and disjoint) since by assumption,

a ̸≡ −b ∈ (F×
q )/(F×

q )
2.

□

8.3. Grading, consistency, and semisimplicity. Therefore, the fol-
lowing definition is well-defined:

Definition 17. Say a simple object of Rep(Sp(VN)) is in the class cor-
responding to an object A, B, C, D if it appears as a summand of that
object, tensored with the nth tensor power (CVN)⊗n of the permutation
representation for some n < N .
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Now, tensoring A, B, C, D as objects of Sp(VN), however, may give
additional copies of CVN upon cancellation - the number of which is
non-trivial to calculate, and will vary depending again on q mod 4. We
give an initial calculation of the number of these copies of CVN for both
cases of q mod 4, for the purpose of explicitly justifying that it does
not depend on N .

We have, for a finite set S,

(A⊕B ⊕ C ⊕D)⊗S =⊕
S1⨿S2⨿S3⨿S4=S

A⊗S1 ⊗B⊗S2 ⊗ C⊗S3 ⊗D⊗S4

Since A is always trivial, it will contribute no new factors of CVN .
Case 1: q ≡ 1 mod 4. By the self-duality of B and C, and writing
D = B⊗C, we see that the term A⊗S1 ⊗B⊗S2 ⊗C⊗S3 ⊗D⊗S4 will give

⌊|S2|+ |S4|
2

⌋+ ⌊|S3|+ |S4|
2

⌋

additional tensor factors ofX. A copy of B, C, orD is present precisely
when the first, second, or both terms are altered by the floor function.

Case 2: q ≡ 3 mod 4. We may re-write

A⊗S1 ⊗B⊗S2 ⊗ C⊗S3 ⊗D⊗S4 = B⊗S2⨿2·S3 ⊗D⊗S4 ,

and B and D are dual, giving

min(|S2|+ 2 · |S3|, |S4|) + ⌊2 · ||S2| ⨿ 2 · |S3| − |S4||
4

⌋

additional tensor factors of X, with a copy of B, C, or D ⊗X present
depending on ||S2| ⨿ 2 · |S3| − |S4|| mod 4.

Therefore, we may write

(A⊕B ⊕ C ⊕D)⊗S =

(A⊗ (CVN)⊗SA)⊕ (B ⊗ (CVN)⊗SB)⊕
(C ⊗ (CVN)⊗SC )⊕ (D ⊗ (CVN)⊗SD).

for finite sets SA, SB, SC , SD depending only on S and q.

Now since the definitions of the spaces TOsc(S, T ) all assume N >>
|S|, |T |, applying again Proposition 16, we see that TOsc(S, T ) (are well-
defined, and) do in fact form a T-algebra. Let us denote by

Dq,t = C (TOsc)
the rigid, C-linear additive category it constructs. Write

Dq,t
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for its semisimplification.

Theorem 18. The category Dq,t is semisimple. In fact, Dq,t is semisim-
ple for qt ̸= ±qn, n ∈ N0.

Proof. Since Dq,t is defined by a sub-T-algebra of Rep(Spt(VN)), we
have an embedding of categories

Dq,t → Rep(Spt(VN)).

Therefore, as before, we can apply Proposition 11 to conclude that
Dq,t is semisimplifiable. Therefore, Dq,t is a semisimple pre-Tannakian
category.

As for Dq,t, similarly as in Lemma 12, we can therefore determine
semisimplicity by the non-vansihing of

(73) det(tr(ai ◦ aj))

where ai form the basis of endomorphism algebras of tensor powers of
the basic object. (73), in turn, are products of sizes of orbits of sym-
plectic groups Sp(2N,Fq). The number (73) is therefore a polynomial
of qN which divides

|Sp(2N,Fq)| =
N∏
i=1

((q2i − 1)q2i−1)

for N >> 0. Substituting qt for qN gives the statement. □

8.4. Non-oligomorphy of Dq,t. Finally, we note that, in fact, the
category Dq,t defined by TOsc can not be obtained from the construction
of oligomorphic groups as described in [4].

Suppose there exists an oligomorphic group Γ (with some measure
µt) giving Dq,t. This category, by above, is graded by a order 4 abelian
group G = Z/2×Z/2 or Z/4. We can embed Γ into an infinite symmet-
ric group, whose orbits decompose as disjoint unions of finitely many
orbits of Γ. Therefore, we obtain an embedding from the interpolated
category of representations of the symmetric group with basic object
of dimension qt, into Dq,t:

(74) Rep(Sqt) → Dq,t.
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In [1], Proposition 8.3 gives that tensor functors of the form (74) are
equivalent to objects A ∈ Obj(Dq,t) with the structure of an algebra,
i.e. an associative, commutative, unital multiplication morphism

µ : A⊗ A→ A

such that the trace on A, which is defined as the composition

TrA : A
Id⊗ϵ // A⊗ A⊗ A∨µ⊗Id // A⊗ A∨ η // 1,

satisfies that its composition with µ

Tra ◦ µ : A⊗ A→ 1

makes A its own dual in Dq,t. Such an object A can be described as a
topological quantum field theory (TQFT) depending only on connected
components, i.e. a set quantum field theory (SQFT) in Dq,t. (It was
called an étale algebra in [5].)

To prove Dq,t cannot be constructed from an oligomorphic group, it
then suffices to prove the following

Proposition 19. There does not exist an SQFT A in Dq,t which has
non-trivial summands in all degrees grading Dq,t (i.e. in Z/2× Z/2 if
q ≡ 1 mod 4, and in Z/4 if q ≡ 3 mod 4).

Proof. By contradiction. Suppose A is an SQFT in Dq,t such that,
denoting the order four abelain group of gradings by G, A decomposes
into summands

A =
⊕
α∈G

Aα,

all non-zero.
First recall that, as a representation of Sp(VN), the oscillator repre-

sentation decomposes into two simple summands

ωa = ω+
a ⊕ ω−

a

of dimensions

dim(ω±
a ) =

qN ± 1

2
.

Fix a ̸≡ b ∈ (F×
q )/(F×

q )
2.

For each degree α ∈ G corresponding to the degree of a summand of
one of the oscillator representations, say

α = deg(ω+
a ),
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there exists an object Z ∈ (Dq,t)0 such that Aα contains

Z ⊗ ω+
a .

Since A is an SQFT, it is self-dual, and

Z∨ ⊗ ω+
−a ⊆ A−α.

(For the case of ω−
a , the discussion is similar.)

Now consider the switch operation

σ : A⊗ A→ A⊗ A

of (63). Consider the map

ϵ : 1 → A⊗4 = (A⊗ A)⊗ (A⊗ A)∨

arising again from the self-duality of A. Consider the summand of A⊗4

which is a tensor mutiple of a

(75) ω±
a ⊗ ω±

b ⊗ (ω±
a )

∨ ⊗ (ω±
b )

∨.

To be involved non-trivially in the image of ϵ (and to contribute a term
in the switch operation), the signs of the factors which are dual to each
other in (75) must match.

Consider the factor

(76) ω±
a ⊗ ω±

b

in (75) (the signs may not match). Recalling the decompositions found
in Theorem 2, we know that for each choice of signs, (76) has no higher
mutiplicity of simple summands. Similarly,

(77) ω±
a ⊗ (ω±

a )
∨ ∼= ω±

a ⊗ ω±
−a

in (75) also must have no higher mutiplicity of simple summands. The
simple summands involved in Cases 1 and 2 of Theorem 2 are distinct,
we know that (76) and (77) share no simple summands. These sum-
mands may have extra factors of CVN , arising from factors of Z ⊗ Z∨.
Applying Proposition 16 again implies, by choosing large enough N ,
that in (Dq,t)0, the summands of A⊗A corresponding to (76) and (77)
remain distinct. Therefore, the switch operation σ acts non-trivially,
which is a contradiction with the axioms of an SQFT.

□
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