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1. Introduction

Let k be a field of characteristic p > 2. In this paper, we consider
the Verlinde category V erp associated to k, used by V. Ostrik [7] for
the purpose of generalizing the result of P. Deligne, [2], Theorem 0.6,
which states that, in characteristic 0, a pre-Tannakian category has a
symmetric tensor functor to the category sV ec of super vector spaces
if and only if it is of sub-exponential growth. Ostrik [7] proposed the
conjecture that, in characteristic p > 0, a semisimple pre-Tannakian
category has a symmetric tensor functor to the Verlinde category if
and only if it is of sub-exponential growth, and proved this in the case
when C has finitely many simple objects. (For recent developments,
see also [5].) For this purpose, he introduced a “Frobenius functor”

(1) Fr0 : C → C � V erp

where � is Deligne’s external tensor product (it turns out that it is
actually helpful to compose this functor with a “Frobenius twist,”
which, however, is not important for our purposes). Ostrik observed
that a consequence of his conjecture would be that all semisimple pre-
Tannakian categories of subexponential growth are of Frobenius type
V ec or V er+

p , which is equivalent to saying that the image of (1) lands
in C � V er+

p where V er+
p is a certain symmetric tensor subcategory of

V erp, which we recall below. In this note, we prove that this conclusion
actually holds for all semisimple pre-Tannakian categories.

To give a rigorous discussion of V erp, we will need some broader
category theory concepts. In general, the semisimplification ([3], Ex-
ercise 8.18.9) of a symmetric tensor category is defined by taking the
same objects as the original category, but quotienting out the negli-
gible morphisms (a morphism is called negligible if every composition
with it with the same source and target has trace 0). It is a general
result that the simple objects of the semisimplification are the images
of the quotient functor of the indecomposables of the original category
(which are not sent 0).
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Now let us apply these general concepts to the context we are in-
terested in for this paper. The Verlinde category V erp is defined
as the semisimplification of the category of finite dimensional Z/p-
representations over k. Now the indecomposable representations are
vector spaces of dimensions 1, . . . , p where the generator acts by the
Jordan blocks with eigenvalue 1. It can be seen that all of these repre-
sentations are non-negligible, except in dimension p. Thus, the simple
objects of V erp are the images of the Z/p-representations correspond-
ing to the Jordan blocks with eigenvalue 1 of dimensions 1, . . . , p − 1.
We call these objects L1, . . . , Lp−1, respectively. (Note that this cate-
gory can also be considered a categorification in characteristic p > 0 of
the s`2-Verlinde algebra of level p.)

We also consider the symmetric tensor subcategory V er+
p ⊆ V erp

generated by Li for i odd. Using this subcategory, we can also describe
the Verlinde category as the Deligne tensor product

V erp = V er+
p � sV ec.

For a more detailed discussion, see for example [8].
Our main result is

Theorem 1. The Frobenious type of a semi-simple pre-Tannakian cat-
egory C in characteristic p is contained in V er+

p .

This answers a question of Coulembier, Etingof, and Ostrik ([1],
Question 7.3).

2. A Key Result

To prove Theorem 1, we will use the following key result of Etingof
and Ostrik [4]:

Theorem 2. [4] The simple objects D(p−1,1), S(p−1,1) generate Rep(Σp)

with respect to ⊕, ⊗. More specifically, the simple objects of Rep(Σp)
are Λi(D(p−1,1))⊗Λi(S(p−1,1)) for 0 ≤ i, j ≤ p− 2. The fusion rules are
determined by

(2) Λj(S(p−1,1))⊗ S(p−1,1) = Λj+1(S(p−1,1)) ∈ Obj(Rep(Σp))

(3)

Λi(D(p−1,1))⊗D(p−1,1) = Λi+1(D(p−1,1))⊕Λi−1(D(p−1,1)) ∈ Obj(Rep(Σp))

(4) Λp−2(D(p−1,1)) = Λp−1(S(p−1,1)) = σ ∈ Obj(Rep(Σp))
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We include a proof here to make this paper self-contained. This will
also allow us to establish notation needed in the proof of Theorem 1.

Let Ṽp be the kernel of the augmentation map of Vp = kΣp/Σp−1.
Then, in particular, we have

Ṽp = S(p−1,1).

Lemma 3. Consider the Σp-representation Ind
Z/p
Σp

(1) given by taking

the induction of the trivial 1-dimenstional Z/p-representation to Σp.
This Σp-representation can be expressed as a direct sum of indecom-
posable Σp-representations of the form

(5) S(p−2i,12i) and S(p−2i,12i) ⊗ σ

for 0 ≤ i < p−1
2

(where σ denotes the sign repesentation) and represen-
tations that are negligible in Rep(Σp).

Proof of Lemma 3. We have, be definition

Ind
Z/p
Σp

(1) = k(Σp/Z/p)

(as a Σp-representation). Thus,

Res
Σp

Z/p(Ind
Z/p
Σp

(1)) = Res
Σp

Z/p(kΣp/Z/p)

(where Res denotes restriction) is a permutation representation and
therefore only has orbits of cardinalities 1 and p. An orbit of cardinality
p is negligible in Rep(Z/p). On the other hand, the orbits of cardinality
1 correspond (by definition) exactly to the elements of the Weyl group
of Z/p in Σp, which is Z/(p−1) with its elements given by permutations
sending i 7→ ki where we consdier i ∈ Z/p for a fixed k ∈ (Z/p)× =
Z/(p− 1).

Thus, Res
Σp

Z/p(kΣp/Z/p) has p − 1 direct summands of dimension 1

(i.e. non-negligible Z/p-fixed points). Hence, kΣp/Z/p = Ind
Z/p
Σp

(1) (as

Σp-representation) has at most p− 1 non-negligible direct summands.
Now suppose V is any indecomposable non-negligible Σp-representation

whose restriction to Z/p has a non-negligible fixed point, i.e. there exist
maps

k
α // V

φ // k
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such that φ ◦ α = a 6= 0 ∈ Z/p. Then we can form the diagram

V
φ // k

α // V

kΣp/Z/p.

OO

This then lifts to maps

(6) V → kΣp/Z/p→ V

such that the diagram

V
φ //

$$

k
α // V

kΣp/Z/p

OO ::

commutes. Then the composition of (6) is multiplication by a(p − 1)!
which is not 0 ∈ Z/p. Thus, any such V is a direct summand of
kΣp/Z/p.

We claim
S(p−2i,12i) = Λ2i(Ṽp)

and

S(p−2i,12i) ⊗ σ = Λ2i(Ṽp)⊗ σ
satisfy this for 0 ≤ i < p−1

2
.

First note that, for i < p− 1, the short exact sequence

(7) 0→ K → ΛiṼp ⊗ Ṽp → Λi+1Ṽp → 0

(where here K simply denotes the kernel of the quotient map

ΛiṼp ⊗ Ṽp → Λi+1Ṽp)

splits since we can take the map

Λi+1Ṽp → ΛiṼp ⊗ Ṽp
given by averaging.

We also have the isomorphism

Ṽp ∼=Z/p Lp−1

where both sides are consdiered as Z/p-representations. Then in the

semisimplification V erp = Rep(Z/p), we have Ṽp = Lp−1, so

Ṽp ⊗ Ṽp = Lp−1 ⊗ Lp−1 = 1.
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Thus, in Rep(Z/p), Ṽp ⊗ Ṽp has exactly 1 non-negligible summand,

which is a fixed point. Therefore, Λ2(Ṽp), which is a direct summand

of Ṽp ⊗ Ṽp by (7) and has dimension

dim(Λ2(Ṽp)) =

(
p− 1

2

)
=

(p− 1)(p− 2)

2
=

(−1)(−2)

2
= 1,

contains the non-negligible fixed point as well (in Rep(Z/p)). Thus,

Λ2(Ṽp) satisfies the condition.

Thus, for 0 ≤ i < p−1
2

, (Λ2(Ṽp))
⊗i also contains a non-negligible

Z/p-summand which is a fixed point. For each 0 ≤ i < p−1
2

, this has

Λ2i(Ṽp) as a non-negligible summand, and therefore each Λ2i(Ṽp) has
the non-negligible Z/p-fixed point, too.

We can also tensor with the sign representation σ to obtain that each

Λ2i(Ṽp)⊗ σ has a non-negligible direct summand that is a fixed point.

Using out condition, this gives us p− 1 spaces (Λ2i(Ṽp), Λ2i(Ṽp)⊗ σ
for 0 ≤ i < p−1

2
) that are non-isomorphic, indecomposable, and are

direct summands of kΣp/Z/p. By the discussion at the beginning of
the proof, these are all of its summands. So

(8)

kΣp/Z/p =
⊕

0≤i< p−1
2

Λ2i(Ṽp)⊕ (Λ2i(Ṽp)⊗ σ) =

=
⊕

0≤i< p−1
2
S(p−2i,12i) ⊕ (S(p−2i,12i) ⊗ σ)

up to direct sum with Σp-representations that are negligible. �

This Lemma directly implies the part of the Proposition stating that
Λi(D(p−1,1)) ⊗ Λj(S(p−1,1)) generate Rep(Σp), since each Li is a direct
summand of a tensor product of copies of Lp−1 and copies of Lp−2, and
because Lp−1 and Lp−2 are the restrictions to Z/p of Σp-representations

S(p−1,1) and D(p−1,1), respectively, Ind
Z/p
Σp

(Li) is a direct summand of

Ind
Z/p
Σp

(L⊗jp−1 ⊗ L⊗`p−2) = S⊗j(p−1,1) ⊗D
⊗`
(p−1,1) ⊗ kΣp/Z/p.

Thus, by Lemma 3 and its proof, Ind
Z/p
Σp

(Li) is a direct summand of a
tensor product of copies of S(p−1,1), D(p−1,1). This proves the first claim
of the Theorem.

To prove the fusion rules, we also claim the following
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Lemma 4. In V er+
p , we have

(9)
Λi(Lp−2) = Lp−i−1 if i odd
Λi(Lp−2) = Li+1 if i even

and

(10) Λi(Lp−2)⊗ Lp−2 = Λi+1(Lp−2)⊕ Λi−1(Lp−2),

for i < p− 1.

Proof. Induction on i. We have

(11) Li ⊗ L2 = Li+1 ⊕ Li−1

Also Lp−2 = Lp−1 ⊗ L2. In particular, we have

Lp−2 ⊗ Lp−2 = L1 ⊕ L3

which implies (9), (10) for i = 0, 1, 2. Next, note that since Lp−2 is
self-dual, the left hand side of (10) has the two summands on the right
hand side for i < p−1 (the first one given by multiplication, the second
one by differentiation).

By the induction hypothesis, (9) is true for all the objects in (10) ex-
cept Λi+1(Lp−2). Thus, it follows from (11) for Λi+1(Lp−2) also (modulo
negligibles). This completes the induction step.

�

Using this we can complete the proof of Theorem 2 as follows:

Proof of Theorem 2. Now D(p−1,1) is also self-dual and thus the left
hand side of (3) has the two summands on the right hand side. This
implies (3) modulo negligibles by Lemma 4.

To compute (4), let v1, . . . , vp be the standard basis of Vp = kΣp/Σp−1.
Then the basis of element of Λp−2(D(p−1,1)) is

(v1 − v2) ∧ · · · ∧ (v1 − vp−1).

We see that the permutation (12) acts by multiplication by −1, which
proves that

Λp−2(D(p−1,1)) = σ.

The proof of

Λp−1S(p−1,1) = σ

is analogous (replacing p − 1 with p). The condition (2) was already
proved in the proof of Lemma 3.

�
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3. A Preliminary Result in Representation Theory

First, note that we may consider Ṽp⊗ Ṽp as a Σp×Σp-representation.
Let us then consider the Σ2p-representation obtained from inducing

Ṽp ⊗ Ṽp to a Σ2p-representation:

J := Ind
Σp×Σp

Σ2p
(S(p−1,1) ⊗ S(p−1,1)) =

= Ind
Z/2oΣp

Σ2p
(Ind

Σp×Σp

Z/2oΣp
(S(p−1,1) ⊗ S(p−1,1))).

We have a decomposition

Ind
Σp×Σp

Z/2oΣp
(S(p−1,1) ⊗ S(p−1,1)) = I+ ⊕ I−

where I± is the ±1 eigenspace of the Z/2-action on S(p−1,1) ⊗ S(p−1,1)

coming from switching the two tensor factors. Let

J± := Ind
Z/2oΣp

Σ2p
(I±).

Lemma 5. Over Σp o Z2, the only non-negligible summand of Λ2(Ṽ2p)

is Λ2(Ṽp) on which each copy of Z/2 acts trivially.

Proof. Write
H = Σp o Σ2 = (Σ2)×p o Σp.

We claim that as an H-representation, each copy of Σ2 acts trivially

on the only non-negligible H-summand of Λ2(Ṽ2p).
First, let us write

V2p = Fp[Σ2p/Σ2p−1] = Fp{v1, . . . , vp, w1, . . . , wp}
where the Σ2-factors of H act by switching a vi with wi. Considering
the map

φ : Λ2(V2p)→ Ṽ2p

given by sending, for generators u, u′ ∈ {v1, . . . , vp, w1, . . . , wp},
φ(u ∧ u′) = u− u′.

We obtain a short exact sequence

0→ Λ2(Ṽ2p)→ Λ2(V2p)→ Ṽ2p → 0.

Let us consider

U = Fp{v1 − w1, v2 − w2, . . . , vp − wp} ∼= Vp

W = Fp{v1 + w1, v2 + w2, . . . , vp + wp} ∼= Vp.

Then we can decompose

Λ2(V2p) = Λ2(U)⊕ Λ2(W )⊕ (U ⊗W )
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and

Ṽ2p = U ⊕ W̃

where W̃ denotes the kernel of the augmentation map on W .
Now the terms U (and hence U ⊗ W ) and Λ2(U) are negligible.

Further, we have a short exact sequence

0→ Λ2(W̃ )→ Λ2(W )→ W̃ → 0.

Thus, the non-negligible summand of Λ2(Ṽ2p) is Λ2(W̃ ) ∼= Λ2(Vp) ∼=
S(p−2,1,1), on which the p copies of Σ2 in H act trivially. �

4. Proof of Theorem 1

Suppose C is a Pre-Tannakian semi-simple category, with Frobe-
nius type not contained in V er+

p . By Proposition 3.3 of [7], the only
fusion subcategories of V erp are the categories of vector spaces V ec,
super vector spaces sV ec, V er+

p , and V erp. Thus, we suppose C has
Frobenius type sV ec or

V erp = sV ec� V er+
p .

Hence, since sV ec is generated by Lp−1, there exists some object X ∈
Obj(C ) such that Fr0(X) ∈ Obj(C � V erp) has a direct summand of
the form T � Lp−1 for a simple object T ∈ Obj(C ). Recall that the
functor Fr0 is given as the composition

C // C �Rep(Σp)
IdC�Φ// C � V erp

where the first functor comes from considering the functor given by

C → C �Rep(Σp)

X 7→ X⊗p

composed with the Deligne tensor product of IdC with the natural
semisimplification functor

Rep(Σp)→ Rep(Σp)

from quotienting out negligible morphisms in Rep(Σp), and the second
functor is given as the Deligne tensor product of IdC with the functor

Φ : Rep(Σp)→ V erp
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given from Theorem 2 above by taking

Φ(S(p−1,1)) = Lp−1

Φ(D(p−1,1)) = Lp−2.

Hence, the pth tensor power X⊗p of X must have a direct summand of
the form T � R where R ∈ Rep(Σp) and Φ(R) = Lp−1. By Theorem

2, R must be an odd tensor power of S(p−1,1) in Rep(Σp). Thus by
replacing X by an odd tensor power of itself, we may assume without
loss of generality that

R = S(p−1,1).

Recall that, denoting Vp = k[Σp/Σp−1], we have S(p−1,1) = Ṽp, the
kernel of the augmentation map Vp → k. Hence, in summary, we have
obtained an object X ∈ Obj(C ) such that X⊗p has a direct summand

T � Ṽp with T a simple object of C .

Now let us consider the Σ2p-representation X⊗2p. Recalling the split-
ting

X ⊗X = Λ2(X)⊕ Sym2(X)

(where Λ2(X), Sym2(X) denote the direct summands where switching
the two copies of X acts by −, +, respectively), we obtain

X⊗2p = (Λ2(X)⊕ Sym2(X))⊗p.

Thus, X⊗2p can be expressed as a direct sum of (Λ2(X))⊗p, (Sym2(X))⊗p,
and a direct sum of mixed terms Y . Every summand Y occurs a
number of times that is divisible by p and hence, Y is negligible as a
Z/p-representation (where we consider the copy of Z/p as the p-Sylow
subgroup of the Σp diagonally embedded in Σp × Σp). Let us consider
the identity morphism
(12)

(Λ2(X))⊗p ⊕ (Sym2(X))⊗p ⊕ Y = X⊗2p Id // X⊗2p = X⊗p ⊗X⊗p

Note that X⊗p ⊗X⊗p also has a direct summand

(T � Ṽp)⊗ (T � Ṽp) = (T ⊗ T ) � (Ṽp ⊗ Ṽp).

Again, we may write

T ⊗ T = Λ2(T )⊕ Sym2(T ).

Without loss of generality, we may assume that Λ2(X) is non-zero since
otherwise we may choose an object Y ∈ Obj(C ) with Λ2(Y ) 6= 0 (e.g.
we could even take Y = X⊗(p−1)) and replace X by X ⊗ Y . Hence, we
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can take Z to be a simple non-trivial summand of Λ2(T ) (so switching
he order of the two copies of T acts by − on Z). Then

Z � (Ṽp ⊗ Ṽp)
forms a Z/2 o Σp-direct summand of X⊗p ⊗X⊗p.

We can consider Ṽp⊗Ṽp as a representation of Z/2oΣp ⊆ Σ2p. Hence,

(12) together with a Z/2 o Σp-equivariant splitting of Z � (Ṽp ⊗ Ṽp) ⊆
X⊗2p gives an epimorphism over Z/2× Σp

f : (Λ2(X))⊗p ⊕ (Sym2(X))⊗p ⊕ Y −� Z � (Ṽp ⊗ Ṽp)
and thus, morphisms

f1 : (Λ2(X))⊗p → Z � (Ṽp ⊗ Ṽp)

f2 : (Sym2(X))⊗p → Z � (Ṽp ⊗ Ṽp)
f3 : Y → Z � (Ṽp ⊗ Ṽp).

Since a switch of the two tensor factors X⊗p in X⊗2p acts by − on

Z� (Ṽp⊗ Ṽp) while it acts by + on (Sym2(X))⊗p (since each individual
switch of two factors X in a copy of X ⊗ X in X⊗2p acts by + on
Sym2(X)), considering the action of Z/2 ⊂ Z/2 oΣp switching the two
copies of Σp, we must have

f2 = 0.

Hence, if f1 were negligible over Z/p, f would given an epimorphism

Y ′ ⊕ Y � Z � (Ṽp ⊗ Ṽp)

for Y ′ a negligible direct summand of (Λ2(X))⊗p. Thus, since Z�(Ṽp⊗
Ṽp) was assumed to be non-negligible over Z/p,

f1 : (Λ2(X))⊗p → Z � (Ṽp ⊗ Ṽp)
is also non-negligible.

Now Z � (Ṽp ⊗ Ṽp) forms a direct summand of

Z � Ind
Z/2oΣp

Σ2p
(Res

Σ2p

Z/2oΣp
(Ṽp ⊗ Ṽp))

over Z/2 o Σp. By the double coset formula, we may choose an inde-
composable non-negligible Σ2p-representation W with a map

W → Ind
Z/2oΣp

Σ2p
(Ṽp ⊗ Ṽp) = J.

In particular, we then obtain a map of Σp × Σp-representations

Res
Σ2p

Z/2oΣp
(W )→ Ṽp ⊗ Ṽp.
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Hence, we may consider Z � (Ṽp⊗ Ṽp) as a direct summand of Z �W .
Now there is also an injective morphism of Z/2 o Σp-representations

Ṽp ⊗ Ṽp → Λ2(Ṽ2p),

(i.e. a map

Ṽp ⊗ Ṽp → Res
Σ2p

Z/2oΣp
Λ2(Ṽ2p),

where Z/2 acts by − the switch on the left hand side) and thus, by
the adjunction between restriction and induction, we obtain a map of
Σ2p-representations

W → Λ2(Ṽ2p)

On the other hand, note that we have a short exact sequence

0 // Λ2(Ṽ2p) // Λ2(V2p)
g // Ṽ2p → 0

Now Λ2(V2p) = Λ2(Vp ⊕ Vp) has terms Λ2(Vp)⊗ 1, Vp ⊗ Vp, and 1⊗ Vp.
Note that as Z/p-representations, Vp is free and hence, the summand
Λ2(Vp) of Vp⊗Vp is projective. Considering we have another short exact
sequence

0 // Ṽp ⊗ Ṽp // Vp ⊗ Vp // Ṽ2p
// 0

the term Ṽp ⊗ Ṽp = Ker(h) must Z/p-split in Ker(g). Hence, Ṽp ⊗ Ṽp
is a Z/p-summand of Λ2(Ṽ2p) (with Z/p acting diagonally), and we can
write an inclusion

Ṽp ⊗ Ṽp ↪→ Λ2(Ṽ2p).

Hence, we obtain an inclusion of a direct summand as Z/p-representations

Ṽp ⊗ Ṽp

��

⊆

%%JJ
JJ

JJ
JJ

J

W // Λ2(Ṽ2p).

Thus, we obtain a diagram after taking the Deligne tensor product
with Z:

Z � (Ṽp ⊗ Ṽp)

��

⊆

''PP
PPP

PPP
PPP

P

Z �W // Z � Λ2(Ṽ2p)
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where the diagonal morphism is an inclusion of a direct summand over
Z/p. On the other hand, we also have, over Z/2 o Σp,

Z � (Ṽp ⊗ Ṽp)

(Λ2(X))⊗p

f1
77nnnnnnnnnnnn
// Z �W

OO

Hence, by composing these diagrams, over Z/p,

(Λ2(X))⊗p ↪→ Z � Λ2(Ṽ2p)

forms a non-negligible direct summand. Since the Sylow subgroup of
ΣpoZ/2 is isomorphic to Z/p, (Λ2(X))⊗p must still form a non-negligible

direct summand of Z � Λ2(Ṽ2p) over Σp o Z/2. By Lemma 5, this gives
a contradiciton, since each copy of Z/2 acts by − on (Λ2(X))⊗p.
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