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Abstract. In this third paper in a series on type I Howe duality
for finite fields, we give a complete description of the restriction
of the oscillator representation over a finite field to products of
dual pairs of symplectic and orthogonal groups in all cases that
occur. In particular, this gives an inductive construction of all ir-
reducible complex representations of finite symplectic and orthog-
onal groups. We also give a proof of the Gurevich-Howe rank and
exhaustion conjectures for type I pairs.
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1. Introduction

The purpose of this paper is to complete the explicit description,
started in the previous papers [31, 32], of the decomposition of the
oscillator representation of a symplectic group over a finite field into
irreducible representations of a product of a dual pair of type I, which
consists of a symplectic and an orthogonal group. This problem was
suggested by R. Howe in [19]. Since we treat all the applicable cases,
this, in particular, gives an inductive construction of all irreducible
complex representations of finite symplectic and orthogonal groups.
As an application, we prove the Gurevich-Howe rank conjecture [16],
Conjecture 0.3.8 on the coincidence of tensor rank and U -rank, and the
exhaustion conjecture [16], Conjecture 0.4.12, which follows.

The part of this program completed in [31, 32] was to treat the so-
called stable ranges, where the rank of one of the groups in the pair
is much greater than the other. In [31], the general form of that case
of the decomposition was established, in terms of certain correspon-
dences between the sets of irreducible representations of symplectic
and orthogonal groups, and, in [32], it was completely described in
terms of Lusztig’s classification of irreducible representations of finite
groups of Lie type.

The strategy of this paper is to break up the remaining cases into
two metastable ranges. In the metastable ranges, the stable picture
breaks down in two ways, both of which are related to the occurence of
generalized Lusztig symbols, which relax some of the defining conditions
of a Lusztig symbol. One type of generalized symbol predicts a 0-
dimensional representation - those terms are simply omitted. However,
one can also encounter alternating sums of induction terms coupled
with generalized Lusztig symbols of the same dimension. These are
first shown to be genuine (as opposed to virtual) representations. This
is done in Section 4. The other step is to compute them completely,
which is done in Section 6.
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To describe our results more concretely, we need some notation. Con-
sider a finite field Fq of characteristic not equal to 2, a symplectic
Fq-vector space V , and an Fq-vector space W with a non-degenerate
symmetric bilinear form B. In this finite field context, S. Gurevich and
R. Howe (see e.g. [16]) proposed the problem of describing explicitly
the restriction of the oscillator representation of Sp(V ⊗ W ) to the
subgroup Sp(V ) × O(W,B). The previous two papers in this series
[31, 32] described this decomposition explicitly in the symplectic stable
range (i.e. where dim(V ) ≥ 2dim(W )) and the orthogonal stable range
(where dim(V ) is less than or equal to the dimension of the maximal
isotropic subspace of W ).

Denote by Ĝ the set of isomorphism classes of irreducible complex
representations of a finite group G. Then in the symplectic resp. or-
thogonal stable range, there are correspondences

(1) ηVW,B : ̂O(W,B) ↪→ Ŝp(V )

(2) ζW,BV : Ŝp(V ) ↪→ ̂O(W,B)

(explicitly constructed in [31] and described in [32] in terms of G.
Lusztig’s classification of irreducible representations of finite groups
of Lie type, see e.g. [38]) so that the Gurevich-Howe decomposition is
a direct sum of terms of the form

(3) ρ⊗ ηVW,B(ρ)

resp.

(4) ζW,BV (π)⊗ π

and “degenerate terms,” which can be explicitly descried as tensor
products analogous to (3), (4) involving parabolic Verma modules in-
duced from smaller choices of V , W .

The purpose of the present paper is to describe the Gurevich-Howe
decomposition in the remaining cases, broken up into two metastable
ranges which, together with the stable ranges, cover all the cases of V ,
W . The precise definition of the metastable ranges is technical and will
be given in Subsection 3.1 below (Definition 3.1.1).

Our main result can now be stated in broad terms as follows:

Theorem 1. Consider a type I reductive dual pair (Sp(V ), O(W,B)).
Then in the symplectic resp. orthogonal metastable ranges, there are
correspondences

(5) ηVW,B : ̂O(W,B) → Ŝp(V ) ∪ {0}
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(6) ζW,BV : Ŝp(V ) → ̂O(W,B) ∪ {0},
explicitly described in terms of Lusztig’s classification, such that the
restriction of the oscillator representation of Sp(V ⊗W ) to Sp(V ) ×
O(W,B) is a direct sum of terms of the form (3) resp. (4) and explic-
itly described as tensor products analogous to (3) resp. (4) involving
alternating sums of parabolic Verma modules for smaller choices of
V,W , each of which adds up to a linear combination of irreducible rep-
resentations with positive integral coefficients. The alternating sums
are explicitly resolved as sums of irreducible representations in terms
of Lusztig’s classification.

We restate this more precisely after we have introduced the necessary
notation, in Theorems 3.5.1 and 3.5.2 below. The description of the
alternating sum coefficients appearing with the eta and zeta correspon-
dence is given in Theorem 6.1.1.

Remark: This result extends the results of S.-Y. Pan [41, 42]. We
discuss this in Appendix A where we see how our decompositions of
the restricted oscillator representation recover Pan’s identification of
the sumands which occur with non-zero multiplicity. In fact, our proof
explicitly shows that they all must appear with multiplicity 1 and that
the sum of the products of the occuring dimensions does really add up
to qdim(V )·dim(W )/2 = dim(ω[V ⊗W ]), using a somewhat subtle combi-
natorial argument. (The cases of rank ≤ 6 were verified on a computer
using Maple and the GAP package CHEVIE.)

Further, our organization of these summands in terms of one-to-one
correspondences between sets of irreducible representations of symplec-
tic groups and those of orthogonal groups reconciles Pan’s result with
the original program of Howe [16, 17, 19, 21] (see Appendix A). These
correspondences allow us to use the oscillator representation as a tool to
approach questions in the representation theory of finite groups of Lie
type B,C,D (such as character table computation and the program for
character ratio estimation proposed by Gurevich and Howe in [16, 17],
which we discuss in Subsection 4.5 and Section 5, respectively).

One important application of our description of the eta correspon-
dence is that it can be used to answer questions related the character
theory of finite symplectic groups (see [16, 17]). In particular, in Sec-
tion 5, we prove the Gurevich-Howe rank conjecture, which predict the
equality of a two kinds of “ranks” for certain representations. The first
notion of rank defined by Gurevich and Howe is called U-rank and is
defined as the maximal “rank” of a character in the restriction of a
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representation to the Siegel unipotent subgroup of a symplectic group.
We denote it by rkU . The second notion of rank is called tensor rank
and is defined to be the minimal natural number k such that every ir-
reducible summand of the input representation is contained in a tensor
product of less than or equal to k oscillator representations. We denote
it by rk⊗. The main result of Section 5 is that Conjecture 0.3.8 of [16]
holds:

Theorem 2. (The Gurevich-Howe Rank Conjecture, [16], Conjecture
0.3.8) For an irreducible representation ρ of a finite symplectic group
Sp2N(Fq) (for q an odd prime power), if the U-rank of ρ is strictly less
than N , then it agrees with the tensor rank of ρ:

(7) rkU(ρ) = rk⊗(ρ).

We then also have:

Corollary 1. (The Gurevich-Howe Exhaustion Conjecture, [16], Con-
jecture 0.4.12) For every choice of 0 < n < N , every irreducible
Sp2N(Fq)-representation of U-rank n is produced in the image of an

eta correspondence η
F
2N
q

W,B for one of the two choices of orthogonal spaces
(W,B) of dimension n.

Proof. In [16], Theorem 0.4.13, it is proved that every irreducible rep-
resentation of Sp2N(Fq) with tensor rank n is produced in the image of
such an eta correspondence. Thus, since Theorem 2 states that, in this
range, tensor rank is always equal to U -rank, the exhaustion conjecture
follows immediately. □

Remark: Similar results for groups of type A were proved by R. M.
Guralnick, M. Larsen, and P. H. Tiep [15] and for groups of type B and
D by M. Larsen and P. H. Tiep [35].

The correspondences (5), (6) are not formal extensions of the corre-
spondences (1), (2) to the metastable range. If we extended the cor-
respondences (1), (2) formally, we would obtain “generalized Lusztig
symbols” which could either contain repeated terms (these translate to
the term {0} in (5), (6)) or non-monotone terms; those are replaced by
different genuine Lusztig symbols. The reason for working in the two
metastable ranges is to avoid the appearance of illegal Lusztig symbols
with negative terms, which are more complicated to resolve.

Our method for proving Theorem 1 is interpolation of semisimple
pre-Tannakian categories [6, 7, 18, 28, 29, 30]. There are other possible
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methods for approaching this problem. Notably, analogously as the
general linear group is embedded into the multiplicative semigroup of
all square matrices, the symplectic group is embedded into the oscillaor
semigroup discovered by Howe [19, 16, 17, 21]. Using this semigroup,
one can also obtain results on the Gurevich-Howe decomposition be-
yond the stable ranges (see e.g. Proposition 8.2.1 of [16]).

Since (5) and (6) cover all the cases of V and W , it is possible to use
Theorem 1 for an inductive construction of all irreducible representa-
tions of Sp(V ), O(W,B) (see Subsection 4.5).

This paper is organized as follows: In Section 2, we discuss some
background of the oscillator representations and the relevant cases of
Lusztig’s classification of irreducible representations of finite groups of
Lie type. In Section 3, we describe the metastable ranges, construct an
eta or zeta correspondence for every case of type I reductive dual pair,
and discuss the alternating sums replacing parabolic induction in the
metastable range. This establishes the necessary notation to restate
Theorem 1 in concrete terms. In Section 4, we discuss interpolated
representation categories and the analogues of the results of [31, 32],
prove Theorem 1, and discuss some representation-theoretical impli-
cations. In Section 5, we discuss the Gurevich-Howe rank conjecture,
proving Theorem 2. In Section 6, we resolve the alternating sums ap-
pearing as coefficients in the decomposition of the restricted oscillator
representation.

In Appendix A, we discuss a dictionary between the notation and
results of this series of papers with S.-Y. Pan’s identification of the
pairs of irreducible representations whose tensor products appear with
non-zero multiplicity in the restricted oscillator representation.

2. Background

We begin by recalling the results of [31, 32] more precisely.
First, we fix notation: For a symplectic group Sp(V), we write ωa[V]

to denote the oscillator representation arising from the Weil-Shale rep-
resentation of the Heisenberg group on V with central (non-trivial,
additive) character in Fq corresponding to a ∈ F

×
q under a fixed iden-

tification of Fq with its Pontrjagin dual. In the case of a = 1, we omit
the subscript and write ω[V] = ω1[V].

Now let us consider a type I reductive dual pair of subgroups of
Sp(V), which must be of the form

(8) (Sp(V ), O(W,B)) ⊆ Sp(V),
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for Fq-spaces V and W , say with symplectic and symmetric bilinear
forms S and B respectively, so that V = V ⊗W , and we consider its
symplectic form to be S ⊗ B(see, for example, [19]). Tensoring ma-
trices gives an inclusion of the product Sp(V )× O(W,B) into Sp(V).
Note that if there exists a k-dimensional isotropic subspace ofW (resp.
V ), then B (resp. S) can be expressed as a direct sum of k copies
of a hyperbolic 2-dimensional symmetric bilinear (resp. symplectic)
form with a form B[−k] (resp. S[−k]) on a dim(W )− 2k-dimensional
W [−k] (resp. dim(V )− 2k-dimensional space V [−k]). If k is a dimen-
sion of an isotropic subspace, we write PB

k (resp. P V
k ) for the max-

imal parabolic subgroup of O(W,B) (resp. Sp(V )) with Levi factor
GLk(Fq)×O(W [−k], B[−k]) (resp. GLk(Fq)× Sp(V [−k])).

In [31], we defined two stable ranges of such type I reductive dual
pairs: We say a pair (8) is in the symplectic stable range if dim(W ) ≤
dim(V ), and similarly, we say it is in the orthogonal stable range if the
dimension of V is less than or equal to the dimension of a maximal
isotropic subspace of W with respect B. Let us denote by hW the
dimension of a maximal isotropic subspace of W . We proved that,
for (Sp(V ), O(W,B)) in the symplectic stable range, the restriction of
ω[V ⊗W ] to a Sp(V )×O(W,B)-representation is

(9)

hW⊕
k=0

⊕
ρ∈ ̂O(W [−k],B[−k])

ηV (ρ)⊗ IndP
B
k (ρ⊗ ϵ(det))

for a system of mutually disjoint injections

ηVW,B : ̂O(W,B) ↪→ Ŝp(V )

called the eta correspondence (ommiting the subscript when the source
is determined). See also, for this case, the original papers of S. Gurevich
and R. Howe finding the eta correspondence [16, 17] and an approach.
Similarly, for (Sp(V ), O(W,B)) in the orthogonal stable range, writ-
ing dim(V ) = 2N , the restriction of ω[V ⊗W ] to Sp(V ) × O(W,B)
decomposes as

(10)
N⊕
k=0

⊕
ρ∈ ̂Sp(V [−k])

IndP
V
k (ρ⊗ ϵ(det))⊗ ζW,B(ρ)

for a system of mutually disjoint injections

ζW,BV : Ŝp(V ) ↪→ ̂O(W,B)

called the zeta correspondence (again, ommiting the subscript when the
source is determined).
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Therefore, in either stable range, the problem of Howe duality re-
duces to explicitly computing the eta and zeta correspondences, which
we was the main result [32], using Lusztig’s classification of irreducible
representations: Recall that, broadly, an irreducible representation of
a finite group of Lie type is classified by data consisting of a conjugacy
class of a semisimple element (s) in the dual group GD (the “semisimple
part”), a unipotent representation of (the dual of) the centralizer of s
in GD, and possible “central sign data” when Z(G) is disconnected; we
discuss this in more detail in Section 2 below. For (Sp(V ), O(W,B)) in
the symplectic stable range, our computation of the eta correspondence

ηVW,B : ̂O(W,B) → Ŝp(V )

can be summarized as transforming the Lusztig data of an irreducible
representation of O(W,B) into Lusztig data specifying an irreducible
representation of Sp(V ) by

• Adding an appropriate number of −1 eigenvalues (and a single
1 eigenvalue, with position depending on the action of Z/2 ⊆
O(W,B)) to the semisimple part if dim(W ) is odd, and 1 eigen-
values if dim(W ) is even.

• Altering the unipotent part by considering the single changed
factor of the centralizer of the new semisimple part (correspond-
ing to −1 eigenvalues if dim(W ) is odd and 1 eigenvalues of the
semisimple part if dim(W )) and adding a single coordinate to
the Lusztig symbol to get the appropriate new rank and defect.

• Central sign data is determined by the quadratic character ap-
plied to the semisimple part (as a torus element) multiplied by
the discriminant of B when dim(W ) is odd, and the central sign
data of SO(W,B) when dim(W ) is even.

Similarly, for (Sp(V ), O(W,B)) in the orthogonal stable range, our
construction of the zeta correspondence

ζW,BV : Ŝp(V ) → ̂O(W,B)

can be summarized by altering the Lusztig data of an irreducible rep-

resentation of Ŝp(V ) by adding −1 eigenvalues to the semisimple part
if dim(W ) is odd, 1 eigenvalues if dim(W ) is even, altering the affected
factor of the unipotent part by adding a single appropriate coordinate,
and assigning central sign data determined by the quadratic character
of the original semisimple part and disc(B) or the original central sign
data.
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To be even more precise, we need to also recall Lusztig’s classifi-
cation. Consider a general finite group of Lie type G. Consider a
conjugacy class (s) of a semisimple element of the dual group s ∈ GD.
Consider also an irreducible unipotent representation u of the dual of
s’s centralizer

u ∈ ̂(ZGD(s))Du.

This data determines a G-representation we denote by ρ(s),u of dimen-
sion

dim(ρ(s),u) =
|G|q′

|(ZGD(s))D|q′
· dim(u)

(recall that the order of a group of Lie type is equal to the order of its
dual). In the case whenG has connected center (e.g. G = SO2m+1(Fq)),
the ρ(s),u are precisely the irreducible G-representations.

We will also want to consider cases of G with non-trivial center (e.g.
G = Sp2N(Fq) or O±

2m(Fq)). In these cases, the representation ρ(s),u
may split into two non-isomorphic irreducible summands

(11) ρ(s),u = ρ(s),u,+1 ⊕ ρ(s),u,−1

of dimensions

dim(ρ(s),u,+1) = dim(ρ(s),u,−1) =
dim(ρ(s),u)

2

where the ±1 corresponds to specifying an action of Z(G) = Z/2 (with
+1 corresponding to the trivial action and −1 corresponding to the
sign). In all other cases ρ(s),u remains irreducible, giving all irreducible
representations of G. For example, in the case of G = Sp2N(Fq), ρ(s),u
decomposes as in (11) if and only if s has −1 as an eigenvalue. If ρ(s),u
or ρ(s),u,±1 is an irreducible G-representation, say [(s), u] or [(s), u,±1]
is its corresponding Lusztig classification data.

2.1. The semisimple data. The data of a conjugacy class of a semisim-
ple element in a finite group of Lie type is equivalent to the data of its
eigenvalues (under the action of the Weyl group). In any symplectic
or special orthogonal group, every maximal torus is isomorphic to a
product of SO±

2 factors, possibly on field extensions of Fq

(12) T ∼=
k∏
i=1

SO±
2 (Fqni )

such that n1 + · · · + nk adds up to the total rank, and in the case of
tori in even special orthogonal groups, the sign ± denoting whether or
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not the full group is equal to the product of signs appearing in each
SO±

2 factor. Note that each factor is cyclic

SO±
2 (Fqn)

∼= µqn∓1,

giving an identification of T with its Pontrjagin dual. Write χ(s) for
the character of T corresponding to a semisimple (s) ∈ T . Then if, for
some G, we consider Lusztig classification data consisting of semisimple
part (s) ∈ GD and unipotent part u, we have

(13) ρ(s),u ⊆ IndTG(χ(s))

(noting on the right hand side that, writing (12), each T is self-dual
and the maximal tori in G are identified with those in GD).
Given a choice of semisimple part of Lusztig classification data con-

sisting of a conjugacy class (s) ∈ GD before proceeding further with
describing the rest of the Lusztig classification data, we must write
down its centralizer ZGD(s). To compute this, consider s as an element
of some maximal torus T as in (12), minimizing ni where possible.
Coordinates ±1 ̸= λ ∈ SO±

2 (Fqn) of multiplicity j give a centralizer
factor U±

j (Fqn) (where we use the notation U+
j = GLj). Eigenvalues

±1 ∈ SO±
2 (Fq) give centralizer factors depending on the specific choice

of GD and G.
If GD = Sp2r(Fq) (to describe representations of G = SO2r+1(Fq)),

a semisimple s ∈ G has centralizer

(14) ZSp2r(Fq)(s) =
k∏
i=1

U±
ji
(Fqni )× Sp2p(Fq)× Sp2ℓ(Fq)

where s has 1 as an eigenvalue of multiplicity 2p and−1 as an eigenvalue
of multiplicity 2ℓ.

If GD = SO2r+1(Fq) (to describe representations of G = Sp2r(Fq)),
a semisimple element s ∈ G has centralizer

(15) ZSO2r+1(Fq)(s) =
k∏
i=1

U±
ji
(Fqni )× SO2p+1(Fq)× SO±

2ℓ(Fq)

if s has 1 as an eigenvalue of multiplicity 2p+1 and −1 as an eigenvalue
of multiplicity 2ℓ (recall that a single 1 eigenvalue is automatic in this
case, since it must be added to embed T ⊂ SO2r+1(Fq)). The sign of
the final factor SO±

2ℓ(Fq) corresponds to whether we pick T ⊂ SO+
2r(Fq)

or SO−
2r(Fq). We specifically will later consider the semisimple conju-

gacy classes (σ+
r ) and (σ−

r ) which both have −1 as an eigenvalue of
multiplicity 2r and a single (automatic) 1 eigenvalue, placed so that
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σ±
r is in a torus of the form (12) such that the product of all involved

signs of SO2 is equal to ±. These elements satisfy

ZSO2r+1(Fq)(σ
±
r ) = SO±

2r(Fq).

IfGD = SO±
2r(Fq) (to describe representations ofG = GD = SO±

2r(Fq)),
a semisimple s ∈ G has centralizer

(16) ZSO±
2r(Fq)

(s) =
k∏
i=1

U±
ji
(Fqni )× SO±

2p(Fq)× SO±
2ℓ(Fq)

with signs chosen so that their product is the total sign of G, where
s has 1 as an eigenvalue of multiplicity 2p and −1 as an eigenvalue of
multiplicity 2ℓ. For more details, see [4].

2.2. The unipotent data. Given a choice of (s) ∈ GD, the next part
of Lusztig classification data is a unipotent representation u of the dual
of the centralizer of s (ZGD(s))D, which by (14), (15), (16), we can write
down as a product of unitary groupds and a pair of factors of B, C,
D or 2D-type. We may consider u as a tensor product of irreducible
unipotent representations of each factor. It will turn out (recalling the
constructions in [32]) that only the tensor factor of u corresponding
to one of these final two factors will be “altered” in the description
of η or ζ. Therefore, we describe in this subsection the classification
of unipotent representations of Sp2r(Fq), SO2r+1(Fq), and SO±

2r(Fq),
using symbols.

The classification of irreducible unipotent representations of Sp2r(Fq)
and SO2r+1(Fq) are the same, since they are dual groups. A symbol of
B- or C-type and rank r is defined to be a pair of increasing sequences(

λ1 < · · · < λa
µ1 < · · · < µb

)
for λi, µi ∈ Z≥0 such that (λ1, µ1) ̸= (0, 0), a − b is odd (the “defect
condition”), and

a∑
i=1

λi +
b∑
i=1

µi = r +
(a+ b− 1)2

4

(the “rank condition”). We take switching rows to give the same sym-
bol. The irreducible unipotents are in bijective correspondence with
this combinatorial data (and we denote the representation correspond-
ing to a symbol by the symbol itself).

Similarly, for the case of SO+
2r(Fq) (resp. SO−

2r(Fq)), irreducible
unipotent representations correspond to symbols of D- (resp. 2D-type)
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and rank r, which are defined to consist of pairs of increasing sequences(
λ1<···<λa
µ1<···<µb

)
for λi, µi ∈ Z≥0 such that (λ1, µ1) ̸= (0, 0), the “defect con-

dition” a−b ≡ 0 mod 4 (resp. ≡ 2 mod 4, for SO−
2r(Fq)) and the “rank

condition”
a∑
i=1

λi +
b∑
i=1

µi = r +
(a+ b)(a+ b− 2)

4

(the same rank condition is used for SO−
2r(Fq)). Again, we denote a

unipotent representation the same as its corresponding symbol.
Further, the dimension of a unipotent representation

(
λ1<···<λa
µ1<···<µb

)
of

a symplectic or special orthogonal group G can be calculated as the
following formula∏

1≤i<j≤a

(qλj − qλi) ·
∏

1≤i<j≤b

(qµj − qµi) ·
∏

1≤i≤a,1≤j≤b

(qλi + qµj) · |G|q′

2c ·
∏

1≤i≤a

λi∏
j=1

(q2j − 1) ·
∏

1≤i≤b

µi∏
j=1

(q2j − 1) · qf(a,b)

where c = (a + b − 1)/2 if G = SO2r+1(Fq) or Sp2r(Fq) and c =
(a+ b− 2)/2 if G = SO±

2r(Fq), and we write

f(a, b) =

⌊(a+b)/2⌋∑
i=1

(
a+ b− 2i

2

)
.

2.3. Central sign data. The above subsections give us all the neces-
sary information about the representation theory of SO2m+1(Fq), and
therefore also O2m+1(Fq) = Z/2×SO2m+1(Fq). However, Sp2r(Fq) and
SO±

2r(Fq) (and especially O±
2r(Fq) = Z/2⋉ SO±

2r(Fq), which is the case
we ultimately need to consider) have disconnected center, and therefore
we also need to consider central sign data.

For Sp2r(Fq), the center is Z/2, and we have a splitting

ρ(s),u = ρ(s),u,+1 ⊕ ρ(s),u,−1

if and only if s has any −1 eigenvalues, in which case

dim(ρ(s),u,±1) =
dim(ρ(s),u)

2
.

Let us now consider O±
2r(Fq)-representations. Suppose ρ ∈ Ô±

2r(Fq).
Then ρ is classified according to two effects
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(1) If ρ is a summand of a toral induction IndT
O±

2r(Fq)
(χ) for some

character χ ̸= χ−1 in the Pontrjagin dual of T , then the restric-
tion ResSO±

2r(Fq)
(ρ) splits into two irreducible SO±

2r(Fq), with

Lusztig classification data for each piece being the same, except
semisimple parts are two distinct conjugacy classes of semisim-
ple elements in SO±

2r(Fq) which are conjugate in O±
2r(Fq).

(2) If ρ is a summand of IndT
O±

2r(Fq)
(χ), then

• If χ has any ±1 eigenvalues (and no ∓1 eigenvalues), then
there exists precisely one other irreducibleO±

2r(Fq)-representation
ρ′ such that

ResSO±
2r(Fq)

(ρ) = ResSO±
2r(Fq)

(ρ′)

(i.e. this SO±
2r(Fq)-representation corresponds to a pair of

irreducible O±
2r(Fq)-representations.

• If χ has both ±1 eigenvalues, then there exists precisely
three other distinct irreducibleO±

2r(Fq)-representations with
the same restriction to SO±

2r(Fq) as ρ (i.e. this SO±
2r(Fq)-

representation corresponds to four distinct irreducibleO±
2r(Fq)-

representations.
(in this case, we must specify signs to describe the action of the
center Z/4 or Z/2× Z/2 of O±

2r(Fq)).

In summary, an irreducible representation of O±
2r(Fq) corresponds to

the data of

• a semisimple conjugacy class (s) in O±
2r(Fq)

• a unipotent representation u of (ZSO±
2r
(s))D

• a sign ±1 if s has 1 eigenvalues and an (indepedently chosen)
sign ±1 if s has −1 eigenvalues.

Call this the Lusztig classification data of an irreducible representation
of O±

2r. Denote the corresponding irreducible representation by

ρ(s),u,(±1,±1),

writing in (±1,±1) the sign arising from +1 eigenvalues of s first and
the sign arising from −1 eigenvalues of s second, and removing either
if s has no such eigenvalues.
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3. The general statements

Finally, in this section we precisely state the constructions of the
extended eta and zeta correspondences, define the alternating sums of
parabolic inductions, and state Theorem 1.

In Subsection 3.1, we precisely define the symplectic and orthogonal
metastable ranges. In Subsections 3.2 and 3.3, we describe the con-
structions of the extended eta and zeta correspondences in terms of
Lusztig classification data. The constructions are entirely the same as
the constructions of the eta and zeta correspondences in the symplec-
tic and orthogonal stable ranges, when they can be applied. For input
represenations where the construction cannot be applied (specifically,
where the step of concatenating a new coordinate to a symbol factor
in the unipotent part of the Lusztig classification fails to give a legal
symbol), we set the extended eta and zeta correspondences to output
0. In Subsection 3.4, we define the alternating sums of Verma modules
that play the role of coefficients for the eta and zeta correspondence
terms in the decomposition of the restricted oscillator representation
in Theorem 1. Finally, having prepared all the necessary notation, we
restate Theorem 1 precisely in Subsection 3.5 as Theorems 3.5.1 and
3.5.2.

3.1. The metastable ranges. First, for a general unstable choice of
symplectic and orthogonal spaces V and (W,B), we must still choose
whether it is “closer” to the symplectic or orthogonal stable range.

We separate the pairs (V, (W,B)) which do not lie in the symplectic
stable range or the orthogonal stable range into “metastable ranges”
to indicate whether we intend to approach the decomposition of the
restriction of ω[V ⊗W ] by extending the eta or zeta correspondence.
We consider the different cases of O(W,B) individually.

Definition 3.1.1. Consider a choice of symplectic and orthogonal spaces
V and (W,B). Write dim(V ) = 2N .

• If W is of odd dimension dim(W ) = 2m + 1, then we say
(V, (W,B)) is in the symplectic metastable range if

m < N < 2m+ 1.

Say (V, (W,B)) is in the orthogonal metastable range if

m < 2N ≤ 2m
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• If W is of even dimension dim(W ) = 2m and B is not com-
pletely split, then we say (V, (W,B)) is in the symplectic metastable
range if

m ≤ N < 2m.

Say (V, (W,B)) is in the orthogonal metastable range if

m− 1 < 2N < 2m.

• If W is of even dimension dim(W ) = 2m and B is completely
split, then we say (V, (W,B)) is in the symplectic metastable
range if

m ≤ N < 2m.

Say (V, (W,B)) is in the orthogonal metastable range if

m < 2N < 2m.

We see that under this definition, every unstable choice of symplec-
tic and orthogonal spaces V and (W,B) is contained in precisely one
metastable range. More specifically, the disjoint union of the symplec-
tic stable and metastable ranges consists of all choices of symplectic
spaces V and orthogonal spaces (W,B) such that

(17)
dim(V )

2
≥ ⌊dim(W )

2
⌋,

while the disjoint union of the orthogonal stable and metastable ranges
consist of V and (W,B) satisfying the complimentary condition

(18)
dim(V )

2
< ⌊dim(W )

2
⌋.

Broadly, the conditions (17) and (18) should be thought of as de-
tecting whether it is more computationally viable to decompose the
oscillator representation in terms of the eta correspondence (i.e. as a
sum of distinct irreducible Sp(V )-representations with potentially non-
irreducible O(W,B)-coefficients), or in terms of the zeta correspon-
dence (i.e. as a sum of distinct irreducible O(W,B)-representations
with potentially non-irreducible Sp(V )-coefficients). Concretely, in our
constructions of the eta and zeta correspondence, the conditions (17)
and (18) ensure that, in either case, we never attempt to concatenate
a negative coordinate to a Lusztig symbol. It is possible to further
extend the eta and zeta correspondences to all ranges by interpret-
ing them to output 0 when this occurs (Lusztig’s dimension formula
for symbols indeed suggests that symbols with negative coordinates
are 0-dimensional). However, approaching the decomposition of the
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oscillator representation from the “wrong side” is in general less com-
putationally efficient, and we do not consider it for the purposes of this
paper.

3.2. The extended eta correspondence. For a choice of symplectic
and orthogonal spaces V , (W,B) which are in the disjoint union of the
symplectic stable and metastable ranges, we define a map

ηVW,B : ̂O(W,B) → Ŝp(V ) ∪ {0}
selecting the “top” irreducible representation of Sp(V ) whose tensor
product with the input irreducible representation of O(W,B) is a sum-
mand of the restricted oscillator representation (or outputting 0 when

no such summand appears). More explicitly, for every ρ ∈ ̂O(W,B),

ηVW,B(ρ)⊗ ρ ⊂ ResSp(V )×O(W,B)(ω[V ⊗W ])

and there exists some π ∈ Ŝp(V ) with π ⊗ ρ appearing as a summand
of the restricted oscillator representation if and only if ηVW,B(ρ) ̸= 0.

With this forumlation, we may treat ηVW,B for (V, (W,B)) in the sym-
plectic stable and metastable range at the same time. In the case of
symplectic stable choices of V and (W,B), this is precisely a review of
the construction of the eta correspondence given in [32]. To define the
map ηVW,B we treat the different cases of (W,B) separately.

Case 1: SupposeW is of odd dimension 2m+1, and suppose (V, (W,B))
is either in the symplectic stable or metastable range. In this case, writ-
ing dim(V ) = 2N , this means m < N .

Since dim(W ) is odd, we can split

(19) O(W,B) = SO2m+1(Fq)× Z/2.

For an irreducible representation ρ ∈ ̂O(W,B), we can then write it as

(20) ρ ∼= ρ(s),u ⊗ (±1)

for some choice of Lusztig classification data [(s), u] specifying an irre-
ducible SO2m+1(Fq)-representation and (±1) indicating a Z/2-action.
More specifically, (s) is a conjugacy class of a semisimple element
s ∈ Sp2m(Fq) = (SO2m+1(Fq))

D, and u is an irreducible unipotent
representation of (ZSp2m(Fq)(s))

D. Then to define ηVW,B(ρ), we must ei-
ther specify Lusztig classification data for Sp2N(Fq) = Sp(V ), or put
it to be 0.

The first part of Lusztig classification data for Sp2N(Fq) is a conju-
gacy class of a semisimple element in (Sp2N(Fq))

D = SO2N+1(Fq). Let
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us consider the semisimple part s of the input representation’s Lusztig
classification data as an element of a maximal torus

(21) s ∈ T =
k∏
i=1

SO±
2 (Fqni ) ⊆ (SO2m+1(Fq))

D = Sp2m(Fq)

(such that n1 + · · · + nk = m). Identifying each SO±
2 (Fqni ) with the

cyclic group µqni∓1, define ϵ(s) to be the product of the quadratic char-
acter ϵ : µqni∓1 → {±1} applied to each coordinate of s in (21). Taking
a product with

σ±
N−m ∈ SO2(N−m)+1(Fq)

(recalling that N > m by the range conditions) gives two options of a
conjugacy class of a semisimple element in SO2N+1(Fq). Write

ϕ±(s) = s⊕ σ±
N−m ∈ SO2N+1(Fq).

We choose the sign of ± according to the sign of the (±1) factor indi-
cating the Z/2-action in (20). Suppose s has −1 as an eigenvalue of
multiplicity 2ℓ, and write its centralizer as

(22) ZSp2m(Fq)(s) = H × Sp2ℓ(Fq).

Then ϕ±(s) has −1 as an eigenvalue of multiplicity 2(N −m+ ℓ) and
its centralizer is

Z2O2N+1(Fq)(ϕ
±(s)) = HD × SO±

2(N−m+ℓ)(Fq).

Next, writing (22), and then ZSp2m(Fq)(s)
D = HD × SO2ℓ+1(Fq), we

may consider the unipotent part u of the Lusztig classification data of
the input representation as a tensor product

u = uHD ⊗
(
λ1 < · · · < λa
µ1 < · · · < µb

)
where, as the notation suggest, uHD is an irreducible unipotent rep-
resentation of HD, and

(
λ1<···<λa
µ1<···<µb

)
is a symbol specifying a unipotent

representation of SO2ℓ+1(Fq). Since the defect a − b of the symbol is
odd, we may therefore permute the rows so that we may assume a− b
is 1 mod 4. Let us write

(23) N ′
ρ := N −m+

a+ b− 1

2
.

Now if N ′
ρ < λa, then(

λ1 < · · · < λa < N ′
ρ

µ1 < · · · < µb

)
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describes a symbol of defect 2 mod 4 and rank precisely equal to N −
m+ ℓ, and hence taking

ϕ−(u) = ũHD ⊗
(
λ1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
gives a unipotent representation of

(ZSO2N+1(Fq)(ϕ
−(s)))D = H × SO−

2(N−m+ℓ)(Fq).

In this case, say ϕ−(u) is constructible. Say ϕ−(u) is inconstructible if
N ′
ρ ≤ λa.
Similarly, if N ′

ρ < µb, then(
λ1 < · · · < λa

µ1 < · · · < µb < N ′
ρ

)
describes a symbol of defect 0 mod 4 and rank precisely equal to N −
m+ ℓ, and hence taking

ϕ+(u) = ũHD ⊗
(

λ1 < · · · < λa
µ1 < · · · < µb < N ′

ρ

)
gives a unipotent representation of

(ZSO2N+1(Fq)(ϕ
+(s)))D = H × SO+

2(N−m+ℓ)(Fq).

In this case, say ϕ+(u) is constructible. Say ϕ+(u) is inconstructible if
N ′
ρ ≤ µb.

Definition 3.2.1. Assume the above notation. We define ηVW,B(ρ) to
be the irreducible Sp(V )-representation with Lusztig classification data
[(ϕ±(s)), ϕ±(u), ϵ(s) · disc(B)]

(24) ηVW,B(ρ) := ρ(ϕ±(s)),ϕ±(u),ϵ(s)·disc(B),

if ϕ±(u) is constructible. We put

ηVW,B(ρ) := 0

if ϕ±(u) is inconstrucible.

Case 2: Suppose W is of even dimension 2m, and write α for the sign
so that O(W,B) = Oα

2m(Fq). Suppose also that (V, (W,B)) is either
in the symplectic stable or metastable range, meaning that if we write
dim(V ) = 2N , we have m ≤ N .
Let us consider an input irreduicble O(W,B)-representation ρ. Let

us suppose that its O(W,B)-Lusztig classification data consists of a
conjugacy class (s) of a semisimple element of O(W,B), an irreducible
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unipotent representation u of, say, (ZSO(W,B)(s))
D (s is always conju-

gate to an element of SO(W,B)), and possible central sign data de-
pending on which eigenvalues appear in s.

As in the previous case, consider s as an element of a torus

s ∈ T ∼=
k∏
i=1

SO±
2 (Fqni ).

We take a direct sum with the identity matrix I2(N−m)+1 to obtain a
semisimple element

ϕ(s) = s⊕ I2(N−m)+1 ∈ SO2N+1(Fq),

adding only 1 eigenvalues to s. If s originally does not have any 1
eigenvalues, then its centralizer is altered by taking a product with a
special orthogonal group factor

ZSO2N+1(Fq)(ϕ(s)) = (ZSOα
2m(Fq)(s))

D × SO2(N−m)+1(Fq).

We consider the irreducible unipotent representation

ϕ(u) := ũ⊗ 1

of the dual of this group, tensoring ũ with the trivial representation of
the new factor (SO2(N−m)+1(Fq))

D. On the other hand, if s has 1 as
an eigenvalue of multiplicity 2p for p > 0, then, writing

ZSOα
2m(Fq)(s) = H × SO±

2p(Fq),

we then have

ZSO2N+1(Fq)(ϕ(s)) = HD × SO2(N−m+p)+1(Fq)

(note that in this case H = HD). Write (ZSOα
2m(Fq)(s))

D = HD ×
SO±

2p(Fq), and

u = uHD ⊗
(
λ1 < · · · < λa
µ1 < · · · < µb

)
for an irreducible unipotent representation uHD of HD, and a symbol(
λ1<···<λa
µ1<···<µb

)
of SO±

2p(Fq). We may switch the symbol’s rows so that for

the minimal i such that λa−i ̸= µb−i, we have λa−i < µb−i. Write

N ′
ρ = N −m+

a+ b

2
.

Then (
λ1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
,

(
λ1 < · · · < λa

µ1 < · · · < µb < N ′
ρ

)
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define unipotent (SO2(N−m+p)+1(Fq))
D = Sp2(N−m+p)(Fq). Therefore,

if λa < N ′
ρ, µb < N ′

ρ,

ϕ+(u) = ũHD ⊗
(
λ1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
ϕ−(u) = ũHD ⊗

(
λ1 < · · · < λa

µ1 < · · · < µb < N ′
ρ

)
respectively define irreducible unipotent representations of the dual
group (ZSO2N+1(Fq)(ϕ(s)))

D = H × Sp2(N−m+p)(Fq). Say ϕ+(u), ϕ−(u)
are inconstructible if λa ≥ N ′

ρ, µb ≥ N ′
ρ, respectively. We choose the

sign of ϕ±(u) according to the central sign data (±1) chosen from s
having 1 eigenvalues.

Finally, to define an output irreducible Sp2N(Fq)-representation, we
need to also choose output central sign data if ϕ(s) has −1 eigenval-
ues. By definition, ϕ(s) has the same number of −1 eigenvalues as s.
Therefore, in this case, the original s has −1 eigenvalues also, so the
O(W,B)-Lusztig classification data supplies us with the data of one
more central sign ±1, which we use as the output central sign data.

Definition 3.2.2. Assume the above notation. We define ηVW,B(ρ) to
be the irreducible Sp(V )-representation with Lusztig classification data
[ϕ(s), ϕ±(u),±1] where the sign in ϕ±(u) is the central sign data from
s’s 1 eigenvalues, the sign in ±1 is the central sign data from s’s −1
eigenvalues, and signs are ommited when s does not have such eigen-
values

(25) ηVW,B(ρ) := ρϕ(s),ϕ±(u),±1,

if ϕ±(u) is constructible. We put

ηVW,B(ρ) := 0

if ϕ±(u) is inconstructible.

3.3. The extended zeta correspondence. Similarly as in the pre-
vious subsection, for a choice of symplectic and orthogonal spaces V ,
(W,B) which are in the disjoint union of the orthogonal stable and
metastable ranges, we define a map

ζW,BV : Ŝp(V ) → ̂O(W,B) ∪ {0}
analogously selecting the “top” irreducible representation of O(W,B)
whose tensor product with the input irreducible representation of Sp(V )
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is a summand of the restricted oscillator representation. This construc-
tion proceeds entirely similarly, still considering the cases of O(W,B)
separately:

Case 1: SupposeW is of odd dimension 2m+1, and suppose (V, (W,B))
is either in the orthogonal stable or metastable range. In this case,
writing dim(V ) = 2N , this means m ≥ N .

Now we fix an irreducible representation ρ of Sp(V ) = Sp2N(Fq).
Our goal is to construct an irreducible representation ofO(W,B), which
by applying (19), is equivalent to specifying an irreucible representation
of SO2m+1(Fq) and a sign specifying an action of Z/2. Consider the
semisimple conjugacy class part (s) of ρ’s Lusztig classification data.
We have s ∈ (Sp2N(Fq))

D = SO2N+1(Fq). Say that s has −1 as an
eigenvalue of multiplicity 2ℓ, for 0 ≤ ℓ ≤ N , and let us write

ZSO2N+1(Fq)(s) = H × SO±
2ℓ(Fq).

Recall, as a semisimple element of SO2N+1(Fq), s must have at least
one 1 eigenvalue, arising from the embedding of any maximal torus
T of the form (12) into SO2N+1(Fq). Therefore, considering s as an
element of the torus, let us write s̃ ∈ T (giving a 2N by 2N matrix),
by removing the single “forced” eigenvalue 1 from s. Taking a direct
sum with −I2(m−N),

ψ(s) := s̃⊕ (−I)2(m−N)

we obtain a semisimple element of Sp2m(Fq) = (SO2m+1(Fq))
D, which

has −1 as an eigenvalue of multiplicity 2(m−N + ℓ). Its centralizer is
then

ZSp2m(Fq)(ψ(s)) = HD × Sp2(m−N+ℓ)(Fq).

For the unipotent part of the Lusztig classification data of ρ, again

write u = uH
D ⊗

(
λ1<···<λa
µ1<···<µb

)
for uH

D ∈ (̂HD)u and a symbol
(
λ1<···<λa
µ1<···<µb

)
specificying an irreducible unipotent representation of SO±

2ℓ(Fq). We
again switch rows of the symbol so that for the minimal i such that
λa−i ̸= µb−i satisfies λa−i > µb−i. Let us write

m′
ρ = m−N +

a+ b

2
.

Then if λa < m′
ρ, µb < m′

ρ, respectively, the symbols

(26)

(
λ1 < · · · < λa < m′

ρ

µ1 < · · · < µb

)
,

(
λ1 < · · · < λa

µ1 < · · · < µb < m′
ρ

)
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have odd defect and rank precisely equal to m−N + ℓ, and therefore
specify irreducible unipotent representations of SO2(m−N+ℓ)+1(Fq) =
(Sp2(m−N+ℓ)(Fq))

D.
In the case when ℓ = 0, both of the symbols (26) specify the trivial

representation, so let us put

ψ(u) = ũHD ⊗ 1.

On the other hand, in the case when ℓ > 0, we are given sign data
±1 in the Lusztig classification data for ρ, which we can use to select
which of the symbols (26) we attempt to use for the unipotent part

of the Lusztig classification data of ζW,BV (ρ). Specifically, if λa < m′
ρ,

µb < m′
ρ, respectively, we put

ψ+(u) = ũHD ⊗
(
λ1 < · · · < λa < m′

ρ

µ1 < · · · < µb

)

ψ−(u) = ũHD ⊗
(

λ1 < · · · < λa
µ1 < · · · < µb < m′

ρ

)
.

If λa ≥ m′
ρ, resp. µb ≥ m′

ρ, we say ψ+(u), resp. ψ−(u) is incon-
structible.

Definition 3.3.1. Assume the above notation, writing ρ = ρ(s),u. In
the case where the semisimple part s of ρ’s Lusztig classification data
has no −1 eigenvalues i.e. ℓ = 0, we take ζW,BV (ρ) to be the tensor prod-
uct of the irreducible SO(W,B)-representation corresponding to Lusztig
classification data [(ψ(s)), ψ(u)] with the sign ϵ(s) · disc(B):

(27) ζW,BV (ρ) = ρ(ψ(s)),ψ(u) ⊗ (ϵ(s) · disc(B))

In the case where s has −1 eigenvalues i.e., ℓ > 0, writing ρ =
ρ(s),u,±1, we take ζW,BV (ρ) to be the tensor product of the irreducible
SO(W,B)-representation corresponding to Lusztig classification data
[(ψ(s)), ψ±(u)] with the sign ϵ(s) · disc(B)

(28) ζW,BV (ρ) = ρ(ψ(s)),ψ±(u) ⊗ (ϵ(s) · disc(B)),

if the involved ψ±(u) is constructible. Put

ζW,BV (ρ) = 0

if ψ±(u) is inconstructible.

Case 2: Suppose W is of even dimension 2m, and write α for the sign
so that O(W,B) = Oα

2m(Fq). Suppose also that (V, (W,B)) is either in
the orthogonal stable or metastable range, meaning that
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Consider an irreducible representation ρ of Sp(V ) = Sp2N(Fq). We
want to produce O2m(Fq)

α-Lusztig classification data, which we recall
consists of a semisimple conjugacy class (s) ∈ Oα

2m(Fq), a unipotent
part u which can be considered to consist of a unipotent irreducible
representaion of the (dual) of the centralizer of s in SOα

2m(Fq), and
central sign data. We note that since ResO(W,B)(ω[V ⊗ W ]) is the
permutation representation CW tensored with the representation ϵ(det)
(corresponding to the sign representation of O(W,B)/SO(W,B)), part
of the central sign data is already forced. Specifically, as in the case of
the symplectic group, we will only need to choose central sign data for
the output representation corresponding to −1-eigenvalues.

Write (s) with s ∈ SO2N+1(Fq) = (Sp2N(Fq))
D for the semisim-

ple part of the Lusztig classification data for the input Sp2N(Fq)-
representation ρ. Say s has 1 as an eigenvalue of multiplcity 2p + 1,
and write

ZSO2N+1(Fq)(s) = H × SO2p+1(Fq).

Again, we may remove a single “forced” 1 eigenvalue from s to view it
as a 2N by 2N element of the maximal torus s̃ ∈ T . Then consider
the direct sum with the 2(m−N) by 2(m−N) identity matrix

ψ(s) = s̃⊕ I2(m−N),

configured to give a 2m by 2m matrix that can be considered as an
element of SO(W,B) ⊆ O(W,B). As in Case 2 of the construction of
the eta correspondence, each distinct SO2N+1(Fq)-conjugacy class (s)
gives a distinct Oα

2m(Fq)-conjugacy class ψ(s). We have

(29) ZSOα
2m(Fq)(ψ(s)) = HD × SOβ

2(N−m+p)(Fq),

for a single determined choice of sign β (so that its product with the
other signs appearing in H agrees with α).

For the unipotent part of the Oα
2m(Fq)-Lusztig classification data we

want to produce, write the unipotent representation u in ρ’s Lusztig

classification data as u = uHD ⊗
(
λ1<···<λa
µ1<···<µb

)
for uHD ∈ (̂HD)u and a

symbol
(
λ1<···<λa
µ1<···<µb

)
specifying an irreducible unipotent representation of

SO2p+1(Fq). Switch rows so that the defect a− b is 1 mod 4 (which is
possible since this symbol has odd defect). Let us write

m′
ρ = m−N +

a+ b− 1

2
.

Then, if β = +, if µb < m′
ρ, putting

ψ+(u) = ũHD ⊗
(

λ1 < · · · < λa
µ1 < · · · < µb < m′

ρ

)
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gives a unipotent representation of the group H × SO+
2(N−m+p)(Fq) =

(ZSOα
2m(Fq)(ψ(s)))

D. If β = +, µb ≥ m′
ρ, then say ψ(u) is incon-

structible. Similarly, if β = −, if λa < m′
ρ, putting

ψ−(u) = ũHD ⊗
(
λ1 < · · · < λa < µ′

ρ

µ1 < · · · < µb

)
gives a unipotent representation of the group H × SO−

2(N−m+p)(Fq) =

(ZSOα
2m(Fq)(ψ(s)))

D. If β = −, λa ≥ m′
ρ, then say ψ(u) is incon-

structible.
Now, as in Case 2 in the symplectic case, (s) and (ψ(s)) have the

same multiplicity of −1 eigenvalues. Therefore, the undetermined cen-
tral sign data needed to describe ζW,BV (ρ) if and only if central sign data
is given in ρ’s original Lusztig classification data. We take it to be the
same in this case.

Definition 3.3.2. Suppose we are given the above notation. We de-
fine ζW,BV (ρ) to be the irreducible O(W,B)-representation with O(W,B)-
Lusztig classification data [ψ(s), ψ(u),±1], where the final sign is the
central sign of ρ arising if s has −1 eigenvalues and where we omit it
if s has no such eigenvalues

(30) ζW,BV (ρ) := ρψ(s),ψβ(u),±1,

for β denoting the sign in (29) (we also neglect to write in the notation
the determined central sign data corresponding from the 1 eigenvalues
of s, which is pre-determined). If ψ(u) is inconstructible, we put

ζW,BV (ρ) = 0.

Recalling the results of [32], we found that in the symplectic (resp.
orthogonal) stable range, every irreducible representation ρ of O(W,B)
(resp. Sp(V )) appears in the restriction

ResO(W,B)(ResSp(V )×O(W,B)(ω[V ⊗W ]))

(resp. ResSp(V )(ResSp(V )×O(W,B)(ω[V ⊗W ]))). In the present paper’s
notation, for (V, (W,B)) in the symplectic stable range, for every ρ ∈
̂O(W,B),

ηVW,B(ρ) ̸= 0.

Similarly, for (V, (W,B)) in the orthogonal stable range, for every ρ ∈
Ŝp(V ),

ζW,BV (ρ) ̸= 0.
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Even in the metastable range, however, the range conditions ensure
that we never need to add a negative coordinate to a Lusztig symbol:
For (V, (W,B)) in the symplectic (stable or) metastable range, for every

ρ ∈ ̂O(W,B), we have
N ′
ρ > 0.

For (V, (W,B)) in the orthogonal (stable or) metastable range, for every

ρ ∈ Ŝp(V ), we have
m′
ρ > 0.

3.4. Alternating sums of parabolic inductions. Now we define the
alternating sums of parabolic inductions (only needed in the metastable
ranges) which form the coefficients of the extended eta or zeta corre-
spondences in the restricted oscillator representation. The description
given in this subsection is somewhat technical, but in each case, the
principle is to preserve all of the Lusztig classification data, except for
the symbol factor of the unipotent part that is altered in the construc-
tion of the extended eta or zeta correspondence. We take the sum
of the representations obtained by replacing that symbol by those ap-
pearing in the alternating sum of parabolic inductions of the symbols
obtained by conctenating a final coordinate to one of the rows as in
the construction of ηVW,B or ζW,BV , and removing another coordinate in
the same row to recover the original symbol’s row lengths (see (33) and
(35) below).

Suppose we want to consider the decomposition of the restricted os-
cillator representation ResSp(V )×O(W,B)(ω[V ⊗W ]). For this subsection,
we now fix our choice of (V, (W,B)), specifically fixing a case of the par-
ity of dim(W ) and whether we consider the decomposition in terms of
an extended eta correspondence (i.e. condition (17) is satisfied) or an
extended zeta correspondence (i.e. condition (18) is satisfied).

Now consider a symbol

(31) θ =

(
λ1 < · · · < λa
µ1 < · · · < µb

)
of a group K[−k], where K denotes a possible factor of a central-
izer of a semisimple element s in the dual of the domain of whichever
correspondence we have chosen to consider (O(W,B) in the extended
eta correspondence or Sp(V ) for the extended zeta correspondence),
which would be altered in the fixed correspondence’s construction (cor-
responding to −1 eigenvalues if dim(W ) is fixed to be odd, and 1 eigen-
values if dim(W ) is fixed to be even). We use the notation [−k] to refer
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to the group of the same type and subtracting k from the rank (e.g.
for K = SO(W,B), we write K[−k] = SO(W [−k], B[−k])). Let us
switch rows in (31) so that in the construction of the extended eta or
zeta correspondence, if θ appears as the factor of a unipotent part u
of the Lusztig classification data for an input representation, ϕ+ or ψ+

concatenates a new coordinate to the top row λ1 < · · · < λa of (31)
(this corresponds to a condition on the row lengths a, b, which varies
depending on the case of the extended eta or zeta correspondence we
consider). We do this in order to consolidate the notation and treat
every case at once.

Fix k and fix some N ′ ∈ N0 such that

(32) λ1 < λ2 < · · · < λa < N ′.

Consider the 1 ≤ c ≤ a such that

N ′ − λc ≤ k < N ′ − λc+1.

Then, for c ≤ q ≤ a + 1, let us consider the symbol θ+(N ′)q with top
row given by (32) with the qth coordinate removed, and unmodified
bottom row. For c ≤ q ≤ a this gives

(33) θ+(N ′)q :=

(
λ1 < · · · < λ̂q < · · · < λa < N ′

µ1 < · · · < µb

)
.

In the case of q = a + 1, we the (a + 1)th coordinate of (32) is N ′

and thus we have θ(N ′)q = θ. Each of these symbol has the same row
lengths as θ, and θ(N ′)q therefore describes a unipotent representation
of K[−(k − (N ′ − λq))]. We may hence consider the alternating sum

(34)

A+
k (θ,N

′) :=

a+1⊕
q=c

(−1)a+1−q · IndPk−(N′−λq)(θ+(N ′)q)

where here Pj denote the maximal parabolics in the full group K with
Levi factors K[−j] × GLj(Fq), and we take trivial GLj(Fq)-action in
each induction term.

Similarly, for N ′ ∈ N0 such that µ1 < · · · < µb < N ′, considering
1 ≤ c ≤ b such that

N ′ − µc ≤ k < N ′ − µc+1,

for c ≤ q ≤ b, we consider the symbol

(35) θ−(N ′)q :=

(
λ1 < · · · < λa

µ1 < · · · < µ̂q < · · · < µb < N ′

)
.
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We also put θ−(N ′)b+1 = θ. We can then define the alternating sum

(36)

A−
k (θ,N

′) :=

b+1⊕
q=c

(−1)b+1−q · IndPk−(N′−µq)(θ−(N ′)q).

We find that (34) and (36), in every case we consider, define gen-
uine representations. In fact, we give a concrete description of which
symbols appear in their decompositions in the Appendix.

Again, we approach the case of the extended eta correspondence first.

Definition 3.4.1. Consider a choice of V and (W,B) in the symplectic
(stable or) metastable range. Suppose we are given 0 ≤ k ≤ hW and

m′ > 0. Consider an irreducible representation ρ ∈ ̂O(W [−k], B[−k]).
• Suppose dim(W ) = 2m+1 is odd. Write the Lusztig classifica-
tion data of ρ’s restriction to SO(W [−k], B[−k]) as

ResSO(W [−k],B[−k])(ρ) = ρ(s),u,

and, if s has −1 as an eigenvalue of multiplicity 2ℓ, write
ZSp2(m−k)(Fq)(s) = H × Sp2ℓ(Fq), and u = uHD ⊗ θ. As in
the construction of the eta correspondence, we can interpret
s⊕(−I2k) as a semisimple element of Sp2m(Fq) with centralizer
H × Sp2(ℓ+k)(Fq). Then define Ak(ρ,N

′) to be the O(W,B)-
representation such that

ResSO(W,B)(Ak(ρ,N
′)) =

⊕
χ⊂A±

k (θ,N ′)

ρ(s⊕(−I2k)),uHD⊗χ,

with the sum running over every distinct irreducible unipotent θ
appearing in A±

k (θ,N
′) where the superscript sign is chosen to

agree with the sign of ϕ±(u) we take when construction ηVW,B(ρ),
and where we take Ak(ρ,N

′) itself to have the the same Z/2 =
O(W,B)/SO(W,B)-action as ρ.

• Suppose dim(W ) = 2m is even. Consider the O(W [−k], B[−k])-
Lusztig classification data of ρ, consisting of a semisimple part
(s), unipotent part u, and possible sign data α depending on the
eigenvalues of s. If s has 1 as an eigenvalue of multiplicity 2p,
write ZSp2(m−k)(Fq)(s) = H × Sp2p(Fq), and u = uHD ⊗ θ. As
in the construction of the eta correspondence, we can interpret
s ⊕ I2k as a semisimple element of Sp2m(Fq) with centralizer
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H × Sp2(p+k)(Fq). Then define Ak(ρ,N
′) to be the O(W,B)-

representation such that

Ak(ρ,N
′) =

⊕
χ⊂A±

k (θ,N ′)

ρ(s⊕I2k),uHD⊗χ,α

with the sum running over every distinct irreducible unipotent θ
appearing in A±

k (θ,N
′) where the superscript sign is chosen to

agree with the sign of ϕ±(u) we take when construction ηVW,B(ρ).

Similarly, consider the orthogonal metastable range. We note that
we still need the separate the cases of the parity of the dimension of
the orthogonal space W , though the role of W is somewhat hidden in
the notation.

Definition 3.4.2. Consider a choice of V and (W,B) in the orthogonal
(stable or) metastable range, and write dim(V ) = 2N . Suppose we are
given 0 ≤ k ≤ N and m′ > 0. Consider an irreducible representation

ρ ∈ ̂Sp(V [−k]).
• Suppose dim(W ) = 2m+1 is odd. Write the Lusztig classifica-
tion data of ρ as

ρ = ρ(s),u,±1,

(omitting the central sign data ±1 if s has no −1 eigenvalues).
Writing 2ℓ for the multiplicity of −1 as an eigenvalue of s, write
ZSO2N+1(Fq)(s) = H × SO±

2ℓ(Fq), and u = uHD ⊗ θ. Then define
Ak(ρ,m

′) to be the Sp(V )-representation

Ak(ρ,m
′) =

⊕
χ⊂A±

k (θ,m′)

ρ(s⊕(−I)2k),uHD⊗χ,±1

with the sum running over every distinct irreducible unipotent θ
appearing in A±

k (θ,m
′), where the superscript sign is chosen to

agree with the sign of ψ±(u) we take when construction ζVW,B(ρ),
and where the central sign in the Lusztig classification data of
each summand is the same as ρ’s.

• Suppose dim(W ) = 2m is even. Write the Lusztig classification
data of ρ as

ρ = ρ(s),u,±1,

(omitting the central sign data ±1 if s has no −1 eigenvalues).
Writing 2p for the multiplicity of 1 as an eigenvalue of s, write
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ZSO2N+1(Fq)(s) = H × SO2p+1(Fq), and u = uHD ⊗ θ. Then
define Ak(ρ,m

′) to be the Sp(V )-representation

Ak(ρ,m
′) =

⊕
χ⊂A±

k (θ,m′)

ρ(s⊕I2k),uHD⊗χ,±1

with the sum running over every distinct irreducible unipotent θ
appearing in A±

k (θ,m
′), where the superscript sign is chosen to

agree with the sign of ψ±(u) we take when construction ζVW,B(ρ),
where the central sign in the Lusztig classification data of each
summand is the same as ρ’s.

3.5. The main statement. Now that we have established the neces-
sary notation to describe the terms of the decomposition of a restricted
oscillator representation claimed in Theorem 1, we may restate it con-
cretely.

The first part of our main result Theorem 1, extending the eta cor-
respondence, can be explicitly restated as:

Theorem 3.5.1. Suppose (V, (W,B)) is in the symplectic metastable
range. Then

(37)

ResSp(V )×O(W,B)(ω[V ⊗W ]) =

hB⊕
k=0

⊕
ρ∈ ̂O(W [−k],B[−k])

Ak(ρ,N
′
ρ)⊗ ηVW,B(ρ)

where A(ρ,N ′
ρ) is considered as a representation of O(W,B).

Similarly, the second part extending the zeta correspondence can be
restated as

Theorem 3.5.2. Suppose (V, (W,B)) is in the orthogonal metastable
range. Then

(38)

ResSp(V )×O(W,B)(ω[V ⊗W ]) =

N⊕
k=0

⊕
ρ∈ ̂Sp(V [−k])

ζW,BV (ρ)⊗Ak(ρ,m
′
ρ)

where A(ρ,m′
ρ) is considered as a representation of Sp(V ).
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4. Interpolation and proof of the metastable
correspondences

In this section, we describe how the results of [31, 32] for stable
range reductive dual pairs can be interpolated, which we can use to
conclude Theorem 1. We focus on the case of the eta correspondence
(interpolating the symplectic stable range result). The case of the zeta
correspondence is similar.

In Subsection 4.1, we define interpolated representation categories
Rep(Sp2t(Fq) and Rep(Sp2t(Fq)), modelling symplectic groups of non-
integer rank t. Rep(Sp2t(Fq)) is defined to be tensor generated by a
basic object corresponding to the standard permutation representation,
andRep(Sp2t(Fq)) is taken to be generated by basic objects correspond-
ing to the oscillator representations, respectively. While Rep(Sp2t(Fq))
is a more classical construction that can be studied, for example, using
oligomorphic groups (see [18]), they do not actually contain objects cor-
responding to oscillator representations. For our purposes, the “finer”
cateory Rep(Sp2t(Fq)) is necessary. These categories form semisimple
abelian pre-Tannakian tensor categories for generic complex values of t.
However, for certain values, including t = N ∈ N0, they are not them-
selves semisimple, though they are “semisimplifiable,” and quotienting
out a certain class of “negligible” morphisms does give semisimple pre-
Tannakian categories.

In Subsection 4.2, we define subcategories of C int
B (t) ⊆ Rep(Sp2t(Fq))

isolating the ranges of objects appearing in a certain tensor power of
oscillator representations (a “partial pseudo-abelian envelope”) corre-
sponding to a specific choice of orthogonal space (W,B). For a fixed

irreducible representation ρ ∈ ̂O(W,B), we further consider a sub-
category C int

ρ (t) detecting objects that interpolate representations of
Sp2N(Fq) symplectic stable with O(W,B) whose tensor product with ρ
appears in the restriction of ω[F2N

q ⊗W ]. We denote their images under

semisimplification by C̃ int
B (t), C̃ int

ρ (t). In Subsection 4.3, we enumerate
the objects of this category in terms of “formal Lusztig symbols” and
write down their dimensions. An interpolated decomposition of the
restricted oscillator representation holds in these categories (Theorem
4.3.1 below).

In Subsection 4.4, we find that, at t = N with Sp2N(Fq) in the sym-
plectic metastable range with O(W,B), the relationship between an in-

terpolated category C̃ int
ρ (N) and the subcategory of genuine Sp2N(Fq)-

representations π such that ρ ⊗ π appears in the restricted oscillator
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representation, gives that the decomposition of the restricted oscilla-
tor representation as a genuine representation can be derived from the
interpolated statement after “cancelling terms.” Then we check that
simplifying the cancelled terms gives the claimed decomposition as a
genuine representation of the symplectic group.

In Subsection 4.5, we describe an application of the statement to
give an inductive procedure to explicitly construct representations cor-
responding to Lusztig classification data.

4.1. Interpolated representation categories. First, to begin dis-
cussing interpolated representation theory, we briefly recall P. Deligne’s
cosntruction of the category of representations of a general linear group
GLc for c /∈ Z (see [6, 7, 8]):

This interpolation is based on the fact that in Rep(GLN), denoting
the permutation representation “basic object” of dimension N by X,
we have a stable structure of the endomorphism algebras

(39) EndGLN
(X⊗n) ∼= CΣn

when N >> n. However, in the genuine category Rep(GLN) of rep-
resentations of GLN(C), when the tensor power degree becomes large
compared to N , certain Schur functors predicted to occur in X⊗n have
dimension 0, causing (39) to fail. However, consider a formal basic
generating object X of dimension c ∈ C∖ Z, we may construct a dia-
grammatic category where the endomorphism algebra of X⊗n is always
the group algebra CΣn (since the polynomial dimensions of the “Schur
functors” is never 0 when applied to dim(X) = c). Formally adding
direct sums and taking a pseudo-abelian envelope gives a category we
denote here by Rep(GLc), which is semisimple for c ∈ C∖ Z.

Attempting to apply this construction at c = N gives a non-semisimple
category Rep(GLN), which for example, has simple objects of dimen-
sion 0. However by applying a procedure of semisimplification (see
[11]), which is designed to eliminate these simple objects, outputs a
semisimple category which is precisely the genuine category of repre-
sentation Rep(GLN).

One may also attempt to define an interolated categoryRep(Sp2t(Fq))
with the standard permutation representation CVt of dimension q2t as
a basic tensor-generating object, defined so that

(40)
HomRep(Sp2t(Fq)((CVt)

⊗m, (CVt)
⊗n) =

HomRep(Sp2N (Fq))((CVN)
⊗m, (CVN)

⊗n),
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for a large enough N >> m,n writing VN for the q2N -dimensional un-
derlying symplectic space Sp(VN) = Sp2N(Fq). The semisimplification
of this category at t = N is known to give a semisimple pre-Tannakian
category. However, it is not equivalent to the genuine representation
category Rep(Sp2N(Fq)). For example, there is no object of dimension
qt corresponding to the oscillator representation.

Another commonly considered interpolated category Rep(GLt(Fq))
is defined similarly to be tensor-generated by the standard representa-
tion of dimension qt written as CFtq, with

(41)
HomRep(GLt(Fq)((CF

t
q)

⊗m, (CFtq)
⊗n) =

HomRep(GLN (Fq))((CF
N
q )

⊗m, (CFNq )
⊗n),

for a large enough N >> m,n. Similarly, we may define an inter-
polated category Rep(Ot(Fq)) with basic object corresponding to the
signed CW ⊗ ϵ(det), writing ϵ(det) for the sign representation on the
center Z/2 corresponding to det. Writing the basic object CWt⊗ϵ(det)
of Rep(Ot(Fq)), we set Hom-spaces between its tensor powers to be
equal to what they would be in an orthogonal group of high enough
rank (which may be chosen to be even or odd), as in (40), (41). Unlike
in the symplectic case, modelling the (twisted) permutation represen-
tation as the basic generating object in Rep(Ot(Fq)) will be enough for
our purposes, recalling that, in the case of 2-dimensional V with the
standard symplectic form, we have

ResO(W,B)(ω[F
2
q ⊗W ]) = CW−

denoting the permutation representation CW tensored with ϵ(det) i.e.
the sign representation of O(W,B)/SO(W,B), (which can be seen from
restricting first to GL(W )).

Now, both Rep(GLt(Fq)) aand Rep(Ot(Fq)) are known to, after
semisimplification when needed at natural number values of t, give
semisimple categories. This can both be proved directly (see, for ex-
amples of this method, [6, 7, 28]), or be approached using the theory
of oligomorphic groups of A. Snowden and N. Harman (see [18]).

However, we need to define a different interpolated tensor category
Rep(Sp2t(Fq)) with the oscillator representations as basic objects (since
the structure of endomorphism algebras and homomorphism modules
between tensor products of oscillator representation is stable when the
dimension of the underlying symplectic space is large enough com-
pared to the tensor product degrees). For more details, see [29]. When



33

attempting to put t = N ∈ N, as in the case of the interpolated rep-
resentation categories of the symmetric group, Rep(Sp2N(Fq)) is not a
semisimple category (since, again, it has simple objects of dimension
0).

Consider a category Rep(Sp2t(Fq))0 with objects ω⊗m
a ⊗ ω⊗n

b , with
Hom-spaces between objects defined to be, as C-vector spaces

HomRep(Sp2t(Fq))0
(ω⊗m

a ⊗ ω⊗n
b ,ω⊗p

a ⊗ ω⊗ℓ
b ) :=

HomSp2N (Fq)(ω
⊗m
a ⊗ ω⊗n

b , ω⊗p
a ⊗ ω⊗ℓ

b )

for N >> m,n, p, l. Tensor products of morphisms and the actions
of the bijections on the coordinates of the different tensor factors are
defined in the obvious way from Rep(Sp2N(Fq)) for a large enough N .
To construct a category (and involve the constant t), we also need to
define a partial trace operation corresponding to matching factors of
the generating objects ωa. In this case, it suffices to define a trace
operation for endomorphisms of each ωa. We do this by considering

EndRep(Sp2t(Fq))0
(ωa) = EndSp2N (Fq)(ωa)

= HomSp2N (Fq)(1,CVN)
∼= (CVN)

Sp2N ,

which has a basis consisting of (0) and
∑

v ̸=0∈VN (v), where we put

tr((0)) = qt, tr(
∑

v ̸=0∈VN

(v)) = 0.

Composition can be defined with a combination of tensor product,
permutation, and partial trace (for more details, see [29]). This defines
a C-linear category Rep(Sp2t(Fq))0.

We then define the category Rep(Sp2t(Fq)) by first formally adding

direct sums to Rep(Sp2t(Fq))0, and then applying a pseudo-abelian
envelope, adding new objects defined as the images of idempotents in
the endomorphism algebras of the objects ω⊗m

a ⊗ ω⊗n
b .

In each case, the interpolated category is constructed from the data
of a system of Hom-spaces between tensor powers of the basic ob-
ject, with operations of permutation action, tensor product, and par-
tial trace. This data can in fact be captured in the universal algebra
structure of a T-algebra. To describe a C-linear additive category with
strong duality and associative commutative unital tensor product gen-
erated by a basic object X, its corresponding T-algebra T consists of
vector spaces for every pair of finite sets S, T

TS,T = Hom(X⊗S, X⊗T ),
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with appropriate functoriality over the category of finite sets, linear
partial trace operations corresponding to partial bijections between S
and T and tensor product operations corresponding the set disjoint
union, with appropriate axioms. Here, we denote the T-algebra cor-
responding to Rep(GLt(Fq) with basic object corresponding to the
standard representation X = CF

t
q by T [GLt(Fq)] and the T-algebra

corresponding to Rep(Sp2t(Fq) with basic object X = ωa ⊗ ωb by
T [Sp2t(Fq)]. For more details, see [29].

Let us denote the semisimplification of a C-linear additive category
with strong duality and associative commutative unital tensor product
C by S (C ). Recall that semisimplification refers to a construction
quotienting out negligible morphisms, such as simple idempotents with
trace 0, [11].

We recall a result of [29].

Proposition 4.1.1. In every case of t, the semisimplification of the
category Rep(Sp2t(Fq)) is a semisimple (and, in particular, abelian)
pre-Tannakian category. For values of t ∈ C such that qt ̸= ±qn for
n ∈ N0, the category Rep(Sp2t(Fq)) itself is semisimple.

Proof. First, there is an inclusion of T-algebras

T [Sp2t(Fq)] ↪→ T [GLt(Fq)],

since for every N , the restriction of an oscilaltor representation ωa to
GLN(Fq) ⊆ Sp2N(Fq) is isomorphic to

ResGLN (Fq)(ωa)
∼= (CVN)⊗ ϵ(det).

In particular, then for finite sets S, T , restriction gives an inclusion
from each Hom-space

HomRep(Sp2t(Fq))
(ω⊗S1

a ⊗ ω⊗S2
b ,ω⊗T1

a ⊗ ω⊗T2
b ) =

HomSp2N (Fq)(ω
⊗S1
a ⊗ ω⊗S2

b , ω⊗T1
a ⊗ ω⊗S2

b )

making up T [Sp2t(Fq)]S,T for S1 ⨿ S2 = S, T1 ⨿ T2 = T , into the
GLN(Fq)-equivariant Hom-space on the restrictions

HomGLN (Fq)((CVN ⊗ ϵ(det))S1⨿S2 , (CVN ⊗ ϵ(det))T1⨿T2),

which is isomorphic to T [GLt(Fq)]S,T . Partial trace, tensor product,
and functoriality (and therefore composition) are all compatible.

We then apply
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Lemma 4.1.2. The semisimplification of a C-linear additive category
with strong duality and an associative, commutative, unital tensor prod-
uct generated by a basic object X is semisimple if and only if for every
endomorphism f ∈ End(X⊗n), if the trace of f is non-zero, then for
every n, there exists an m > n such that

tr(f ◦m) ̸= 0.

Proof of Lemma 4.1.2. To prove sufficiency, consider an endomorphism
f of some tensor power X⊗n is non-negligible, i.e. there exists some
morphism g ∈ End(X⊗n) such that the trace of f ◦ g is non-zero. The
trace condition then gives that for every n, there exists a m > n such
that

tr((f ◦ g)◦m) ̸= 0,

and hence, f is not an element of the Jacobian ideal of the endomor-
phism algebra End(X⊗n), and in particular, is not nilpotent. There-
fore, the semisimplification of the category is semisimple.

Necessity follows from the general result that in a semisimple C-
algebra (e.g. the endomorphism algebra of X⊗n in the semisimplifi-
cation), if some general trace operation (i.e. a linear combination of
trace on each factor, consider the endomorphism algebra as a product
of matrix algebras) is non-zero on an element f , then for every n, there
exists anm > n such that the trace operation is non-zero on f ◦m. (This
follows, for example, by considering the Vanermonde determinant.) □

In particular, if the semisimplification of a category defined by a T-
algebra T is semisimple, then the semisimplifications of any category
defined by a sub-T-algebra T ′ ⊆ T is semisimple as well. Therefore,
since the semisimplification of Rep(GLt(Fq)) is semisimple, so is the

semisimplification of Rep(Sp2t(Fq)).

The second claim follows, for example, by examining the polyno-
mial order of Sp2N(Fq), and replacing N by t, to conclude that every
indecomposable object is non-vanishing in the semisimplification. □

For our purposes here, we will want to consider the case of t = N ,
making the first part of this statement more relevant. The second
part of this statement for generic values of t can be used to conclude
an interpolated version of our decomposition statement, for example,
describing an interpolated eta correspondence

ηtW,B : ̂O(W,B) ↪→ Rep(Sp2t(Fq)),
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sending the irreducible representations of O(W,B) to simple objects of
Rep(Sp2t(Fq)).

4.2. Partial pseudo-abelian envelopes and “isotypical” subcat-
egories. In this subsection, we give an argument using interpolation
for our full statement of Howe duality. From here on, we will focus
on the case of interpolating the eta correspondence with target in odd
orthogonal group representations, for simplicity. In this part of the ar-
gument, every other case is entirely similar. Fix a choice of orthogonal
space and bilinear form (W,B).

Recall that in this case, for a choice of V lying with (W,B) in the
symplectic stable range, the eta correspondence is an injective map
ηVW,B sending the irreducible representations of O(W,B) to irreduicble
representations of Sp(V ). The methods of [31, 32] ultimately only rely
on information carried by the endomorphism algebras of (tensor powers
of) oscillator representations, whose structure is stable under enlarging
the dimension of V , in the stable symplectic range, and therefore, by
definition, they pass to the interpolated categories.

Write dim(W ) = n, and suppose B is, as a symmetric bilinear form,
equivalent to a diagonal matrix with entries a1, . . . , an ∈ F

×
q . We may

then consider the object

ω⊗B = ωa1 ⊗ · · · ⊗ ωan

in Rep(Sp2t(Fq)). Let us consider the “partial pseudo-abelian enve-

lope” C int
B (t) defined as the subcategory of Rep(Sp2t(Fq)) consisting

of images of idempotents of EndRep(Sp2t(Fq))(ω
⊗B). We do not con-

sider a tensor product on C int
B (t), only working with its structure as an

additive C-linear category.

Further, considering

EndRep(Sp2t(Fq))
(ω⊗B) ∼= EndSp2N (Fq)(ωa1 [VN ]⊗ · · · ⊗ ωan [VN ]) =

EndSp2N (Fq)(ω[VN ⊗W ]),

for a large enough rank N , where on the right hand side, we consider
the restriction of ω[VN ⊗W ] along the inclusion

Sp2N(Fq) = Sp(VN) ⊆ Sp(VN)×O(W,B) ⊆ Sp(VN ⊗W ).

Therefore, there is a built in action of O(W,B) on the endomorphism
algebras EndRep(Sp2t(Fq))

(ω⊗B).
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In particular, for a fixed irreducible representation ρ of O(W,B), we
may consider the full ρ-isotypical subcategory C int

ρ (t) ⊆ CB(t), with

objects consisting of images of idempotents ι in EndRep(Sp2t(Fq))
(ω⊗B)

where, considering the O(W,B)-fixed point algebra

EndO(W,B)×Rep(Sp2t(Fq))
(ω⊗B) =

(EndRep(Sp2t(Fq))
(ω⊗B))O(W,B)

,

there is a simple idempotent of the form κ ⊗ ι, for κ an idempo-
tent in Rep(O(W,B)) with image isomorphic to ρ. We may also de-
scribe these objects as the images of ι lying in the ρ-isotypical part of
EndRep(Sp2t(Fq))

(ω⊗B) as an O(W,B)-representation. We cannot take a

semisimplification of C int
ρ (t), since we have given up its tensor struc-

ture. However, we may consider the images of C int
B (t), C int

ρ (t) under
the quotient semisimplification functor

Rep(Sp2t(Fq)) → S (Rep(Sp2t(Fq))).

Writing C̃ int
B (t), C̃ int

ρ (t) for these images, they form semisimple abelian

subcategories of S (Rep(Sp2t(Fq))). Note that this is only non-trivial
for a choice of t = N a natural number.

On the other hand, we may also consider the full subcategories
C gen
ρ (N) of Rep(Sp2N(Fq)) consisting of direct sums of all genuine ir-

reducible representations π ∈ Rep(Sp2N(Fq)) such that

π ⊗ ρ ⊆ ResO(W,B)×Sp(V )(ω[V ⊗W ]).

4.3. Interpolating correspondences. The purpose of this subsec-
tion is to describe how the objects of the subcategories C int

B (t) of the
interpolation Rep(Sp2t(Fq)) constructed in tensor powers of oscillator
representations of odd degree such that the total product of central
characters has a certain quadratic character α (i.e. corresponding to
odd orthogonal spaces and symmetric bilinear forms of a certain pre-
scribed discriminant α), can be written down according to an “formally
interpolated Lusztig classification.” We discuss this in detail for the
case of dim(W ) odd. All other cases are similar.

More specifically, an object of C int
B (t) is of the form

ηtW,B(ρ),

for W of dimension 2m + 1 for m ∈ N, with a form B of discriminant
disc(B) = α, and an irreducible representation ρ of O(W,B). Say that
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as a representation of O(W,B) = SO2m+1(Fq) × Z/2, ρ is of the form
ρ(s),u⊗ (±1) where ρ(s),u is an irreducible representation of SO2m+1(Fq)
corresponding to Lusztig classification data with semisimple part (s) ∈
Sp2m(Fq) = (SO2m+1(Fq))

D and unipotent part u ∈ ̂(ZSp2m(Fq)(s))
D
u
.

More concretely, further say that s has −1 as an eigenvalue of multi-
plicity 2ℓ, writing ZSp2m(Fq)(s) = H × Sp2ℓ(Fq), and

u = uHD ⊗
(
λ1 < · · · < λa
µ1 < · · · < µb

)

for uHD ∈ ĤD
u and

(
λa<···<λa
µ1<···<µb

)
(switching rows so that a − b is 1 mod

4) specifying a unipotent representation of SO2ℓ+1(Fq) = (Sp2ℓ(Fq))
D.

Then, for the sign +, we say that ηtW,B(ρ(s),u ⊗ (+1)) corresponds to
“interpolated Lusztig classification data”

(42) [ϕ+(s), ũHD ⊗
(

λ1 < · · · < λa
µ1 < · · · < µb t′ρ

)
],

writing t′ρ = t −m + a+b−1
2

. This is exactly the Lusztig classification
data of a stable range eta correspondence ηtW,B(ρ) for dim(V ) = 2N ,
with N replaced by t (we omit the final < sign in the second row of the
symbol notation, since at an interpolated value of t, writing µb < t′ρ
may be false or incomparable). Again, Sp2t(Fq) is not a genuine group,
and writing ϕ+(s) indicates an element with finitely many eigenvalues
not equal to −1 (which would contribute genuine factors in its “cen-
tralizer”) and has −1 as an eigenvalue of “multiplicity 2(t −m + ℓ).”
Interpolating the stable formula one would obtain for Sp2N(Fq), replac-
ing N by t, its dimension is

(43)

dim(ηtW,B(ρ(s),u ⊗ (+1))) =

dim(ρ) ·
t∏

i=t′+1

(q2i − 1) ·
a∏
i=1

(qt
′
ρ + qλi) ·

b∏
i=1

(qt
′
ρ − qµi)

2 · q(a+b−1)(a+b+1)/4 · |SO2m+1(Fq)|q′
.

Similarly, at the sign −1, we say that ηtW,B(ρ(s),u⊗(−1)) corresponds
to “interpolated Lusztig classification data”

(44) [ϕ−(s), ũHD ⊗
(
λ1 < · · · < λa t′ρ
µ1 < · · · < µb

)
],
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writing t′ρ = t−m+(a+ b−1)/2. Interpolating the stable formula one
would obtain for Sp2N(Fq), replacing N by t, its dimension is

(45)

dim(ηtW,B(ρ(s),u ⊗ (−1))) =

dim(ρ) ·
t∏

i=t′+1

(q2i − 1) ·
a∏
i=1

(qt
′
ρ − qλi) ·

b∏
i=1

(qt
′
ρ + qµi)

2 · q(a+b−1)(a+b+1)/4 · |SO2m+1(Fq)|q′
.

Now we may consider the “restriction” functor

Res : S (Rep(Sp2nt(Fq))) → S (Rep(Sp2t(Fq)))⊠Rep(O(W,B)).

The interpolated Howe duality statement then is

Theorem 4.3.1. In the semisimplification S (Rep(Sp2t(Fq))), the orig-
inal decomposition of Res(ω1) as

(46)

mW⊕
k=0

⊕
ρ∈ ̂O(W [−k],B[−k])

ηtW,B(ρ)⊠ IndPk(ρ⊗ ϵ(det))

holds, as objects of S (Rep(Sp2t(Fq)))⊠Rep(O(W,B)).

In summary, the objects of C int
B (t) are precisely direct sums of all

(47) ηtW [−k],B[−k](ρ)

for irreducible representations ρ ∈ ̂O(W [−k], B[−k]). For a fixed ir-
reducible representation ρ of O(W,B), the objects of C int

ρ (t) consist
of direct sums of objects ηtW [−k],B[−k](ρ

′) corresponding to irreducible

representations ρ′ ∈ ̂O(W [−k], B[−k]) such that ρ is a summand of the
parabolic induction

ρ ⊆ IndPk(ρ′ ⊗ ϵ(det))

writing Pk ⊆ O(W,B) for the maximal parabolic subgroup with Levi
factor O(W [−k], B[−k]) × GLk(Fq), considering ϵ(det) as a represen-
tation of the factor GLk(Fq).

At t = N corresponding to a reductive dual pair (Sp2N(Fq), O(W,B))

in the symplectic metastable range, the semisimplification images C̃B(N),

C̃ρ(N) are semisimple categories with objects consisting of direct sums
of simple objects corresponding to all formal interpolated Lusztig classi-
fication, eliminating 0-dimensional objects, which occur precisely when
N ′
ρ = λi or µi for some i in (42) or (44). Note that the remaining formal
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interpolated Lusztig classification objects, say where λi < N ′
ρ < λi+1

in (42) or µi < N ′
ρ < µi+1 in (44), have dimension equal to a gen-

uine irreducible Sp2N(Fq)-representation where N ′
ρ is inserted in the

appropriate place, multiplied by (−1)a−i or (−1)b−i. Call this the true
permutation of the formal interpolated Lusztig data as t = N .

4.4. The proof of the metastable eta correspondence. Now, to
approach a choice of (V, (W,B)) in the symplectic metastable range, we
attempt to apply Theorem 4.3.1 to t = N , giving a decomposition in

the semisimplification S (Rep(Sp2t(Fq))) in terms of objects of C̃B(N).
We must relate this category to genuine Sp2N(Fq)-representations. In
fact, we claim that replacing the formal Lusztig classification data by its
true permutation, with the corresponding sign, gives a genuine decom-
position of the restricted oscillator representation in the Grothendieck
group K(Rep(Sp2N(Fq))). Simplifying will precisely give the claimed
decomposition in Theorem 3.5.1.

To see this, for each ρ ∈ ̂O(W,B), consider functors

Φ : C gen
ρ (N) → C̃ int

ρ (N)

defined as follows: Consider a simple object π of the source, such that

π ⊗ ρ ⊆ ResSp(V )×O(W,B)(ω[V ⊗W ]).

We may consider an idempotent ιπ in the Sp(V )-equviariant endomor-
phism algebra of ResSp(V )(ω[V ⊗ W ]) ∼= ω⊗B whose image is one of
these copies of π. By duality, since each oscillator representation has
ωa ⊗ (ωa)

∨ ∼= CV ), we may conisder

ιπ ∈ EndSp(V )(ω
⊗B) ∼= HomSp(V )(1, (CV )⊗B) =

(C(V ⊗W ))Sp(V )

as a linear combination of Sp(V )-orbits on V ⊗W = V ⊕n (recall that an
Sp(V )-orbit consits of a set of n-tuples of vectors (v1, . . . , vn) satisfying
some linear (in)dependence conditions, and equations for the values
of the symplectic form on pairs of them). Theses orbits can also be
considered as orbits of any Sp2M(Fq) acting on (F2M

q )⊕n for any higher
M , and therefore ιπ corresponds to an interpolated endomorphism

EndRep(Sp2N (Fq))
(ω⊗B) ∼= ((C(F2M

q ⊗W ))Sp2M (Fq)

for M >> n (by the definition of Rep(Sp2N(Fq))). Since partial trace
operations (and therefore compositions) are computed the same in
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Rep(Sp2N(Fq)) and Rep(Sp2N(Fq)) (the difference between them aris-
ing instead from certain morphisms in the interpolated category not
existing in the genuine category), this new endomorphism is still an

idempotent, with image equal to an object in C̃ int
ρ (N) of the same

dimension as π. We put Φ(π) to be this object.
On the other hand, define

Ψ : K(C̃ int
ρ (N)) → K(C gen

ρ (N))

by sending a simple object in C̃ int
ρ (N) which must be of the form (42)

or (44) at t = N for some choice of s, u,
(
λ1<···<λa
µ1<···<µb

)
to (−1)b−i, where i

is the index so that µi < t′ρ < µi+1 or λi < t′ρ < λi+1, times the genuine
irreducible representation of Sp(V ) whose Lusztig calssification data is
the same as (42) or (44) with the formal interpolated symbol replaced
by (

λ1 < · · · < λa
µ1 < · · · < µi < t′ρ < µi+1 < · · · < µb

)
or (

λ1 < · · · < λi < t′ρ < λi+1 < · · · < λa
µ1 < · · · < µb

)
,

respectively. In other words, we them precisely to their signed true
permutations.

Proposition 4.4.1. The composition of

K(C gen
ρ (N))

K(Φ)
// K(C̃ int

ρ (N))
Ψ // K(C gen

ρ (N))

is IdK(C gen
ρ (N)).

Proof. Note that this holds immediately when formal Lusztig classi-
fication data is actually genuine Lusztig classification data defining a
Sp2N(Fq)-representation, since both K(Φ) and Ψ act as the identity
on these objects, considered in either categories. The general state-
ment follows since dimensions are preserved by Ψ and Φ, and it is not
possible for Ψ ◦ K(Φ) when applied to an irreducible representation
of C gen

ρ (N) to output a linear combination of multiple different irre-
ducible representations in Rep(Sp2N(Fq) with integer coefficients, both
by dimension and the fact that it would violate the decomposition (46).

□
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Therefore, the decomposition of the restricted oscillator representa-
tion as a genuine representation of Sp2N(Fq) can be obtained from
(46) by applying Ψ, and cancelling terms as in K(CB(N)). It re-
mains to reconcile this cancellation with the claimed answer. Con-
sider a term arising from ρ ∈ ̂O(W [−j], B[−j]). Write ρ = ρ(s),u ⊗
(±1), for ρ(s),u an irreducible unipotent representation of the special
orthogonal group SO(W [−j], B[−j]) = SO2(m−j)+1(Fq). Suppose s ∈
Sp2(m−j)(Fq) = (SO2(m−j)+1(Fq))

D has −1 as an eigenvalue of mul-
tiplicity 2ℓ, and write ZSp2(m−j)(Fq)(s) = H × Sp2ℓ(Fq). Then ψ±(s)

remains as defined in the stable range, so that ZSO2N+1(Fq)(ψ
±(s)) =

HD×SO±
2(N−m+ℓ)(Fq). If ψ

±(u) is constructible, then the interpolated

eta correspondence outputs a genuine Sp2N(Fq)-representation, which
is our proposed metastable construction of ηVW,B. In the case corre-
sponding to when ψ(u) is “inconstructible,” however, the interpolated
eta correspondence outputs a representation involving an illegal symbol

(48) ψ(u) = ũHD ⊗
(
λ1 < · · · < λa N ′

ρ

µ1 < · · · < µb

)
.

This term

(ρψ±(s),ψ(u),±1 ⊗ (ϵ(s)disc(B)))⊗ IndPi(ρ(s),u)

must be eliminated when we semisimplify.
To see where this term cancels, suppose that

λ1 < · · · < λc < N ′
ρ < λc+1 < · · · < λa,

then, for c + 1 ≤ k ≤ a, we have that the multiplicity 2p of −1 as an
eigenvalue of s must be greater than or equal to 2(λk − N ′

ρ). first let
us write

j(k) = j − λk +N ′
ρ.

Note that by the rank conditions of Lusztig symbols, the multiplicity
2p of −1 as an eigenvlaue must be greater than or equal to 2(λk−N ′

ρ).

Then write s(k) for the semisimple element of

Sp2(m−j+λk−N ′
ρ)(Fq) = Sp2(m−j(k))(Fq) = (SO2(m−j(k))+1(Fq))

D

obtained by removing 2(λk −N ′
ρ) eigenvalues −1. Write

u(k) = uHD⊗(
λ1 < · · · < λc < N ′

ρ < λc+1 < · · · < λk−1 < λk+1 < · · · < λa
µ1 < · · · < µb

)
Consider the representation corresponding to the Lusztig data

ρ(s(k)),u(k)
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giving an irreducible representation of SO2(m−j(k))+1(Fq). Then ψ
±(s) =

ψ±(s(k)), and we have
N ′
ρ
(s(k)),u(k)

= λk.

Therefore,

ψ(u(k)) = ũHD⊗(
λ1 < · · · < λc < N ′

ρ < λc+1 < · · · < λk−1 < λk+1 < · · · < λa λk
µ1 < · · · < µb

)
.

Note that the interpolated symbol part has dimension (−1)a−k, multi-
plied by the dimension of the genuine symbol

(49)

(
λ1 < · · · < λc < N ′

ρ < λc+1 < · · · < λa
µ1 < · · · < µb

)
.

Therefore, at j(k), this contributes a term

(50) (ρψ±(s),ψ(u(k)),±1 ⊗ (ϵ(s)disc(B)))⊗ Ind
P
j(k) (ρ(s(k)),u(k)),

which has terms that can cancel recursively (e.g. k = 1 completely
cancels (48), though it introduces new summands that are illegal if
a > 1), since switching coordinates in interpolated Lusztig symbols
gives a change in the sign of dimension. At k = a, we have the legal
symbol (49).

Putting together the terms (48) and (50) for c+1 ≤ k ≤ a, this gives
the final genuine term, which is exactly ηVW,B(ρ(s(a)),u(a)), tensored with a
coefficient of the O(W,B)-representation given by the alternating sum

a⊕
k=c

(−1)a−kIndj(k)(ρ(s(k)),u(k))

(writing j(0) = j, s(0) = s, u(0) = u). By definition, this O(W,B)-
representation is precisely the proposed alternating sum

Aj(a)(ρ(s(a)),u(a) , N
′
ρ).

Therefore, in the final decomposition of ResSp(V )×O(W,B)(ω[V ⊗ W ])
in the genuine representation categories Rep(Sp(V )), Res(O(W,B)),
we obtain that the illegal constructions should be taken to be 0, in

exchange for replacing Ind
P
j(a) in the corresponding final legal level by

Aj(a) , exactly as claimed.

We also note that Theorems 3.5.1, 3.5.2 can be checked elemen-
tarily, using the global dimension formula calculated in [31, 32] and
observations about how the dimensions of endomorphism algebras of
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tensor powers of oscillator representations degenerate in the degrees
corresponding to metastable reductive dual pairs.

4.5. An “inductive construction”. As used above, the semisimpli-
fication of Rep(Sp2N(Fq)) is Rep(Sp2N(Fq)), with interpolated Lusztig
classification data taken to be true Lusztig classification data defining
obejcts of the genuine representation category Rep(Sp2N(Fq)) when it
involves legal symbols, and semisimplified to be the 0 object when it
involve illegal symbols.

In particular, note that the stable and metastable eta correspon-
dences provides a concrete construction of every irreducible represen-
tation of Sp2N(Fq). Specifically, every irreducible representation ρ ∈
Sp2N(Fq) is contained , and using our main result, we can pinpoint the
minimal 0 ≤ n ≤ 2N and degree n tensor product

(51) ω[V ]a1 ⊗ ω[V ]a2 ⊗ · · · ⊗ ω[V ]an

of oscillator representations corresponding to non-trivial additive char-
acters of Fq corresponding to a1, . . . , an ∈ F

×
q , since (51) can be calcu-

lated as the restriction of ResSp(V )×O(W,B)(ω[V ⊗W ]) down to Sp(V )-
representation, where W is a n-dimensional Fq-representation and B is
can be described by the n by n matrix with diagonal entries a1, . . . , ab

B =


a1 0 . . . 0
0 a1 0
...

...
0 0 . . . an

 .

(Note that outside the stable range, while n is unique, in certain cases,
both distinct choices of B may contain ρ).

Further, by our description, at such a minimal n, ρ appears as a
summand of the top part of ResSp(V )×O(W,B)(ω[V ⊗W ])), and we can
pinpoint the irreducible O(W,B)-representation π whose tensor prod-
uct with ρ appears in ResSp(V )×O(W,B)(ω[V ⊗W ])), i.e. such that

(52) ρ = ηVW,B(π).

Given this information, we can explicitly construct an endomorphism
of (51) whose image is ρ: In [31, 32], in our proof of the decomposition
(51) in the stable range, we used an identification of the endomorphism
algebra of (51) with the Sp(V )-fixed points on a free C-algebra with
basis equal to a direct sum of n copies of V

EndSp(V )(
n⊗
i=1

ω[V ]ai)
∼= (C(

⊕
n

V ))Sp(V ).
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In this description, we produced endomorphisms corresponding to re-
flections in O(W,B) (generating a full group algebra CO(W,B)), and
we proved that the subalgebra CO(W,B) is the endomorphism algebra
of the top part of ResSp(V )×O(W,B)(ω[V ⊗ W ])). Therefore, knowing

π ∈ ̂O(W,B) satisfying (52), we may consider the idempotent

(53)
dim(π)

|O(W,B)|
∑

g∈O(W,B)

χπ(g)
−1 · g ∈ CO(W,B)

in EndSp(V )(
⊗n

i=1 ω[V ]ai), where

χπ : O(W,B) → C
×

denotes the character corresponding to π. The image of (53) in (51)
recovers ρ. Outisde of the stable range, the constructions of the re-
flection elements are readily interpolated. In the metastable range,
if ρ ⊗ π is in the top part of the restricted oscillator representation,
then the corresponding idempotent (53) survives and is unaltered by
semisimplification.

This process also works for Sp(V ) and O(W,B) switched, to write

down ζW,BV . Therefore, we can produce any Lusztig symbol in a choice
of Lusztig classification data inductively, adding one coordinate at a
time.

5. The Gurevich-Howe rank conjecture

Finally, as advertised in the introduction, the purpose of this section
is to apply our calculation of the eta correspondence to prove Theorem
2, verifying the rank conjecture of S. Gurevich and R. Howe, which
predicts the equality of U -rank and tensor-rank for every representation
of a symplectic group Sp2N(Fq) not attaining top possible U -rank N .

First, in Subsection 5.1, we recall the definitions of U -rank and tensor
rank in more detail and recall the results of Gurevich and Howe in
[16, 17] which reduce Theorem 2 to a statement that all irreducible
representations with tensor rank larger than N have U -rank equal to
N (see Proposition 5.1.1). Next, in Subsection 5.2, we use our explicit
description of the extended eta correspondence to obtain an induction
relation (see Proposition 5.2.1) between tensor ranks from an analogue
of the Pieri rule, which reduces the claimed statement to lower tensor
rank, again.
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5.1. U-rank and the eta correspondence. First we recall the def-
initions of U -rank and tensor rank given in [16, 17]. We begin with
U -rank. Consider a symplectic group Sp2N(Fq). The Siegel unipotent
subgroup is defined as

UN = {
(
I A
0 I

)
| A ∈MN×N(Fq) symmetric} ⊆ Sp2N(Fq).

Note that, as a group, UN is isomorphic to the abelian group of sym-
metric N×N matrices, with respect to addition. In particular, we may
fix an identification of UN with its Pontrjagin dual U∗

N in the standard
way, i.e. by fixing a non-trivial additive character χ0 : Fq → C

× and
identifying each element of UN corresponding to a symmetric matrix A
with the character

UN → C
×(

I B
0 I

)
7→ χ0(tr(AB)).

Gurevich and Howe [16, 17] then define the U-rank of an Sp2N(Fq)-
representation ρ as the maximal rank of a character appearing in its
restriction to UN :

(54) rkU(ρ) := max{rk(χ) | χ ∈ U∗
N and χ ⊆ ResUN

(ρ)},

where for a character χ ∈ U∗
N , its rank is defined to be the matrix rank

of the symmetric N × N -matrix specifying its corresponding element
of UN .

On the other hand, the tensor rank of a Sp2N(Fq)-representation is
defined according to the oscillator representations. Recall that each
oscilaltor representation of a symplectic group Sp(V ) decomposes into
two irreducible summands

ωa[V ] = ω+
a [V ]⊕ ω−

a [V ]

(from the perspective of the eta correspondence, ω±
a [V ] is obtained by

applying the eta correspondence to the representations (±1) of Z/2 =
O1(Fq). These pieces of the oscillator representation are the smallest
non-trivial irreducible representations of Sp(V ), and they each have
U -rank 1. The tensor rank of a representation ρ is then defined as the
minimal degree n such that every irreducible component of ρ appears
in a tensor product of less than or equal to n oscillator representations:

rk⊗(ρ) := min{n | for π ∈ Ŝp(V ), π ⊆ ρ, there exists

m ≤ n, a1, . . . , am ∈ F
×
q with π ⊆ ωa1 [V ]⊗ · · · ⊗ ωam [V ]}
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Now recalling again that a degree n tensor product

ωa1 [V ]⊗ · · · ⊗ ωan [V ]

can be considered as the restirction of the oscillator representation of
a larger symplectic group Sp(V ⊗W ) along the inclusion

Sp(V ) ↪→ Sp(V )×O(W,B) ↪→ Sp(V ⊗W ),

where (W,B) denotes an n-dimensional Fq-space with a non-degenerate
symplectic form B corresponding to the diagonal matrix with entries
a1, . . . , an, we see that understanding the restricted oscillator represen-
tation ResSp(V )×O(W,B)(ω[V ⊗W ]) is key to. In particular, the results
of this paper for pairs (Sp(V ), O(W,B)) in the symplectic stable or
metastable range explicitly classify the irreducible representations of
each tensor rank 0 ≤ rk⊗ ≤ 2N .

In [16, 17], Gurevich and Howe also found a connection between the
restricted oscillator representations ResSp(V )×O(W,B)(ω[V ⊗W ]) and U-
rank, which was one of their original motiviation for defining the eta
correspondence:

The original statement describing the eta correspondence given in,
say, Theorem 4.3.3 of [17], is that for choices of V and (W,B) in the
symplectic stable range (which we recall means dim(W ) ≤ dim(V )/2,
there is a system of injections

ηVW,B : ̂O(W,B) ↪→ Ŝp(V )

(we omit the subscript when the source is determined) such that for

every irreducible representations ρ ∈ ̂O(W,B), the tensor product ρ⊗
ηVW,B(ρ) is a summand of ResSp(V )×O(W,B)(ω[V ⊗W ]), and

(55) rkU(η
V
W,B(ρ)) = dim(W ).

Further, every other π ∈ Ŝp(V ) such that ρ⊗π appears in the restricted
oscillator representation has strictly lower U -rank. (Note that though
Theorem 4.3.3 of [17] does not include the case of dim(W ) = dim(V )/2,
the result still applies to this case as described in Remark 4.3.6.)

First, we note that the results of [16, 17] immediately imply the
agreement of tensor- and U -rank in cases covered by the symplectic
stable range:

Corollary 1. For irreducible Sp2N(Fq)-representations ρ of tensor rank
≤ N , the notions of rank coincide:

rk⊗(ρ) = rkU(ρ).
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Therefore, it only remains to prove the following

Proposition 5.1.1. Consider an irreducible representation ρ of a sym-
plectic group Sp2N(Fq) obtained first in the restriction of an oscillator
representation to an unstable reductive dual pair, meaning

N < rk⊗(ρ) ≤ 2N.

Then ρ attains top U-rank

rkU(ρ) = N.

5.2. An induction rule and concluding Theorem 2. As described
in the previous subsection, to prove Proposition 5.1.1, we need more ex-
plicit information about the symplectic group representations of each
tensor rank, which can be obtained from Theorem 3.5.1. In partic-
ular, in the decomposition (37), we may further restrict to Sp(V )-
represenations by treating the coefficient O(W,B)-representations as
multiplicity spaces, obtaining a classification of the irreducible Sp(V )-
represntations of tensor rank rk⊗ = r for each 0 ≤ r ≤ 2N as precisely
those constructed in the image of an eta correspondence

ηVW,B : ̂O(W,B) → Ŝp(V ) ∪ {0},
for one of the two non-equivalent choices of (W,B) with dimension r.

The key step we use to conclude Propostion 5.1.1 and Theorem 2
is the following result, which gives a relationship between the different
rank layers of the eta correspondence, according to parabolic induction:

Proposition 5.2.1. Fix a Fq-vector space W with symmetric bilinear
form B. Consider symplectic spaces V , U of dimension 2N ≤ 2M
respectively, such that both reductive dual pairs (Sp(V ), O(W,B)) and
(Sp(U), O(W,B)) are in the symplectic stable or metastable ranges.
Then we may consider the eta correspondences

ηV : ̂O(W,B) → Ŝp(V ) ∪ {0}

ηU : ̂O(W,B) → Ŝp(U) ∪ {0}.
For an irreducible representation π ∈ ̂O(W,B) such that ηV (W ) ̸= 0,
we have

(56) ηU(π) ⊆ IndP
U
M−N (ηV (π)±),

where the ± denotes whether we consider a sign character on the factor
GLM−N(Fq) of the Levi subgroup before inflating to PU

M−N and applying
the induction. The sign is + when W is even dimensional and is −
when W is odd dimensional.
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To prove this, we now recall briefly the analogue of the Pieri rule for
symbols. We give a more concrete statement in Subsection ?? below
with a more detailed explanation on how it can be derived from the
results of [37]. For the purposes of proving Theorem 2, we only need
one case of it, so we do not give the full general statement in this
subsection.

Consider a unipotent representation of Sp2N(Fq) corresponding to a
symbol (

λ1 < · · · < λa
µ1 < · · · < µb

)
.

Write P1 for the maximal parabolic subgroup of Sp2(N+1)(Fq) with Levi

factor Sp2N(Fq) × GL1(Fq), and consider
(
λ1<···<λa
µ1<···<µb

)
as a its represen-

tation by letting the GL1(Fq) factor of the Levi subgroup act trivially
and inflating on the unipotent radical trivially. Then its parabolic in-
duction to a Sp2(N+1)(Fq)-representation

IndP1

Sp2(N+1)(Fq)
(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
)

is a direct sum of unipotent representations corresponding to symbols

(57)

(
λ1 < · · · < λi−1 < λi + 1 < λi+1 < · · · < λa

µ1 < · · · < µb

)
,

(
λ1 < · · · < λa

µ1 < · · · < µi−1 < µi + 1 < µj+1 < · · · < µa

)
when possible, i.e. for 1 ≤ i ≤ a or 1 ≤ j ≤ b where λi + 1 < λi+1 or
µj + 1 < µj+1, respectively, and the unipotent representations

(58)

(
1 < λ1 + 1 < λ2 + 1 < · · · < λa + 1

0 < µ1 + 1 < · · · < µb + 1

)
(

0 < λ1 + 1 < · · · < λa + 1

1 < µ1 + 1 < µ2 + 1 < · · · < µb + 1

)
when possible, i.e. when λ1 > 0 or µ1 > 0, respectively. This is a full
description of the “one step” Pieri rule.

More generally, for the “r step” Pieri rules, describing the parabolic
induction from a maximal parabolic Pr with Levi subgroup Sp2N(Fq)×
GLr(Fq) to Sp2(N+r)(Fq) (still takingGLr(Fq) and the unipotent radical
to act trivially on the input representation), instead of adding a single
“box” to the underlying Young diagrams corresponding to a symbol(
λ1<···<λa
µ1<···<µb

)
, we must add a “row of r boxes.” More specifically, one

must undo the procedures described in Proposition 3.2 and Subsection
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4.6 of [37], then apply the classical Pieri rule adding a “row of r boxes”
as a Weyl group representation, before re-applying the procedures of
[37] to recover the original defect and the new rank N + r. This rule
can be derived directly from the definition of the symbols (see [37],
Subsection 4.8).

In particular, summands that always appear in IndPr(
(
λ1<···<λa
µ1<···<µb

)
) are

symbols obtained by adding r to the final coordinate in a row:

(59)

(
λ1 < · · · < λa−1 < λa + r

µ1 < · · · < µb

)
(

λ1 < · · · < λa
µ1 < · · · < µb−1 < µb + r

)
.

To apply such a parabolic induction IndPr to a general representa-
tion ρ of Sp2N(Fq), the resulting Sp2(N+r)(Fq) representation consists
of summands which add 1’s to the semisimple part of ρ’s Lusztig classi-
fication data and have unipotent part consisting of the input unipotent
part with the factor corresponding to the centralizer of 1 eigenvalues
replaced by the possible pieces of its r step parabolic induction. We
also consider the “signed parabolic induction” IndPr(ρ−), by which we
denote the Sp2(N+r)(Fq)-representation obtained by tensoring ρ with
the sign character of the GLr(Fq) factor of the Levi subgroup of Pr
before inflating and inducing. The procedure on Lusztig classification
data giving the signed parabolic induction is completely similar to the
unsigned case, except that −1’s are added to the semisimple part of the
data corresponding to the input representation (instead of 1’s) and the
symbol corresponding to this factor of its centralizer is altered, instead.

In particular, by combining the symbol Pieri rule with our descrip-
tion of the eta correspondence given in Definitions 3.2.1 and 3.2.2 we
are able to conclude Proposition 5.2.1:

Proof of Proposition 5.2.1. The choice of sign in (56) precisely speci-
fies whether the induction operation will add 1’s or −1’s to the Lusztig
classification data of the input representation. Since it is chosen ac-
cording to the partiy of dim(W ), the semisimple part of the Lusztig
classification data of ηU(π) agrees with that of the irreducible sum-

mands of IndP
U
M−n(ηV (π)±), reducing the claim to the fact that in the

“altered factor” of the unipotent parts of ηU(ρ) and ηV (ρ),(
λ1 < · · · < λa < M ′

ρ

µ1 < · · · < µb

)
⊆ IndPM−N (

(
λ1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
),
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which follows from the symbol Pieri rule. □

Considering the effect of parabolic induction on U -rank then allows
us to reduce Proposition 5.1.1 to Corollary 1, and conclude Theorem
2:

Proof of Proposition 5.1.1 and Theorem 2. Consider a representation ρ
of Sp(V ) of tensor rank

N < rk⊗(ρ) ≤ 2N.

Then by Theorem 3.5.1, there exsits a choice of (W,B) with dim(W ) =

rk⊗(ρ) > N , and an irreducible representation π ∈ ̂O(W,B) such that

ηVW,B(π) = ρ.

Let us denote by V ′ the symplectic space of dimension dim(V ′) =
2 · dim(W ), i.e. the maximal dimensional symplectic space such that
(Sp(V ′), O(W,B)) is a reducive dual pair in the symplectic stable range.
Consider the eta correpsondence

ηV
′
: ̂O(W,B) ↪→ Ŝp(V ′),

and its image of π. Let us write

ρ′ = ηV
′
(ρ) ∈ Ŝp(V ′).

Applying Corollary 1, we know that as a representation of Sp(V ′) =
Sp2·dim(W )(Fq), its U -rank is

rkU(ρ
′) = rk⊗(ρ

′) = dim(W ).

Now applying Proposition 5.2.1 gives that ρ′ appears as a summand
of a (possibly signed) parabolic induction of ρ from a parabolic sub-
group with Levi factor

Sp(V ′)×GLdim(W )−N(Fq),

which is an operation that can only increase U -rank by at most the
difference dim(W )−N . In other words, the U -rank of ρ is at least

rkU(ρ) ≥ rkU(ρ
′)− (dim(W )−N) =

rk⊗(ρ
′)− (dim(W )−N) = N,

and therefore we must have equality rkU(ρ) = N , obtaining (7). □
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6. Resolving the alternating sums

In Theorem 3.5.1 and 3.5.2, we decompose the restricted oscillator
representation ResSp(V )×O(W,B)(ω[V ⊗ W ]) in terms of the eta corre-
spondence (in the case of the symplectic stable or metastable range,
corresponding to the condition (17)) or the zeta correspondence (in the
orthogonal metastable or stable ranges, corresponding to the comple-
mentary condition (18)). Further, we described the eta and zeta cor-
respondences in terms of Lusztig classification data, allowing us to di-
rectly compute the Sp(V )-representation and O(W,B)-representation
summands occuring in the restriction of ω[V ⊗W ].

However, in (37) and (38), the eta and zeta correspondence terms ap-
pear with coefficients Ak(ρ,N

′
ρ) (giving an O(W,B)-representation, for

ρ an irreducible O(W [−k], B[−k])-representation) or ⟩(ρ,m′
ρ) (giving

a Sp(V )-representations, for ρ an irreducible Sp(V [−k]), respectively.
Our description of these terms for the purpose of proving the Theorem
was as certain alternating sums of parabolic inductions. The purpose
of this section is to simplify these sums Ak(ρ,N

′
ρ) (resp. Ai(ρ,m

′
ρ))

and describe their irreducible O(W,B)- (resp. Sp(V )-) representation
summands in a way that can be used for concrete computations.

6.1. The main statement. Our main result is

Theorem 6.1.1. Fix a reductive dual pair (Sp(V ), O(W,B)) in the
symplectic stable or metastable range. For an irreducible representation
ρ of O(W [−k], B[−k]), consider the factor of the unipotent part of its
Lusztig classification data writable as a symbol

(60)

(
λ1 < · · · < λa
µ1 < · · · < µb

)
,

such that it is replaced by a symbol(
λ1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
in the construction of ηVW [−k],B[−k](ρ) (switch rows if necessary). Then

the O(W,B)-representation Ak(ρ,N
′
ρ) consists of the irreducible sum-

mands appearing in the parabolic induction IndPk(ρ⊗ϵ(det)) such that,
when performing the Pieri rule (see Proposition 6.2.1) on the row
λ1 < · · · < λa of (60), the highest coordinate λ′a′ of the correspond-
ing row of the new symbol satisfies

λ′a′ < N ′
ρ + (a′ − a).



53

There is a similar description in the case of (Sp(V ), O(W,B)) in the
orthogonal stable or metastable range, of the Sp(V )-representations
Ai(ρ,m

′
ρ) for Sp(V [−i])-representations ρ.

To prove this, we use the Pieri rule for Lusztig symbols, which we
state in Proposition 6.2.1 below. Recall that the combinatorial data
of a symbol (classifying the irreducible unipotent representations) is
equivalent to the data of its defect (which gives the information of
the underlying cuspidal representation) and a pair of Young diagrams
corresponding to the irreducible representation of the remaining Weyl
group specifiying which piece of the induced cuspidal representation the
symbol corresponds to (this data comes from undoing the procedures
given in Proposition 3.2 and Subsection 4.6 or 4.7 of [37]; we give more
details below).

First, as we discussed in Subsection 3.4, in each case, in every sum-
mand of the alternating sums of parabolic inductions all factor through
precisely to the symbol altered by the eta or zeta correspondence (the
symbol of the factor of the unipotent part corresponding to (−1)dim(W )

eigenvalues), with the other Lusztig classification data being preserved.
Therefore, the problem of simplifying Ak(ρ,N

′
ρ) (resp. Ak(ρ,m

′
ρ)) re-

duces to simplifying an alternating sum of parabolic inductions of sym-
bols. As in Definitions 3.4.1 and 3.4.2, write θ =

(
λ1<···<λa
µ1<···<µb

)
for the

symbol corresponding to the factor of the unipotent part of ρ’s Lusztig
classification data which is altered in the extended eta correspondence
(resp. the extended zeta correspondence). Arrange the rows so that
the eta correspondence alters the top row. Write

(61) k(i) = k −N ′
ρ + λi,

so that we have

k(a) ≥ k(a−1) ≥ · · · ≥ k(1).

Pick the minimal i0 such that k(i0) ≥ 0 We then need to find the
symbols χ appearing in the alternating sumA±

k (θ,N
′
ρ) (with superscript

sign agreeing with the sign of ϕ±(u) or ψ±(u) appearing in the the

construction of ηVW,B(ρ) or ζ
W,B
V (ρ)), which can be written out as

(62)
a+1⊕
i=i0

(−1)a+1−i · IndPk(i) (

(
λ1 < · · · < λ̂i < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
)

(for the case of the extended zeta correspondence, replace N ′
ρ by m′

ρ).
The irreducible components ofAk(ρ,N

′
ρ) will then consist of ofO(W,B)-

representations obtained with Lusztig classification data obtained by
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adding (−I)2k to ρ’s original semisimple part, and taking the unipotent
part obtained by tensoring a symbol in (62) (and choosing the same
central sign data as ρ).

In other words, Theorem 6.1.1 can be more precisely stated as

Theorem 6.1.2. Assume the above notation. The alternating sum
(62) simplifies as the sum of all symbols(

λ′1 < · · · < λ′a′

µ1 < · · · < µ′
b′

)
⊆ IndPk(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
)

such that
λa′ < N ′

ρ + (a′ − a).

This statement can now be proved directly by considering the induc-
tion rule on symbols, which can be done by translating the symbols
into Young diagram data.

Consider a symbol of type B, C, D or 2D-type

(63)

(
λ1 < · · · < λa
µ1 < · · · < µb

)
.

We want to consider the “k-step induction”

(64) IndPk(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
),

where Pk denotes the standard maximal parabolic PW,B
k if we take (63)

to correspond to a unipotent representation of O(W [−k], B[−k]) for
some orthogonal space (W,B), or P V

k if we take (63) to correspond to
a unipotent representation of Sp(V [−k]) for some symplectic space V .
To consider a symbol (63) as a representation of Pk in either of these
cases, let the factor GLk(Fq) of the Levi subgroup of Pk act trivially,
and inflate by letting. Then (63) denotes the induction of the resulting
representation to O(W,B) or Sp(V ). The decomposition of (64) is
according to a Pieri rule, which we concretely state in Proposition
6.2.1 below.

6.2. The Pieri rule. First, let us briefly recall the role of symbols as
representations. In (4.6.2), (4.7.1) of [37], Lusztig described how the
combinatorial data of a pair of increasing sequences (63) corresponds to
an irreducible representation of a certain Hecke algebra Hn(q, q

d) de-
fined according to certain relations (see Subection 4.1 of [37]) which are
equivalent to the classical Iwahori relations and recover the group alge-
bra of the Weyl group (see [5], §68A). In Subsection 4.8 of [37], Lusztig
also describes how induction is preserved by these correspondences. For



55

the Weyl groups of the groups we consider here, the irreducible repre-
sentations in each case are classified by pairs of Young diagrams whose
total numbers of boxes add up to the rank. Therefore, the induction
(64) can be computed by applying the Pieri rule to these Young dia-
grams i.e., by considering all choices of k1 + k2 = k, and adding a row
of length k1 to the top row’s corresponding Young diagram and a row
of length k2 to the bottom row’s corresponding Young diagram.

To find the Weyl group representation corresponding to a symbol
(63), without loss of generality, switch rows so that a ≥ b, and denote
the defect by d = a− b.

First suppose d is strictly positive. The symbol notation then in-
dicates that the unipotent representation

(
λ1<···<λa
µ1<···<µb

)
is constructed in

an induction of the cuspidal unipotent representation corresponding to
the symbol (

0 < 1 < 2 < · · · < d− 1

∅

)
(the minimal rank symbol of defect d). The first step of Lusztig’s
procedure is to “remove” this cuspidal representation from the symbol
(i.e. by undoing the bijection j of Proposition 3.2 of [37]), to obtain a
defect one symbol

(65)

(
λ1 < · · · < λa

0 < 1 < · · · < d− 2 < µ1 + (d− 1) < · · · < µb + (d− 1)

)
,

(using the convention of [37] describing how to reduce a symbol if the
coordinate of its first two rows is 0).

The next step is to undo the procedure described in Subsection 4.6 of
[37] to obtain Young diagrams. In the case of (65), we obtain a Young
diagram

(66) (λ1 ≤ λ2 − 1 ≤ · · · ≤ λa − (a− 1))

where the ith row has length λa−i+1 − (a− i) corresponding to the top
row, and a Young diagram

(67) (µ1 ≤ µ2 − 1 ≤ · · · ≤ µb − (b− 1))

where the ith row has length µb−i+1 − (b − i) corresponding to the
bottom row (not writing the rows with length 0 corresponding to the
coordinates 0 < 1 < · · · < d− 2 concatenated onto the bottom row in
(65)).

In the case of defect d = 0, we undo the procedure in Subsection
4.7 of [37] to obtain this same answer, of a Weyl group representation
corresponding to Young diagrams (66), (67).
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We will denote the Young diagrams (66), (67), by α, β, denoting the
ith row lengths by

(68)
αi := λa−i+1 − (a− i)

βi := µb−i+1 − (b− i).

(We use the convention that the first row of the Young diagram is the
longest.)

We use the terminology that, for a Young diagram (γn ≤ · · · ≤ γ1)
and for a natural number k, we say Young diagrams of the form

(kn+1 ≤ γn + kn ≤ γn + kn−1 ≤ · · · ≤ γ1 + k1)

where ki are natural numbers satisfying k1 + · · · + kn+1 = k and, for
every i = 1, . . . , n, we have ki+1 ≤ γi − γi+1 (putting γn+1 = 0 are the
Young diagrams obtained by adding a row of length k to γ.

The Pieri rule for symbols can then be stated as follows:

Proposition 6.2.1. Fix an orthogonal space (W,B) (resp. a sym-
plectic space V ) and consider a symbol

(
λ1<···<λa
µ1<···<µb

)
defining a unipotent

representation of O(W [−k], B[−k]) (resp. Sp(V [−k])). Recall that
we denote by Pk the standard maximal parabolic with Levi subgroup
O(W [−k], B[−k]) × GLk(Fq) (resp. Sp(V [−k]) × GLk(Fq)), and con-
sider the symbol as a Pk-representation by letting GLk(Fq) act trivially
and inflating by letting the unipotent part of the parabolic act trivially.
Then its parabolic induction to an O(W,B)-representation decomposes
as a sum of symbols

IndPk(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
) =

⊕
Sk[(λ1<···<λa

µ1<···<µb
)]

(
λ′1 < · · · < λ′a′

µ′
1 < · · · < µ′

b′

)

where the sum runs over the set of symbols Sk[
(
λ1<···<λa
µ1<···<µb

)
] consisting of(λ′1<···<λ′

a′
µ′1<···<µ′

b′

)
where, for some k1 + k2 = k, the Young diagram

(λ′1 ≤ λ′2 − 1 ≤ · · · ≤ λ′a′ − (a′ − 1))

is obtained by adding a row of length k1 to

(λ1 ≤ λ2 − 1 ≤ · · · ≤ λa − (a− 1)),

and the Young diagram

(µ′
1 ≤ µ′

2 − 1 ≤ · · · ≤ µ′
b′ − (b′ − 1))

is obtained by adding a row of length k2 to

(µ1 ≤ µ2 − 1 ≤ · · · ≤ µb − (b− 1)).
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(The awkwardness of this statement is in order to accomodate all cases
of input symbols, including those where one of the rows of the original
symbol begins with a 0 coordinate, and to properly address the case
when a′ and b′ are larger than a and b.)

6.3. The proof of the main statement. We then conclude Theorem
6.1.2 by considering it in terms of Young diagrams, and applying this
Pieri rule.

Proof of Theorem 6.1.2. Let us use the above notation (68) for an al-
terable unipotent part of a representation ρ for which we want to find
the coefficient Ak(ρ,N

′
ρ) appearing with ηVW,B(ρ). Since the resulting

Young diagrams (66), (67) ultimately do no depend on which row was
on top or longer, we may say without loss of generality that the top row
is the one where we add the coordinate N ′

ρ when constructing ηVW,B(ρ).
Applying this to the context of Theorem 6.1.2, the symbol

(69)

(
λ1 < · · · < λi−1 < λi+1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
appearing in the ith term of the alternating sum (62) corresponds to
the same cuspidal representation

(
0<1<···<d−1

∅

)
as the original symbol

(since it has the same row lengths) and the Young diagrams

(70)
(αa ≤ · · · ≤ αa−i+2 ≤ αa−i + 1 ≤ · · · ≤ α1 + 1 ≤ N ′

ρ − a)

(βb ≤ · · · ≤ β1).

(See Figure 1 for an example.)

The claimed reduction of the alternating sum consists of symbols
corresponding to the same underlying cuspidal representation and a
pair of Young diagrams (α′, β′) obtained from applying the k-step Pieri
rule to (α, β) such that the first row length of α′ is strictly bounded

(71) α′
1 < N ′

ρ − a.

First we note that the summands of the initial parabolic induction
satisfying this condition must survive in the alternating sum, since the
condition (71) guarantees that such an (α′, β′) cannot appear in the
parabolic induction of any of the other terms for i ≤ a, since the first
row is shorter than the first row of any top Young diagram in (70).

It remains to see that every other term in the alternating sum van-
ishes. First, for summands of the initial parabolic induction term
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i = 4 i = 3 i = 2

i = 1

Figure 1. These are the top row Young diagrams
corresponding to the symbols (69), in the case of

α = (1 ≤ 3 ≤ 4), N ′
ρ − a = 6. The boxes highlighted

gray show the skew semistandard tableau which, after
removal from each Young diagram recovers the original
α. At each i, just enough boxes are added to a row of
the (i+ 1)th Young diagram to not be obtainable from

the (i+ 2)th.

IndPk(
(
λ1<···<λa
µ1<···<µb

)
) which fail the condition (71) are cancelled in the

next term at i = a, since its corresponding top Young diagram

(αa ≤ · · · ≤ α2 ≤ N ′
ρ − a).

Similarly, we may proceed inductively to see that every pair of Young
diagrams appearing from the ith term of the alternating sum which
was not used to cancel the (i + 1)th term is cancelled at the (i− 1)th
term. This follows since, at each step i, the condition on a pair of
Young diagrams to have already appeared in the (i + 1)th term (and
therefore be cancelled in the previous step) is that the length of the
(a−i+2)th row does not exceed what can be attained from the previous
step without adding boxes directly above each other, i.e.

(72) α′
a−i+2 ≤ αa−i+1.

On the other hand, the condition on α′ to appear in the (i− 1)th term
is complementary

α′
a−i+2 ≥ αa−i+1 + 1,

since the condition is that the (a − i + 2)th row is at least as long as
the corresponding row of the top Young diagram in the (i− 1)th term,
so all the cases are covered.
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It remains therefore to check that every term from the final term
(corresponding to the lowest i) in the alternating sum cancels. Recall
that the sum (62) has final term at i = i0, which is the smallest. First,
suppose i0 > 1. Then by definition

(73) k(i0−1) = k −N ′
ρ + λi0−1 < 0,

and thus, when considering the final induction

Indk
(i0)

(

(
λ1 < · · · < λ̂i0 < · · · < λa

µ1 < · · · < µb

)
),

on the Young diagram level, every top Young diagram appearing satis-
fies the condition (72), since it we would need to add at least λi0−λi0−1

boxes, which is strictly more than k(i0) by (73). Therefore, all terms
are used up in the previous step, giving the claim. In the case when
i0 = 1, we again know that (72) must also follow, by the metastable
dimension condition, since the final number of boxes to be added is

k(1) = k −N ′
ρ + λ1 < λ1

(since k ≤ m and N ′
ρ > m because we assumed that V and (W,B) lie

in the symplectic stable or metastable range).
□

Example: We emphasize the point that this alternating sum, even
in extreme cases, need not by irreducible. The largest symbol (giv-
ing the unipotent irreducible representation of maximal dimension) for
SO2m+1(Fq) is (

0 < 1 < 2 < · · · < m

1 < 2 < · · · < m

)
,

which gives the Steinberg representation Stm, of dimension qm
2
. In this

case, its corresponding pair of Young diagrams consists of a column of
m boxes (corresponding to the top row) and the empty Young diagram
(corresponding to the bottom row In this case, the Pieri rule adding a
single box gives

IndP1(Stm) =

(
0 < 1 < 2 < · · · < m− 1 < m+ 1

1 < 2 < · · · < m

)
⊕

(
0 < 1 < 2 < · · · < m

1 < 2 < · · · < m− 1 < m+ 1

)
⊕ Stm+1
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Then, for example, the alternating sum of symbols A±
1 (Stm,m + 1)

with sign chosen to alter the top row outputs

IndP1(Stm)−
(
0 < 1 < 2 < · · · < m− 1 < m+ 1

1 < 2 < · · · < m

)
=

(
0 < 1 < 2 < · · · < m

1 < 2 < · · · < m− 1 < m+ 1

)
⊕ Stm+1

Appendix A

The purpose of this Appendix is to provide a dictionary between the
notation used in this paper, and the notation used by S.-Y. Pan in
[41, 42].

First note that Pan uses a modified description of the unipotent ir-
reducible representations of the symplectic and orthogonal groups. We
consider the classical description of unipotent irreducible representa-
tions of a connected group G, say SO2m+1(Fq), Sp2N(Fq), or SO

±
2m(Fq)

in terms of Lusztig symbols with unordered rows, so that

(74)

(
λ1 < · · · < λa
µ1 < · · · < µb

)
=

(
µ1 < · · · < µb
λ1 < · · · < λa

)
(requiring, in the case when G is of B- or C-type, simply that the
defect is odd). This is sufficient for our discussion of the irreducible
unipotent representations of symplectic groups and the odd orthogonal
groups (where the center splits off O2m+1(Fq) = Z/2×SO2m+1(Fq)). In
the case of D-type, the combinatorial data of symbols (74), requiring
defect to be 0 or 2 mod 4, correspond to the irreducible unipotent
representations of SO+

2m(Fq) and SO
−
2m(Fq).

However, performing an induction from SO±
2m(Fq) to O±

2m(Fq) (for
m > 0), the resulting unipotent representation of O±

2m(Fq) of twice

the dimension of
(
λ1<···<λa
µ1<···<µb

)
splits into two non-isomorphic equidimen-

sional pieces. In our notation, we identify these pieces by labelling
these unipotent irreducible O±

2m(Fq)-representations according to their
underlying symbol (74) and the data of a central sign ± indicating the
action of Z/2 = O±

2m(Fq)/SO
±
2m(Fq), determining the relevant piece of

the underlying symbol’s induction:

Ind
SO±

2m(Fq)

O±
2m(Fq)

(
λ1 < · · · < λa
µ1 < · · · < µb

)
= ρ1,(λ1<···<λa

µ1<···<µb
),(+1) ⊕ ρ1,(λ1<···<λa

µ1<···<µb
),(−1).
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On the other hand, Pan labels these two unipotent irreducibleO±
2m(Fq)-

representations by enforcing an ordering on the rows of a symbol (in
this paper, we distinguish this notation by using square brackets), so
that

Ind
SO±

2m(Fq)

O±
2m(Fq)

(
λ1 < · · · < λa
µ1 < · · · < µb

)
=

[
λ1 < · · · < λa
µ1 < · · · < µb

]
⊕
[
µ1 < · · · < µb
λ1 < · · · < λa

]
for non-isomorphic[

λ1 < · · · < λa
µ1 < · · · < µb

]
̸=

[
µ1 < · · · < µb
λ1 < · · · < λa

]
.

(We note Pan also changes the order of a symbol’s entries in his notation
in [41], writing each row in strictly descreasing order). Pan also imposes
an ordering on the symbols ccorresponding to the unipotent irreducible
representations of Sp2N(Fq) or SO2m+1(Fq), demanding then that[

λ1 < · · · < λa
µ1 < · · · < µb

]
has defect a− b exactly 1 mod 4 (so that there is exactly one ordered
symbol corresponding to an odd defect unordered symbol (74)).

Now, Pan describes in [42] the decomposition of the unipotent part
of

(75) ResSp(V )×O(W,B)(ω[V ⊗W ])

for even-dimensional W as a direct sum of tensor products ρ ⊗ π

for certain pairs of irreducible unipotent representations ρ ∈ Ŝp(V )

and π ∈ ̂O(W,B). Specfically, Pan describes that in the split case
O(W,B) = O+

2m(Fq), a tensor product of an ordered symbol of Sp(V )
with an ordered symbol of O(W,B)

(76)

[
λ1 < · · · < λa
µ1 < · · · < µb

]
⊗

[
λ′1 < · · · < λ′a′
µ′
1 < · · · < µ′

b′

]
is a summand of the unipotent part of (75) precisely when

• The Young diagram with row lengths

(λ′a′ − (a′ − 1), λa′−1 − (a′ − 2), . . . , λ′1)

can be obtained by adding a row (we discuss this notion in more
detail in Subsection 6.2) to the Young diagram with row lengths

(µb − (b− 1), µb−1 − (b− 2), . . . , µ1).



62 SOPHIE KRIZ

• The Young diagram with row lengths

(λa − (a− 1), λa−1 − (a− 2), . . . , λ1)

can be obtained by adding a row to the Young diagram with
row lengths

(µ′
b′ − (b′ − 1), µ′

b′−1 − (b′ − 2), . . . , µ′
1).

• The defects precisely satisfy a′ − b′ = −(a− b) + 1.

Similarly, Pan proves that in the non-split case O(W,B) = O−
2m(Fq),

a tensor product (76) of an ordered symbol of Sp(V ) with an ordered
symbol of O(W,B) is a summand of the unipotent part of (75) precisely
when

• The Young diagram with row lengths

(µ′
b′ − (b′ − 1), µb′−1 − (b′ − 2), . . . , µ′

1)

can be obtained by adding a row to the Young diagram with
row lengths

(λa − (a− 1), λa−1 − (a− 2), . . . , λ1).

• The Young diagram with row lengths

(µb − (b− 1), µb−1 − (b− 2), . . . , µ1)

can be obtained by adding a row to the Young diagram with
row lengths

(λ′a′ − (a′ − 1), λ′a′−1 − (a′ − 2), . . . , λ′1).

• The defects precisely satisfy a′ − b′ = −(a− b)− 1.

Therefore, Pan decomposes the unipotent part of the restriction of an
oscillator representation to Sp(V )×O(W,B), for even-dimensional W .
(Of course, in the case of odd-dimensional W , there is no unipotent
part of the restriction of ω[V ⊗W ].)

In [42], Pan approaches the question of which pairs ρ⊗π appear with
non-zero multiplicity in the restricted oscillator representation for gen-

eral irreducible representations ρ ∈ Ŝp(V ) and π ∈ ̂O(W,B) by claim-
ing a “commutation with the Lusztig correspondence.” In essence, this
means that a pair of irreducible representations appears with non-zero
multiplicity precisely when a pair of factors (corresponding to a certain
eigenvalue of the semisimple part of the Lusztig classification data) of
the unipotent part of their Lusztig classification data appears in the
unipotent part of the appropriate restricted oscillator representation.
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We now explain how our decomposition recovers Pan’s classification
of the occurring summands.

First, we note that our constructions of the pieces of the restricted
oscillator representation always only involve “altering” the Lusztig data
of an input representation associated to a certain specific eigenvalue of
the semisimple data (the eigenvalue 1 for even orthogonal groups and
the eigenvalue −1 for odd orthogonal groups). In particular, we can
see the effect of ”commuting with the Lusztig correspondence” in the
sense which Pan uses to pass from his decomposition of the unipotent
part of the restricted oscillator representation to information about the
irreducible pairs which could appear in the full representation. This re-
duces us to needing to see that the unipotent part of our decomposition
in each case matches the description of Pan’s unipotent summands.

We begin with considering (V, (W,B) in the symplectic stable or
metastable range. We use the eta correspondence and its extension
in this case. From the decomposition given in Theorem 3.5.1, we find
the unipotent part of the restriction of ω[V ⊗W ] to Sp(V )×O(W,B)
is the sum over k = 0, . . . , hB and over every unipotent irreducible
representation π of O(W [−k], B[−k]) of summands of the form

ηVW [−k],B[−k](π)⊗Ak(π,N
′
π).

Say the restriction of π to SO(W [−k], B[−k]) corresponds to the sym-
bol

(
α1<···<αa

β1<···<βb

)
(we use different notation for the entries here to avoid

confusion with Pan’s notation), so that N ′
π = N−m+ a+b

2
. Say ηVW,B(π)

is constructible. Then, depending on the central sign, ηVW,B(π) is the
unipotent irreducible representation of Sp(V ) corresponding to one of
the symbols

(77)

(
α1 < · · · < αa

β1 < · · · < βb < N ′
π

)
or

(
α1 < · · · < αa < N ′

π

β1 < · · · < βb

)
.

Now, for the orthogonal groups representation factor, the Harish-Chandra
induction of this symbol is a sum of symbols

(78)

(
α′
1 < · · · < α′

a′

β′
1 < · · · < β′

b′

)
such that the Young diagram with row lengths

(α′
a′ − (a′ − 1), α′

a′−1 − (a′ − 2), . . . , α′
1)

can be obtained by adding a row to the Young diagram with row lengths

(αa − (a− 1), αa−1 − (a− 2), . . . , α1),



64 SOPHIE KRIZ

and similarly, the Young diagram with row lengths

(β′
b′ − (b′ − 1), β′

b′−1 − (b′ − 2), . . . , β′
1)

can be obtained by adding a row to the Young diagram with row lengths

(79) (βb − (b− 1), βb−1 − (b− 2), . . . , β1),

according to the Pieri rule. The summands which contribute and sur-
vive in the alternating sum Ak(π,N

′
π) are these symbols (78) such that

β′
b′ − (b′ − 1) ≤ N ′

π − b or α′
a′ − (a′ − 1) ≤ N ′

π − a,

respectively (corresponding to (77)). To understand the relation with
Pan’s description, we can rephrase the conditions (79) as demanding
that the Young diagram

(N ′
π − a, αa − (a− 1), αa−1 − (a− 2), . . . , α1)

can be obtained by adding a row to (α′
a′−(a′−1), α′

a′−1−(a′−2), . . . , α′
1)

or, respectively, that the Young diagram

(N ′
π − b, βb − (b− 1), βb−1 − (b− 2), . . . , β1)

can be obtained by adding a row to (β′
b′−(b′−1), β′

b′−1−(b′−2), . . . , β′
1).

Let us now suppose we are specifically working in the split case, i.e.
SO(W,B) = SO+

2m(Fq), so that a − b is 2 mod 4. The summand we
have identified, in the ordered symbol notation, is[

β1 < · · · < βb < N ′
π

α1 < · · · < αa

]
⊗

[
α′
1 < · · · < α′

a′

β′
1 < · · · < β′

b′

]
or [

α1 < · · · < αa < N ′
π

β1 < · · · < βb

]
⊗
[
β′
1 < · · · < β′

b′

α′
1 < · · · < α′

a′

]
(with the above corresponding restrictions on α′

i and β
′
j), respectively.

We can therefore see that by re-labelling the top rows of the symbols
as λ and λ′ and the bottom rows as µ and µ′, we exactly recover
the conditions Pan described. The non-split case of O−

2m(Fq) proceeds
similarly.

Now let us consider (V, (W,B) in the orthogonal stable or metastable
range. We use the zeta correspondence and its extension in this case.
From the decomposition given in Theorem 3.5.2, we find the unipotent
part of the restriction of ω[V ⊗W ] to Sp(V )×O(W,B) is the sum over
k = 0, . . . , N and over every unipotent irreducible representation ρ of
Sp(V [−k]) of summands of the form

Ak(ρ,N
′
ρ)⊗ ζW,BV [−k](ρ).



65

Say ρ corresponds to a symbol
(
α1<···<αa

µ1<···<µb

)
, and switch rows so that a−b

is 1 mod 4. Then N ′
ρ = N −m + a+b−1

2
. Say ζW,BV (ρ) is constructible.

Then, in the split case O(W,B) = O+
2m(Fq), we get that the underlying

SO±
2m(Fq) symbol is (

α1 < · · · < αa < N ′
ρ

µ1 < · · · < µb

)
,

with determined central sign data. Recalling the above description of
the Pieri rule, the summands surviving in Ak(ρ,N

′
ρ) consist of symbols(α′

1<···<α′
a′

µ1<···<µ′
b′

)
such that the Young diagram with row lengths

(α′
a′ − (a′ − 1), α′

a′−1 − (a′ − 2), . . . , α′
1)

can be obtained from adding a row to (αa−(a−1), αa−1−(a−2), . . . , α1)
such that αa′ − (a′ − 1) ≤ N ′

ρ − a and such that the Young diagram
with row lengths

(β′
b′ − (b′ − 1), β′

b′−1 − (b′ − 2), . . . , β′
1)

can be obtained from adding a row to (βb−(b−1), βb−1−(b−2), . . . , β1).
Again, the condition on the top row is equivalent to requiring that the
Young diagram

(N ′
ρ − a, αa − (a− 1), αa−1 − (a− 2), . . . , α1)

can be obtained by adding a row to (α′
a′−(a′−1), α′

a′−1−(a′−2), . . . , α′
1).

In the ordered Lusztig symbol notation, these term we have identified
are of the form[

α′
1 < · · · < α′

a′

β′
1 < · · · < β′

b′

]
⊗
[

β1 < · · · < βb
α1 < · · · < αa < N ′

ρ

]
and we can see that by re-labelling the entries of the top row as λ
and λ′ and the bottom row as µ and µ′, our conditions for α′

i and β
′
j

are precisely those stated by Pan. The non-split case of O(W,B) =
O−

2m(Fq) proceeds similarly.
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