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Abstract. In this second paper of a series dedicated to type I
Howe duality for finite fields, we explicitly decompose the restric-
tion of an oscillator representation of a finite symplectic group to
the product of a symplectic and an orthogonal subgroup which are
each other’s centralizers in terms of G. Lusztig’s classification of
irreducible representations of finite groups of Lie type in the two
so-called stable ranges.

1. Introduction

This is the second paper of a series dedicated to type I Howe duality
for finite fields. We recall that over a finite field, the oscillator represen-
tation is a representation of a finite symplectic group, in which a type I
reductive dual pair consists of a symplectic and an orthogonal subgroup
which are each other’s centralizers. In [11], we constructed explicit cor-
respondences between the sets of representations on the symplectic and
orthogonal side in the two stable ranges. In this paper, we shall describe
these correspondences explicitly in terms of G. Lusztig’s classification
of representations of finite groups of Lie type (see, for example, [14]).

Consider an oscillator representation ω[V ⊗W ] of a symplecitc group
Sp(V ⊗ W ) restricted to such a reductive dual pair, consisting of a
symplectic group Sp(V ) and an orthogonal group O(W,B). In the
first part of this series [11], we proved the existence of a symplectic
and an orthogonal stable range, where the restriction of the oscillator
representation to the product Sp(V )×O(W,B) decomposes in terms of
(twisted) parabolic inductions and a system of injections with mutually
disjoint images

(1) ηVW,B : ̂O(W,B) ↪→ Ŝp(V )
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(where Ĝ denotes the set of isomorphism classes of irreducible complex
representations of a group G) for (Sp(V ), O(W,B)) a symplectic stable
reductive dual pair (where symplectic stability means that dim(W ) ≤
dim(V )/2), and

(2) ζW,BV : Ŝp(V ) ↪→ ̂O(W,B)

for (Sp(V ), O(W,B)) an orthogonal stable reductive dual pair (where
dim(V ) is less than or equal to the dimension of the maximal isotropic
subspace of W ). We omit subcripts from the notation of (1), (2) when
the source is already established.

The main result of [11] is

Theorem 1. Let V be a 2N-dimensional symplectic space and let W
be an n-dimensional space with symmetric bilinear form B. Write hW
for the maximal dimension of an isotropic subspace of W .

(1) If (Sp(V ), O(W,B)) is a reductive dual pair in Sp(V ⊗W ) in the
symplectic stable range, then for a system of mutually disjoint
injections ηVW,B as in (1), the restriction of ω[V ⊗W ] to Sp(V )×
O(W,B) decomposes as

(3)

hW⊕
k=0

⊕
ρ∈ ̂O(W [−k],B[−k])

ηV (ρ)⊗ IndP
B
k (ρ⊗ ϵ(det))

where IndP
B
k denotes parabolic induction from the maximal par-

abolic PB
k in O(W,B) whose Levi factor is O(W [−k], B[−k])×

GLk(Fq), which we consider ρ ⊗ ϵ(det) a representation of by
considering ϵ(det) as a representation of GLk(Fq).

(2) If (Sp(V ), O(W,B)) is a reductive dual pair in Sp(V ⊗W ) in the
orthogonal stable range, then for a system of mutually disjoint
injections ζW,BV as in (2), the restriction of ω[V ⊗W ] to Sp(V )×
O(W,B) decomposes as

(4)

hW⊕
k=0

⊕
ρ∈ ̂Sp(V [−k])

IndP
V
k (ρ⊗ ϵ(det))⊗ ζW,B(ρ)

where IndP
V
k denotes parabolic induction from the maximal par-

abolic P V
k in Sp(V ) with Levi factor Sp(V [−k]) × GLk(Fq),

which we consider ρ ⊗ ϵ(det) a representation of by consider-
ing ϵ(det) as a representation of GLk(Fq).
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Now to state the main result of this paper, we must briefly recall
Lusztig’s classification of irreducible representations of finite groups of
Lie type G. Most generally, we consider the data of

• The conjugacy class of a semisimple element s in the dual group
GD.

• A unipotent representation u of the dual (ZGD(s))D of the cen-
tralizer of s in GD.

We associate to the data [(s), u] a representation of G we denote by
ρ(s),u of dimension equal to the dimension of u multiplied by the prime
to q part of the quotient order |GD/ZGD(s)|. Intuitively, ρ(s),u can be
thought of as a “faked parabolic induction” of u, with the realization
that over a finite field, there are many cases of s (specifically, when it
only can live in a torus with a non-split factor SO+

2 ) where there is no
actual maximal parabolic with Levi factor ZGD(s). However, ρ(s),u will
sit in the the induction from the torus character corresponding to s to
G.

In all cases of G, for every irreducible representation ρ ∈ Ĝ, there
exists a unique choice of data [(s), u] as described above, such that
ρ ⊆ ρ(s),u. On the one hand, if G has a connected center, for example,
in the case of the odd special orthogonal groups G = SO2m+1(Fq),
the representations ρ(s),u are irreducible, and therefore they precisely
describe irreducible representations of G. In this case, we call the data
[(s), u] the Lusztig classification data corresponding to an irreducible
representation ρ = ρ(s),u.
On the other hand, if G has a disconnected center, ρ(s),u may split

further. For example, in the case of symplectic groups G = Sp2N(Fq)
which have center Z/2, a representation ρ(s),u splits if and only if s
has −1 eigenvalues. If s has −1 eigenvalues, then ρ(s),u splits into two
irreducible non-isomorphic pieces

ρ(s),u = ρ(s),u,+1 ⊕ ρ(s),u,−1,

both of dimension equal to exactly half of the dimension of ρ(s),u. In this
case, we call the data [(s), u,±1] the Lusztig classification data corre-
sponding to an irreducible representation ρ = ρ(s),u,±1 and call the sign
±1 its central sign. If s has no −1 eigenvalues, then as before, we call
[(s), u] the Lusztig classification data corresponding to the irreducible
representation ρ = ρ(s),u. A similar but slightly more complicated effect
occurs for even orthogonal groups G = O±

2m(Fq), with ρ(s),u consisting
of one, two, or four distinct irreducible summands, depending on the
eigenvalues of s. This effect can also be interpreted according to certain
“sign data”, and we use similar terminology, calling the collection of
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data of (s), u and this extra sign data (when needed) the Lusztig clas-
sification data associated to an irreducible representation. We discuss
this in Section 2.

Using this description, we describe injections

ϕVW,B : ̂O(W,B) ↪→ Ŝp(V )

ψW,BV : Ŝp(V ) ↪→ ̂O(W,B)

roughly defined by altering the semisimple part of the input representa-
tion’s Lusztig classification data by adding −1 eigenvalues if W is odd
dimensional and adding 1 eigenvalues if W is even dimensional, and
by changing the unipotent part by adding a coordinate to the symbol
of the factor of u corresponding to the altered eigenvalues to achieve
the needed new rank and defect (the choice of how to add eigenvalues
and where to, if there is one, is determined by the central action of
the input irreducible representation). This construction is described in
more detail in Section 3 below.

Theorem 2. Assume the notation of Theorem 1.

(1) Suppose we have a reductive dual pair (Sp(V ), O(W,B)) in Sp(V⊗
W ) in the symplectic stable range. Then

ηVW,B = ϕVW,B.

(2) Suppose we have a reductive dual pair (Sp(V ), O(W,B)) in Sp(V⊗
W ) in the orthogonal stable range.Then

ζW,BV = ψW,BV .

Remark: In the case of symplectic or orthogonal stable (V, (W,B)),
the decomposition we have now computed can be used to recover S.-Y.
Pan’s results [15, 16] classifying the pairs of irreducible representations
of symplectic and orthogonal groups whose tensor product appears
with non-zero multiplicity in the restricted oscillator representation
ResSp(V )×O(W,B)(ω[V ⊗W ]). We will in fact be explicitly calculating in
our proof of Theorem 2 that each of Pan’s predicted pairs appears with
multiplicity exactly one, and the resulting dimension sum adds up to
qdim(V )·dim(W )/2 = dim(ω[V ⊗W ]).

In comparison with Pan’s description of the appearing pairs of irre-
ducible representations, our organization of the summands in terms of
systems of one-to-one functions between sets of irreducible represen-
tations of symplectic and orthogonal groups fulfills the program of a
finite field Howe duality (as originally proposed by Howe in [7, 9, 5, 6]).
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We shall explicitly compare our decomposition with Pan’s result in the
upcoming paper [12], where we treat the restricted oscillator represen-
tation’s decomposition for general (V, (W,B)).

The main tool used to prove Theorems 2 is actually dimension. We
state here a key result, which, combined with some combinatorics, will
prove that the dimensions of the Sp(V )-representations ηVW,B(ρ) and

ϕVW,B(ρ) (resp. the O(W,B)-representations ζW,BV (ρ) and ψW,BV (ρ)) al-

ways match for ρ ∈ ̂O(W,B) (resp. ρ ∈ Ŝp(V )) for N >> n (resp.
n >> N). We can derive then that they must always match, since for
a fixed ρ, the dimensions of ηVW,B(ρ) and ϕVW,B(ρ) both form polyno-

mials of qN (resp. the dimensions of ζW,BV (ρ) and ψW,BV (ρ) both form
polynomials of qn). Since the semisimple part and the sign data of

ηVW,B(ρ) or ζ
W,B
V (ρ) are already determined by considering the restric-

tion of the oscillator representation to the general linear group, this
suffices to prove the representations themselves match.

We define, for ρ an irreducible representation of Sp2N(Fq), its N-rank
to be

rkN(ρ) = ⌈degq(dim(ρ))

N
⌉.

Similarly, for ρ an irreducible representation ofO(W,B) with dim(W ) =
n, define its n-rank to be

rkn(ρ) = ⌈degq(dim(ρ))

n
⌉.

Proposition 3. Assume the notation of Theorem 1.

(1) Consider N >> n. Then the disjoint union of the images of
the eta correspondences

ηVW,B : ̂O(W,B) ↪→ Ŝp(V )

for the symplectic space V of dimension 2N and the two choices
of orthogonal space (W,B) of dimension n is precisely the set
of irreducible representations of Sp(V ) of N-rank n.

(2) Consider n >> N . Then the disjoint union of the images of
the zeta correspondences

ζVW,B : ̂O(W,B) ↪→ Ŝp(V )

for the symplectic space V of dimension 2N and the two choices
of orthogonal space (W,B) of dimension n is precisely the set
of irreducible representations of Sp(V ) of N-rank n.
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The present paper is organized as follows: In Section 2, we describe
Lusztig’s classification of irreducible representations. In Section 3, we
describe our proposed constructions of the eta and zeta correspon-
dences in more detail. In Section 4, we prove combinatorial identities
proving our claimed constructions can be plugged into the decomposi-
tions in Theorem 1 and add up to the correct dimension. In Section
5, we use an inductive argument to prove Proposition 3 and conclude
Theorem 2. In Section 6, we write down the zeta correspondence in
the example where dim(V ) = 2.

Acknowledgement: The author is thankful to the GAP package
CHEVIE which was used to verify the results of this paper in cases
of small rank.

2. Lusztig’s Classification of Irreducible Representations

The purpose of this section is to give more details about Lusztig’s
classification of irreducible representations in the case of the symplectic
and orthogonal groups.

As we described brieflly in the introduction, for a finite group of Lie
type G, its irreducible representations are classified by certain data we
refer to as G-Lusztig classification data, consisting of

• (the “semisimple part”): a conjugacy class (s) of a semisimple
element s of the dual group GD

• (the “unipotent part”): a unipotent representation u of the dual
of s’s centralizer ZGD(s).

• (possible “sign data”): sign choices describing which piece we
take of the representation obtained from (s) and u, if it splits.

More specifically, for every choice of semisimple and unipotent parts
(s) and u, there is an associated G-representation we denote by ρ(s),u.
Its dimension is

(5) dim(ρ(s),u) =
|G|q′

|Zs(GD)|q′
dim(u),

where |?|q′ denotes the prime to q part of the group order (recalling
that the a group and its dual have the same order). From the point
of view of dimension, the representation ρ(s),u can be thought of as a
“faked parabolic induction” of the unipotent representation u where the
centralizer of s plays the role of the Levi factor (this does not literally
make sense, since there may not be such a parabolic subgroup of G over
a finite field). Every irreducible representation is a summand of ρ(s),u
for some choice of (s) and u. On the one hand, if G has a connected
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center e.g., in the case of odd special orthogonal groups, these ρ(s),u are
all irreducible and therefore, the G-Lusztig classification data consists
only of a semisimple and unipotent part. On the other hand, if Z(G) is
not connected e.g., for symplectic groups, there are choices of (s) and
u for which ρ(s),u splits further. In these cases, we also need to specify
the action of Z(G) on an irreducible representation, to describe which
piece of ρ(s),u we are referring to. This is the role of the central sign
data in the Lusztig classification data, and denoting it by α, we write

(6) ρ(s),u,α

for the corresponding irreducible G-representation. Similarly, we write

[(s), u, α]

for the G-Lusztig classification data corresponding to (6). In the case
of even orthogonal groups, α actually consists of two signs rather than
a single central sign corresponding to the Z/2 center, which we discuss
in Subsection 2.3 below. The purpose of this section is to give more
detail about each part of the Lusztig classification data in each case of
G we consider in this paper.

In Subsection 2.1, we discuss the maximal tori in symplectic and
orthogonal groups and the form of the semisimple elements, up to con-
jugation. In Subsection 2.2, we discuss the irreducible representations
of O2m+1(Fq). In Subsection 2.3, we discuss the irreducible representa-
tions of O±

2m(Fq). In Subsection 2.4, we discuss the irreducible repre-
sentations of Sp2N(Fq).

2.1. Tori and the case of rank 1. In this subsection, let us first
take G to be a finite group of Lie type of rank r of the form Sp2r(Fq),
SO2r+1(Fq), or SO±

2r(Fq). The maximal tori in G are all conjugate to
a product of SO±

2 (Fqn) factors

(7) SO±
2 (Fqn1 )× · · · × SO±

2 (Fqnk )

of maximal rank, so that

r = n1 + · · ·+ nk,

and where, in the case of G an even special orthogonal group SO±
2r(Fq),

the sign in the superscript is equal to the product of the signs appearing
in (7). Recall that

(8) SO+
2 (Fq) = {

(
x 0
0 x−1

)
| x ∈ F×

q } ∼= µq−1
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(9) SO−
2 (Fq) = {

(
y z
εz y

)
| y, z ∈ Fq y2 − αz2 = 1} ∼= µq+1,

where in (9), ε ∈ Fq is an element which is not a square, and the
isomorphism follows by considering Fq2 = Fq[ε], whose norm 1 elements
are isomorphic to µq+1. (In other words, the conjugacy class of a torus
element can be identified by its eigenvalues, which lie if µq−1 as F×

q , or

µq+1 as the norm 1 elements of F×
q2 = (Fq[ε])×.)

We note that in the case of G an odd special orthogonal group
SO2r+1(Fq), to embed a torus of the form (7) into G, we need to insert
a “forced” diagonal entry 1. The placement of this entry is according to
whether the product (7) is a subgroup of SO+

2r(Fq) or SO−
2r(Fq). For 2r

by 2r matrices which can be considered in groups (7) for more than one
choice of signs (meaning some factors are equal to the identity matrix
I or −I), then we must consider whether these two choices of where
to insert the final “forced” diagonal entry 1 give different conjugacy
classes, or not. They give different conjugacy classes if and only if the
2r by 2r element of (7) has any −1 eigenvalues. (If there are −1 eigen-
values, the resulting two choices of elements have different centralizers
and cannot be conjugate, while if there are no −1 eigenvalues, then the
two choices are not distinguishable.)

A semisimple element of G is then an element of a subgroup conju-
gate to (7), and we may therefore consider it as a product of blocks

s ∼ A1 ⊕ · · · ⊕ At,

for Ai ∈ SO±
2 (Fqni ) (considered as 2ni by 2ni square matrices). Let

us always minimize the field extensions Fqni needed to contain the
eigenvalues of s e.g., we consider the identity matrix as an element
of (SO±

2 (Fq))r, rather than an element of SO±
2 (Fqr). Then the set of

eigenvalues of each Ai consists of distinct powers λi, . . . , λ
ni
i and their

inverses λ−1
i , . . . , λ−ni

i , for some λi ∈ Fni
q . In general, the conjugacy

class of s is classified by the orbit of the multiset of its eigenvalues
consisting of these elements λi, . . . , λ

ni
i for each i, under the action of

the Weyl group of G.

Definition 4. In a symplectic group or an even (special) orthogonal
group, we say a semisimple element s is in a generic conjugacy class if
none of its eigenvalues are ±1. Otherwise, say s’s conjugacy class is
singular of type (p, ℓ) where 1 is an eigenvalue of multiplicity 2p and
−1 is an eigenvalue of multiplicity 2ℓ in s.



9

Similarly, we say a semisimple element s of an odd special orthogonal
group is a generic conjugacy class if none of its eigenvalues are −1 and
exactly one of its eigenvalues is 1. Otherwise, say s’s conjugacy class
is singular of type (p, ℓ) where 1 is an eigenvalue of multiplicity 2p+1
and −1 is an eigenvalue of multiplicity 2ℓ in s.

Let us now discuss an example of rank 1. Considering SO+
2 (Fq) =

µq−1 (resp. SO−
2 (Fq) = µq+1) as a torus of Sp2(Fq) = SL2(Fq) or

SO3(Fq), for a ∈ µq−1 ∖ {±1} (resp. µq+1 ∖ {±1}), the semisimple ele-
ment associated to a is conjugate to the semisimple element associated
to a−1 by the action of the Weyl group. For example, in SO3(Fq), an
torus element, say x ∈ µq−1

∼= SO+
2 (Fq) is represented by the matrixx 0 0

0 x−1 0
0 0 1

 ,

and we have 0 1 0
−1 0 0
0 0 1

 ·

x 0 0
0 x−1 0
0 0 1

 ·

0 −1 0
1 0 0
0 0 1

 =

x−1 0 0
0 x 0
0 0 1

 .

(Similarly for elements of µq+1
∼= SO−

2 (Fq), and in SL2(Fq)). Therefore,
in conjugacy classes of generic semisimple elements in symplectic or
special orthogonal groups, its conjugacy class only depends on the sets
of eigenvalues {x, x−1} in each SO±

2 (Fq) block.
We consider the cases when s has ±1 eigenvalues separately, since

they behave differently when taking the centralizer. To give an example
of this, again consider SO3(Fq), written as the special orthogonal group
on F3

q with respect to a form1 0 0
0 −1 0
0 0 α


In this case, s can be singular of type (1, 0) or (0, 1). The only singular
conjugacy class of type (1, 0) is the conjugacy class of the identity
matrix. However, in SO3(Fq), there are two singular conjugacy classes
of type (0, 1): the conjugacy classes of

σ+
1 :=

−1 0 0
0 −1 0
0 0 1

 , σ−
1 :=

−1 0 0
0 1 0
0 0 −1

 ,
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which have centralizers SO+
2 (Fq), SO−

2 (Fq) in SO3(Fq), respectively
(since here the centralizer is the special orthogonal group on the two
coordinates corresponding to the two −1 entries in σ±

1 ). Note that in
SL2(Fq), this effect does not occur, and conjugacy classes of semisimple
elements are in fact in all cases determined.

Definition 5. More generally, for any symmetric bilinear form B on
F3
q, there is a choice of a pair of basis coordinates such that restrict-

ing to them gives a split (resp. non-split) symmetric bilinear form on
F2
q. Placing −1’s on the diagonal in entries corresponding to these two

coordinates gives σ+
1 (resp. σ−

1 ) in general. This ensures that their
centralizers are

ZSO(F3
q ,B)(σ

±
1 ) = SO±

2 (Fq).

2.2. The representation theory of the odd orthogonal groups.
In this subsection, we describe the irreducible representations of the
odd orthogonal groups O2m+1(Fq). First, we can split the center off

O2m+1(Fq) = Z/2× SO2m+1(Fq),

and therefore each irreducible representation can be considered as the
tensor product of a sign with its irreducible restriction to the special
orthogonal group SO2m+1(Fq). Now since SO2m+1(Fq) has no center,
the irreducible representations are precisely the representations ρ(s),u,
corresponding to choices of SO2m+1(Fq)-Lusztig classification data con-
sisting of a conjugacy class (s) of a semisimple element

s ∈ Sp2m(Fq) = (SO2m+1(Fq))D,

(recall that the symplectic groups and odd special orthogonal groups
are dual) and u an irreducible unipotent representation of the dual of
the centralizer of s in Sp2m(Fq).

To consider (s), we apply the discussion of the previous subsection
(putting r = m). We may consider s to be an element of the form

(10) s = A1 ⊕ A2 ⊕ · · · ⊕ Ak

in a torus of the form (7), where each Ai is a 2ni by 2ni matrix in one
of the special orthogonal groups SO±

2 (Fqni ) with eigenvalues

(11) {λji | j ∈ {−1,−2, . . . ,−ni} ∪ {1, 2, . . . ni}}

for λi ∈ Fqni (and not contained in a smaller field extension of Fq).
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Fix such an (s), and write the semisimple element as in (10). We
next need to describe its centralizer in Sp2m(Fq). Consider the data
(11) at each i = 1, . . . , k, which may repeat. We need to count the mul-
tiplicities of each distinct choice. Suppose there are r different choices
of (11) in s corresponding to blocks A which can only be considered in
the split groups SO+

2 (so that the eigenvalues in (11) for these blocks
do not contain ±1). Say they appear with multiplicities j1, . . . , jr each,
and relabel their corresponding field extension powers as n′

1, . . . , n
′
r so

that each of these choices of (11) appearing with multiplicity ji (for
i = 1, . . . , r) describe the eigenvalues of a block in

(12) SO+
2 (Fqn′

i
).

Similarly, suppose there are t distinct choices of eigenvalue sets (11)
appearing in s which are only in not split group SO−

2 , say they appear
with multiplicities k1, . . . , kt, and relabel their corresponding powers of
the needed field extensions as n′′

1, . . . , n
′′
t , so that they correspond to

blocks in

(13) SO−
2 (Fqn′′

i
),

for i = 1, . . . , t. (The sign of the SO2 in (12), (13) determines whether
the centralizer is U− or U+ = GL.)

The remaining blocks A have eigenvalues either 1 or −1. Say that
there are ℓ blocks with eigenvalue −1 (so −1 is an eigenvalue of total
multipliciy 2ℓ) and p blocks with eigenvalue 1 (so 1 is an eigenvalue of
total multipliciy 2p), and therefore

m =
r∑
i=1

ji · n′
i +

t∑
i=1

ki · n′′
i + ℓ+ p.

Then the centralizer of s in Sp2m(Fq) is

(14)
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× Sp2ℓ(Fq)× Sp2p(Fq)

(We use the notation that U+
j (Fq) = GLj(Fq).)

Choose a conjugacy class of a semisimple element s in Sp2m(Fq) with
centralizer (14). The remaining data in the Lusztig classification data
is a unipotent representation u of the dual of (14), which is

r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO2ℓ+1(Fq)× SO2p+1(Fq).
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This consists of a tensor product of unipotent representations of each
factor of (14)

(15)
r⊗
i=1

uU+
ji

⊗
t⊗
i=1

uU−
ki

⊗ u−1
SO2ℓ+1

⊗ u+1
SO2p+1

,

where as the notation suggests, uU+
ji

and uU−
ki

are unipotent represen-

tations of the A-type factors U+
ji
(F

qn
′
i
) and U−

ki
(F

qn
′′
i
) respectively, and

u−1
SO2ℓ+1

and u+1
SO2p+1

are unipotent representations of SO2ℓ+1(Fq) and

Sp2p+1(Fq) (the superscript with the sign for the C-type factors indi-
cates the sign of the eigenvalue ±1 of the blocks in s which the factor
corresponds to).

The irreducible SO2m+1(Fq) representation ρ(s),u corresponding to
(s) and a choice of unipotent representation u as in (15) has dimension
equal to the dimension of u multiplied by the prime to q part of the
quotient of orders
(16)

|SO2m+1(Fq)|q′
|
∏r

i=1 U
+
ji
(F

qn
′
i
)×

∏t
i=1 U

−
ki
(F

qn
′′
i
)× SO2ℓ+1(Fq)× SO2p+1(Fq)|q′

.

The unipotent representations can be further described using the
theory of symbols. We do not discuss the case of the unipotent rep-
resentations of a finite group of lie type A or 2A here. For now, we
consider the symbols of type C (which recall are the same as the sym-
bols of type B, since the theory only depends on the Weyl group) of
rank r.

Definition 6. Symbols of rank r of type C or B consist of equivalence
classes of two rows of strictly increasing sequences

(17)

(
λ1 < λ2 < · · · < λa
µ1 < µ2 < · · · < µb

)
under switching rows, for λi, µi ∈ N0 non-negative integers such that
(λ1, µ1) ̸= (0, 0) and

a∑
i=1

λi +
b∑
i=1

µi = r +
(a+ b− 1)2

4
,

with odd defect, meaning that a− b is odd.
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The dimension of the unipotent representation of SO2ℓ+1(Fq) corre-
sponding to the symbol (17) is the factor

(18)

∏
1≤i<j≤a

(qλj − qλi) ·
∏

1≤i<j≤b

(qµj − qµi) ·
∏

1 ≤ i ≤ a

1 ≤ j ≤ b

(qλi + qµj)

a∏
i=1

λi∏
j=1

(q2j − 1) ·
b∏
i=1

µi∏
j=1

(q2j − 1) · qc[a,b]

multiplied by
|SO2ℓ+1(Fq)|q′
2(a+b−1)/2

,

where, for the final power of q in the denominator of (18), we write

c[a, b] =

⌊(a+b)/2⌋∑
i=1

(
a+ b− 2i

2

)
(We separate the dimension formula into these two factors, since the
term (18) will also occur in the symbols of type D.)

2.3. The representation theory of the even orthogonal groups.
Now consider the special orthogonal group on a 2m-dimensional Fq-
vector space W with respect to a symmetric bilinear form B. Write

O(W,B) = Oα
2m(Fq),

with sign α = + if B is totally split (i.e. there is an m-dimensional
isotropic subspace of W ), and with sign α = − otherwise. We call
this sign α the total sign of the symmetric bilinear form B. The even
groups of D- and 2D-type are self-dual. Though we need to be more
careful about the role of the center, we still compare with the special
orthogonal case (both for easier comparison with the odd case and
because the semisimple and unipotent parts of Lusztig classification
data are easier to discuss there).

To classify an irreducible representation ρ ∈ Ôα
2m(Fq), we look at the

of the pair of semisimple and unipotent parts (s) and u of SOα
2m(Fq)-

Lusztig data such that ρ is a summand of the corresponding SOα
2m(Fq)-

representation’s induction to Oα
2m(Fq)

(19) ρ ⊆ Ind
SOα

2m(Fq)

Oα
2m(Fq)

(ρ(s),u).

The induction on the right hand side of (19) decomposes into 1, 2, or 4
irreducible representations precisely according to the central action of
SOα

2m(Fq) and Oα
2m(Fq)/SOα

2m = Z/2. Therefore the Oα
2m(Fq)-Lusztig
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classification data can be thought of as to consist of semisimple part
the conjugacy class of s as an element of Oα

2m(Fq), unipotent part u,
and this central sign data. (Note that the unipotent representations
of a group are the same after removing the center, and for simplicity
to compare with the odd case, we may consider unipotent parts of
Lusztig classification data as irreducible unipotent representations of
SOα

2m(Fq).)

Therefore, we begin by describing the special orthogonal group’s
Lusztig classification data. First, as discussed in Subsection 2.1, the
maximal tori in SO(W,B) = SOα

2m(Fq) are, again, all isomorphic to
(7) such that the product of the signs appearing in (7) is equal to the
total sign α of B. The semisimple elements in Oα

2m(Fq) are again then
all conjugate to elements of the form

s = A1 ⊕ · · · ⊕ Ak

where each Ai is a 2ni× 2ni matrix determined by its eigenvalues (11)
(and −1 to the power of the number of Ai ∈ SO−

2 (Fq) is equal to the
total sign of B).

To determine the centralizer ZSO±
2m(Fq)

(s), suppose that there are

j1, . . . , jr of the A blocks with distinct sets of eigenvalues (11) with
corresponding powers of q equal to n′

1, . . . , n
′
r corresponding to fac-

tors of SO+
2 (Fqn′

i
), and there are k1, . . . , kt blocks with distinct sets

of eigenvalues (11) with corresponding powers of q equal to n′′
1, . . . , n

′′
t

corresponding to factors of SO−
2 (Fqn′′

i
). The remaininng blocks A have

eigenvalues either 1 or −1. Again, say that there are ℓ blocks with
eigenvalue −1 and p blocks with eigenvalue 1. (Note that the final
multiplicities of the centralizers in the even special orthogonal groups
are twice the corresponding multiplicities of the centralizers in the odd
special orthogonal groups, since the Weyl group is half the size.) For
such a semisimple element s in SO±

2m(Fq), its centralizer is then

(20)
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO±

2ℓ(Fq)× SO±
2p(Fq)

(where, again, the total product of signs appearing in (20) is the total
sign of B).

Fix such a semisimple part (s) whose centralizer in SOα
2m(Fq) is

(20). In this case, all the factors of (20) are self-dual, so the unipotent
part of the SOα

2m(Fq)-Lusztig classification data consists of a unipotent
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representation u of (20), which can be written as a tensor product

(21)
r⊗
i=1

uU+
ji

⊗
t⊗
i=1

uU−
ki

⊗ u−1

SO±
2ℓ

⊗ u+1

SO±
2p

,

with the same notational convention as in the case of the odd special
orthogonal groups.

Again, the SO±
2m(Fq)-representation ρ(s),u corresponding to (s) and

a choice of unipotent representation u of (20) has dimension equal to
the dimension of u multiplied by the prime to q part of the quotient of
orders |SOα

2m(Fq)|q′/|ZSOα
2m(Fq)(s)|q′ which is

(22)

|SOα
2m(Fq)|q′/|ZSOα

2m(Fq)(s)|q′ =
|SO±

2m(Fq)|q′
|
∏r

i=1 U
+
ji
(F

qn
′
i
)×

∏t
i=1 U

−
ki
(F

qn
′′
i
)× SO±

2ℓ(Fq)× SO±
2p(Fq)|q′ .

The unipotent representations u−1

SO±
2ℓ

, u+1

SO±
2ℓ

correspond to the symbols

of type D or 2D of ranks ℓ and p.

Definition 7. A symbol of type D and rank r (e.g. corresponding to an
irreducible unipotent representation of SO+

2r(Fq)) is two rows of strictly
increasing sequences (17) (where again, switching rows is counted as
giving the same symbol), with λi, µi ∈ N0 non-negative integers, such
that

(23)
a∑
i=1

λi +
b∑
i=1

µi = r +
(a+ b)(a+ b− 2)

4

and of defect divisible by 4, i.e. a− b is 0 mod 4. Similarly, a symbol
of type 2D and rank r (e.g. corresponding to an irreducible unipotent
representation of SO−

2r(Fq)) is two rows of strictly increasing sequences
(17), with λi, µi ∈ N0 non-negative integers, such that (23) holds, and
it has defect equal to 2 mod 4, i.e. a− b is 2 mod 4.

The dimension of the unipotent represent associated to a symbol(
λ1<···<λa
µ1<···<µb

)
of typeD of 2D and rank p is again the factor (18), multiplied

by

(24)
|SO±

2p(Fq)|q′
2(a+b−2)/2

(in the case of SO+
2p(Fq), if the two rows of the symbol are exactly

the same, it is called degenerate, and splits into two additional equi-
dimensional non-isomorphic halves).
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This describes the semisimple and unipotent parts of SOα
2m(Fq)-

Lusztig classification data. As we previously discussed, the induction
of the SOα

2m(Fq) representation ρ(s),u corresponding to (s) ∈ SOα
2m(Fq)

and u to Oα
2m(Fq) is the Oα

2m(Fq)-representation (also, by weakness of
notation, denoted by ρ(s),u) corresponding to the conjugacy class of s as
an element of Oα

2m(Fq) and u. Therefore, it remains to discuss the “cen-
tral” sign data (note that here, the word central may be slightly deciev-
ing since we potentially have two degrees of freedom: describing the ac-
tion of the center Z/2 = Z(Oα

2m(Fq)) = Z(SOα
2m(Fq)) and another sign

describing the action of the determinant Z/2 = Oα
2m(Fq)/SOα

2m(Fq)).

In practice, it turns out that ρ(s),u splits in half once for if s has 1
eigenvalues, and once for if s has −1 eigenvalues (menaing that if s has
both 1 and −1 eigenvalues, there are a total of four irreducible pieces).
To describe an Oα

2m(Fq)-irreducible representation, the sign data con-
sists of an (independently chosen) sign ±1-action if s has 1 eigenvalues
and a sign ±1 if s has −1 eigenvalues. We write the corresponding
piece of ρ(s),u as

ρ(s),u,(±1,±1),

listing the sign from 1 eigenvalues first, the −1 eigenvalues second, and
removing either when s has no such eigenvalues.

2.4. The representation theory of the symplectic group. Fi-
nally, in this subsection, we consider the irreducible representations of
Sp2N(Fq). Its dual is SO2N+1(Fq). Without loss of generality, con-
sider SO2N+1(Fq) as the special orthogonal group associated to F2N+1

q

with symmetric bilinear form defined by the 2N + 1 by 2N + 1 matrix
described by

(25)
⊕
N

(
1 0
0 −1

)
⊕ (α)

considering α ∈ F×
q ∖ (F×

q )
2 as a 1 by 1 matrix. Again, consider a

conjugacy class of a semisimple element (s) of SO2N+1(Fq). Again, as
discussed in

(26) A1 ⊕ · · · ⊕ Ak

where each Ai is a 2 by 2 matrix in SO±
2 (Fqni ), and 1 is considered as

a 1 by 1 matrix, with an additional 1 diagonal entry (to make 2N + 1
by 2N +1 matrix) either at the very end (if the product of signs of the
SO±

2 (Fqni ) is +), or in the second to last entry (if the product of signs
is −).
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First suppose s has no −1 eigenvalues, in which case there is no
ambiguity of where the forced 1 diagonal entry is added to (26). In
this case, again, say that there are j1, . . . , jr blocks A with eigenvalues
(11) with corresponding powers of q relabelled as n′

1, . . . , n
′
r, and there

are k1, . . . , kt blocks A with eigenvalues (11) with corresponding powers
of q relabelled as n′′

1, . . . , n
′′
t . The remaining eigenvalues are all 1. Let

us write

p = N − (
r∑
i=1

ji +
t∑
i=1

ki).

Therefore, the centralizer of s in SO2N+1(Fq) is isomorphic to

(27)
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO2p+1(Fq).

Now suppose that s does have eigenvalues −1. Without loss of gen-
erality, then, they are on the diagonal. There must be even number,
say 2ℓ. Restricting the form (25) to the coordinates where s has −1’s
on the diagonal, gives 2ℓ by 2ℓ matrix defining a symmetric bilinear
form on F2ℓ

q . Say s is of type +1 if this form is completely split (i.e. the
maximal dimension of an isotropic subspace is ℓ) and say s is of type
−1 otherwise (when the maximal dimension of an isotropic subspace
is ℓ− 1). Projecting away from these coordinates reduces to the above
case with N replaced by N − ℓ. Let use the same notation for j1, . . . jr
and k1, . . . , kt for the multiplicities of blocks with eigenvalues in (11)
not equal to ±1 and (such that that

N =
r∑
i=1

n′
i · ji +

t∑
i=1

n′′
i · ki + ℓ+ p).

Then the centralizer of a semisimple element s of type ±1 is

(28)
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO±

2ℓ(Fq)× SO2p+1(Fq).

(Let us count (27) as the case of (28) with ℓ = 0.)

Fixing a conjugacy class of a semisimple element s in SO2N+1(Fq)
with centralizer (28), as above, the remaining data in the Jordan de-
composition is a unipotent irreducible representation u of the dual to
(28), which is

r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO±

2ℓ(Fq)× Sp2p(Fq).
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Again, u consists of a tensor product

(29)
r⊗
i=1

uU+
ji

⊗
t⊗
i=1

uU−
ki

⊗ uSO±
2ℓ
⊗ uSp2p

where uU+
ji

, uU−
ki

, uSO±
2ℓ
, and uSp2p are unipotent representations of

U+
ji
(F

qn
′
i
), U−

ki
(F

qn
′′
i
), SO±

2ℓ(Fq), and Sp2p(Fq).

Since Sp2N(Fq) has a disconnected center Z/2, some of the repre-
sentations ρ(s),u specified by a conjugacy class of a semisimple element
(s) and a unipotent representation has dimension equal to half of the
dimension of u multiplied by the prime to q part of the quotient of
orders

(30)
|Sp2N(Fq)|q′

|
∏r

i=1 U
+
ji
(F

qn
′
i
)×

∏t
i=1 U

−
ki
(F

qn
′′
i
)× SO±

2ℓ(Fq)× Sp2p(Fq)|q′
.

This halving occurs if and only if s has −1 as an eigenvalue, in which
case we choose a central sign (±1) to indicate which half we are want in
the Lusztig classification data, according to the action of Z(Sp2N(Fq)) =
Z/2. (Otherwise, the data of (s) and u determines a single irreducible
representation of dimension (30).)

The discussion in the previous subsections (Definitions 6 and 7) for
symbols applies to the unipotent representation uSp2ℓ (since again, the
groups of type C and B have the same symbols), and uSO+

2p
and uSO−

2p
.

Example: The oscillator representations

(31) ωa = ω+
a ⊕ ω−

a ωb = ω+
b ⊕ ω−

b

of Sp2N(Fq) can be recovered using this classification by considering
the conjugacy classes of elements s ∈ SO2N+1(Fq) of type ±1, which
are singular of type (0, N) (i.e. −1 is an eigenvalue of multiplicity 2N
in s):

Definition 8. Consider B a general symmetric bilinear form on F2N+1
q .

Without loss of generality,

(32) B =
⊕
N

(
0 1
−1 0

)
⊕ Z.

Consider the sum of the final N th hyperbolic and the (1-dimensional)
Z term as a symmetric bilinear form on F3

q:

(33) SO3(Fq) = SO(F3
q,

(
0 1
−1 0

)
⊕ Z).
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Consider σ±
1 as an element of (33) (see Definition 5 above). Put

(34) σ±
N = (−I2(N−1))⊕ σ±

1 ,

considering −I2(N−1) as a 2(N − 1) by 2(N − 1) matrix in

SO+
2(N−1)(Fq) = SO(F2(N−1)

q ,
⊕
N−1

(
0 1
−1 0

)
),

corresponding to the first N − 1 hyperbolic summands of B in (32).

The centralizer of σ±
N in SO2N+1(Fq) is

(35) Zσ±
N
(SO2N+1(Fq)) = SO±

2N(Fq),

which is self dual. The factor (30) is then

(36)
|Sp2N(Fq)|q′

|SO±
SN+1(Fq)|q′

=

∏N
i=1(q

2i − 1)

(qN ∓ 1)
∏N−1

i=1 (q2i − 1)
= qN ± 1

In both cases, take u to be the trivial representation 1.
The representations ρ(σ±

N ),1 obtained from the Jordan decomposition

of (σ±
N) and u = 1 are then of dimension (36). They then decompose

into equi-dimensional halves, with

ρ(σ+
N ),1 = ω+

a ⊕ ω+
b ,

ρ(σ−
N ),1 = ω−

a ⊕ ω−
b ,

recovering the pieces of the oscillator representations (31). In our no-
tation, we have

ω±
a = ρ(σ±

N ),1,ϵ(a),

where ϵ denotes the quadratic character

(37) ϵ : F×
q → {±1}.

3. The claimed construction

The purpose of this section is to describe in more detail the claimed
construction that we are proposing gives the eta and zeta correspon-
dences. This again overlaps with the work of Pan [15, 16], where similar
results are stated in a different form. We define the proposed construc-
tions

ϕVW,B : ̂O(W,B) ↪→ Ŝp(V )

in the symplectic stable range, and

ψW,BV : Ŝp(V ) ↪→ ̂O(W,B)
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in the orthogonal stable range.
First, we establish a piece of notation that will be important to the

definitions of ϕVW,B and ψW,BV . Recalling Lusztig’s description of irre-
ducible unipotent representations (see Definitions 6 and 7 above, and
[13]), we see the set of irreducible unipotent representations for G and
GD are identified. For an irreducible unipotent representation u of G,
we denote by ũ the corresponding irreducible unipotent representation
of GD.

In Subsection 3.1, we treat the case of (Sp(V ), O(W,B)) in the sym-
plectic symplectic stable range where the dimension of W is odd. In
Subsection 3.2, we treat the case of the symplectic stable range where
the dimension of W is even. In Subsection 3.3, we treat the case of
a reductive dual pair (Sp(V ), O(W,B)) in the orthogonal stable range
where the dimension of W is odd. In Subsection 3.4, we treat the case
of the orthogonal stable range where the dimension of W is even.

3.1. The odd symplectic stable case. Consider a choice of type I
reductive dual pair (Sp(V ), O(W,B)) in the symplectic stable range
for odd-dimensional W . Write dim(V ) = 2N , dim(W ) = 2m+ 1. The
range condition requires that N ≥ 2m + 1. In this case, the center
splits off of the orthogonal group, and we may consider O(W,B) =
Z/2×SO2m+1(Fq). Our goal is to define a construction whose input is
an irreducible representation of (±1) ⊗ ρ(s),u of O(W,B) (considering

±1 as a representation of Z/2 and ρ(s),u ∈ ̂SO2m+1(Fq) for some Lusztig
classification data [(s), u] for SO2m+1(Fq)) and whose output is a unique
irreducible Sp(V ) = Sp2N(Fq) representation. In other words, we must
associate to (±1)⊗ρ(s),u a choice of new Sp2N(Fq)-Lusztig classification
data:

(38) [(ϕ±(s)), ϕ±(u), disc(B) · ε(s)].

Broadly, we construct ϕ±(s) by adding −1 eigenvalues to s, and we
alter the symbol in the affected factor of the unipotent part by adding
a single coordinate to one of the rows (to get the needed new rank and
defect).

To be more specific, we recall that in the input data, as Lusztig clas-
sification data for SO2m+1(Fq), [(s), u] consists of a conjugacy class (s)
of a semisimple element s in the dual group Sp2m(Fq) = (SO2m+1(Fq))D
and an irreducible unipotent representation u of the dual of s’ central-
izer

(ZSp2m(Fq)(s))
D.
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Now, to specify (38), we begin with describing the semisimple part
(ϕ±(s)). As discussed in the previous section, s is an element of a
maximal torus of the form (7), and it is deermined by the data of the
orbit of its eigenvalues. Recalling the notation (34), we then define
ϕ±(s) to be the semisimple element

ϕ±(s) := s⊕ σ±
N−m ∈

k∏
i=1

SO±
2 (Fqni )× SO2(N−m)+1(Fq)

⊆ SO2N+1(Fq) = (Sp2N(Fq))D.

On the level of eigenvalues, ϕ±(s) are obtained precisely by adding
2(N−m) eigenvalues −1 and a single 1 eigenvalue to s’s original eigen-
values, in a position where projecting away from the coordinate of the
1 eigenvalue gives a subspace of W where B is completely split if the
sign is + and non-split if the sign if −. Suppose s has eigenvalue −1
of multiplicity 2ℓ, and 1 of multiplicity 2p, and its centralizer is of the
form (14). For simplicity, let us separate the factors corresponding to
the eigenvalues of s not equal to −1

H =
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× Sp2p(Fq),

so that

(39) ZSp2m(Fq)(s) = H × Sp2ℓ(Fq).
Then we find that the centralizer of our new elements ϕ±(s) in SO2N+1(Fq)
is precisely

ZSO2N+1(Fq)(ϕ
±(s)) = HD × SO±

2(N−m+ℓ)(Fq).

Now let us describe the unipotent part ϕ±(u) of (38). Let us factor
u as in (15), and let us consider ths symbol

u−1
SO2ℓ+1

=

(
λ1 < · · · < λa
µ1 < · · · < µb

)
and write uH for the unipotentH-representation consisting of a product
of the other factors

⊗r
i=1 uU+

ji

⊗
⊗t

i=1 uU−
ki

⊗ u−1
SO2ℓ+1

⊗ u+1
SO2p+1

, so that

we can write

u = uH ⊗
(
λ1 < · · · < λa
µ1 < · · · < µb

)
.

The defect a−b of the symbol is odd, so we may switch rows to assume
without loss of generality that a− b is 1 mod 4. Write

N ′
ρ(s),u

= N −m+
a+ b− 1

2
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(note that by the symplectic stable range condition, we automativally
have N ′

ρ(s),u
≥ N −m ≥ m+1). Then we may concatenate N ′

ρ(s),u
onto

the end of either row of the symbol
(
λ1<···<λa
µ1<···<µb

)
, obtaining new symbols

ϕ+(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
) =

(
λ1 < · · · < λa

µ1 < · · · < µb < N ′
ρ(s),u

)
,

describing a unipotent representation of SO+
2(N−m+ℓ)(Fq) and

ϕ−(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
) =

(
λ1 < · · · < λa < N ′

ρ(s),u

µ1 < · · · < µb

)
,

describing a unipotent representation of SO−
2(N−m+ℓ)(Fq). We then put

ϕ±(u) := ũH ⊗ ϕ±(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
),

giving a unipotent representation of the group HD×SO±
2(N−m+ℓ)(Fq) =

ZSO2N+1(Fq)(ϕ
±(s)).

Finally, we need a central sign to complete the Lusztig classifica-
tion data (38) since by definition ϕ±(s) has −1 eigenvalues. Consider
again s as an element of the torus (7). Further, consider each factor
SO±

2 (Fqri ) ∼= µqri∓1. Then define ε(s) to be the product of applying
the quadratic character on each Z/(qri∓1) to each coordinate, giving a
total sign. Multiplying with the discriminant disc(B) gives the central
sign of (38).

Definition 9. Given the above notation we define ϕVW,B(ρ) to be the ir-
reducible Sp(V )-representation with the new Lusztig classification data
we constructed:

ϕVW,B((±1)⊗ ρ(s),u) = ρ(ϕ±(s)),ϕ±(u),disc(B)·ε(s).

3.2. The even symplectic stable case. Now suppose the reductive
dual pair (Sp(V ), O(W,B)) is in the symplectic stable case and W is
even dimensional. Write dim(V ) = 2N and dim(W ) = 2m Write α
for the sign so that O(W,B) = Oα

2m(Fq). In both cases, the orthogonal
stable range condition requires that N ≥ 2m.

Fix an input irreduicble O(W,B)-representation ρ. As described
in Subsection 2.3, we take its O(W,B)-Lusztig classification data to
consist of a conjugacy class in O(W,B) (s) of a semisimple element
s ∈ SO(W,B), an irreducible unipotent representation u of the dual of
s’s centralizer (ZSO(W,B)(s))

D, and possible central sign data depending
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on which eigenvalues appear in s. Broadly, we obtain new Sp2N(Fq)-
Lusztig classification data

[(ϕ(s)), ϕ±(u),±1]

by adding 1 eigenvalues to s, then altering the affect factor of the
unipotent part by adding a single coordinate to one row of the symbol
(according to the original +1 part of the sign data of ρ if there is a
choice), and keeping the original −1 part of the sign data if it occurs.

Consider, again, s as an element of a torus (7). One may take a
direct sum with the identity matrix I2(N−m)+1 to obtain a semisimple
element

ϕ(s) = s⊕ I2(N−m)+1 ∈ SO2N+1(Fq) = (Sp2N(Fq))D.
(Note that each different class (s) considered as a conjugacy class in
O(W,B) corresponds to a different ϕ(s), whereas if we only considered
(s) as a conjugacy class in SO(W,B), in cases with eigenvalues not
equal to ±1, there would be another SO(W,B)-conjugacy class (s′)
with (ψ(s)) = (ψ(s′)) in SO2N+1(Fq).)

If s does not have any 1 eigenvalues, then we have

ZSO2N+1(Fq)(ϕ(s)) = (ZSOα
2m(Fq)(s))

D × SO2(N−m)+1(Fq),
and we consider the unipotent representation

ϕ(u) := ũ⊗ 1

of its dual, tensoring ũ with the trivial representation of the new factor
(SO2(N−m)+1(Fq))D.
If s has 1 as an eigenvalue of multiplicity 2p for p > 0, then suppose

its centralizer is of the form (20). We separate out the factors arising
from the eigenvalues not equal to 1 by writing

H =
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO±

2ℓ(Fq)

so that we have

ZSOα
2m(Fq)(s) = H × SO±

2p(Fq),
and

ZSO2N+1(Fq)(ψ(s)) = HD × SO2(N−m+p)+1(Fq)
(note that in this case H = HD). Factoring u as in (21), let us consider
the symbol of the factor corresponding to the 1 eigenvalue

u+1

SO±
2p

=

(
λ1 < · · · < λa
µ1 < · · · < µb

)
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and write uH
D

for the representation of H = HD consisting of the
other factors

⊗r
i=1 uU+

ji

⊗
⊗t

i=1 uU−
ki

⊗ u−1

SO±
2ℓ

. Switch rows so that for

the minimal i such that λa−i ̸= µb−i, we have λa−i < µb−i. Write

N ′
ρ = N −m+

a+ b

2
.

Then (
λ1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
,

(
λ1 < · · · < λa

µ1 < · · · < µb < N ′
ρ

)
define unipotent (SO2(N−m+p)+1(Fq))D = Sp2(N−m+p)(Fq). Therefore,
if λa < N ′

ρ, µb < N ′
ρ,

ϕ+(u) = ũHD ⊗
(
λ1 < · · · < λa < N ′

ρ

µ1 < · · · < µb

)
ϕ−(u) = ũHD ⊗

(
λ1 < · · · < λa

µ1 < · · · < µb < N ′
ρ

)
respectively define irreducible unipotent representations of the dual
group (ZSO2N+1(Fq)(ϕ(s)))

D = H×Sp2(N−m+p)(Fq). We choose the sign
of ϕ±(u) according to the central sign data (±1) chosen from s having
1 eigenvalues.

Finally, to define an output irreducible Sp2N(Fq)-representation, we
need to also choose output central sign data if ϕ(s) has −1 eigenval-
ues. By definition, ϕ(s) has the same number of −1 eigenvalues as s.
Therefore, in this case, the original s has −1 eigenvalues also, so the
O(W,B)-Lusztig classification data supplies us with the data of one
more central sign ±1, which we use as the output central sign data.

Definition 10. Given the above notation, we define ηVW,B(ρ) to be
the irreducible Sp(V )-representation with Lusztig classification data
[ϕ(s), ϕ±(u),±1] where the sign in ϕ±(u) is the central sign data from
s’s 1 eigenvalues, the sign in ±1 is the central sign data from s’s −1
eigenvalues, and signs are ommited when s does not have such eigen-
values

(40) ϕVW,B(ρ) := ρ(ϕ(s)),ϕ±(u),±1.

3.3. The odd orthogonal stable case. Suppose (Sp(V ), O(W,B))
is in the orthogonal stable case and W is odd dimensional. Write
dim(V ) = 2N an dim(W ) = 2m + 1. In this case, writing dim(V ) =
2N , this means m ≥ N .
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Consider an irreducible representation ρ of Sp(V ) = Sp2N(Fq). Again,
we consider O(W,B) = Z/2 × SO2m+1(Fq), and therefore, our goal is
to specify an irreducible representation of SO2m+1(Fq) and a sign spec-
ifying an action of Z/2. Writing (s) and u for the semisimple and
unipotent parts of ρ’s Lusztig classification data (and considering the
central sign data ±1 if it occurs), we will produce SO2m+1(Fq)-Lusztig
classification data

[(ψ(s)), ψ±(u)]

(where, if there is no central sign data, there ill only be a single choice
of unipotent part ψ(u)), and tensor it with the Z/2-representation cor-
responding to the sign

(ϵ(s) · disc(B)).

Broadly, in this case, we construct ψ(s) by adding −1 eigenvalues to s
and adding a single new coordinate to the symbol corresponding to the
affected factor of the unipotent part (to achieve the new needed rank
and defect), according the central sign data of ρ if it occurs.

To be more specific, consider the semisimple conjugacy class part
(s) of ρ’s Lusztig classification data. We have s ∈ (Sp2N(Fq))D =
SO2N+1(Fq). Recall again that we can consider s as an element of a
torus of the form (7), by removing the single “forced” eigenvalue 1 from
s. Write s̃ for the 2N by 2N matrix obtained in this way. Taking a
direct sum with −I2(m−N),

ψ(s) := s̃⊕ (−I)2(m−N)

specifies a semisimple element of Sp2m(Fq) = (SO2m+1(Fq))D, which
has −1 as an eigenvalue of multiplicity 2(m−N + ℓ).
Say that s has −1 as an eigenvalue of multiplicity 2ℓ with centralizer

of the form (28). Again, let us separate the factors corresponding to
eigenvalues not equal to −1 and write

H =
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO2p+1(Fq)

so that

ZSO2N+1(Fq)(s) = H × SO±
2ℓ(Fq)

and

ZSp2m(Fq)(ψ(s)) = HD × Sp2(m−N+ℓ)(Fq).
For the unipotent part of the Lusztig classification data of ρ, write its

factorization as in (29). Specially consider the symbol corresponding
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to the factor

uSO±
2ℓ
=

(
λ1 < · · · < λa
µ1 < · · · < µb

)
and write uH

D
for the unipotent HD-representation corresponding to

the rest of the factors
⊗r

i=1 uU+
ji

⊗
⊗t

i=1 uU−
ki

⊗ uSp2p . Again, switch

rows so that for the minimal i such that λa−i ̸= µb−i has λa−i > µb−i.
Let us write

m′
ρ = m−N +

a+ b

2
.

By the orthogonal stable range condition, we must have λa < m′
ρ and

µb < m′
ρ. Concatenating m′

ρ to the end of one of the rows, we obtain
symbols

(41)

(
λ1 < · · · < λa < m′

ρ

µ1 < · · · < µb

)
,

(
λ1 < · · · < λa

µ1 < · · · < µb < m′
ρ

)
which have odd defect and rank precisely equal tom−N+ℓ, and there-
fore specify irreducible unipotent representations of SO2(m−N+ℓ)+1(Fq) =
(Sp2(m−N+ℓ)(Fq))D.

In the case when ℓ = 0, both (41) specify the same representation -
the trivial representation. In this case put

ψ(u) = ũHD ⊗ 1.

In the case when ℓ > 0, we have additional central sign data ±1
in the Lusztig classification data for ρ, which we use to select which
symbol (41) should appear as the new factor of the unipotent part of

the Lusztig classification data of ζW,BV (ρ). Specifically, we put

ψ+(u) = ũHD ⊗
(
λ1 < · · · < λa < m′

ρ

µ1 < · · · < µb

)

ψ−(u) = ũHD ⊗
(

λ1 < · · · < λa
µ1 < · · · < µb < m′

ρ

)
.

Definition 11. Suppose we are given the above notation. If ℓ = 0,
writing ρ = ρ(s),u, we take ψW,BV (ρ) to be the tensor product of the irre-
ducible SO(W,B)-representation corresponding to Lusztig classification
data (ψ(s)), ψ(u) with the sign ϵ(s) · disc(B):

(42) ψW,BV (ρ) = ρ(ψ(s)),ψ(u) ⊗ (ϵ(s) · disc(B))

If ℓ > 0, writing ρ = ρ(s),u,±1, we take ϕW,BV (ρ) to be the tensor prod-
uct of the irreducible SO(W,B)-representation corresponding to Lusztig
classification data (ψ(s)), ψ±(u) with the sign ϵ(s) · disc(B)

(43) ψW,BV (ρ) = ρ(ψ(s)),ψ±(u) ⊗ (ϵ(s) · disc(B)).
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3.4. The even orthogonal stable case. Suppose W is of even di-
mension 2m, and write α for the sign so that O(W,B) = Oα

2m(Fq).
Suppose that (Sp(V ), O(W,B)) is in the orthogonal stable range.

Consider an irreducible representation ρ of Sp(V ) = Sp2N(Fq). We
want to produce O2m(Fq)α-Lusztig classification data, which we recall
consists of a semisimple conjugacy class (s) ∈ Oα

2m(Fq), a unipotent
part u which can be considered to consist of a unipotent irreducible rep-
resentaion of the (dual) of the centralizer of s in SOα

2m(Fq), and central
sign data. We note that since ResO(W,B)(ω[V ⊗W ]) is the permuta-
tion representation CW tensored with the representation ϵ(det) (cor-
responding to the sign representation of O(W,B)/SO(W,B)), part of
the central sign data is already forced. Specifically, as in the case of the
symplectic group, we will only need to choose central sign data for the
output representation corresponding to −1-eigenvalues. Broadly, we
will construct the new semisimple and unipotent parts of the O±

2m(Fq)-
Lusztig classification data

(ψ(s)), ψ(u)

by adding 1 eigenvalues to s and altering the symbol of the affect factor
of the unipotent part by adding a single new coordinate to one of the
rows to achieve the new needed rank and defect.

To be more specific, write (s) with s ∈ SO2N+1(Fq) = (Sp2N(Fq))D
for the semisimple part of the Lusztig classification data for the input
Sp2N(Fq)-representation ρ. Say s has 1 as an eigenvalue of multiplcity
2p+1. Again, we may remove a single “forced” 1 eigenvalue from s to
view it as a 2N by 2N element of a maximal torus (7). Then consider
the direct sum with the 2(m−N) by 2(m−N) identity matrix

ψ(s) = s̃⊕ I2(m−N),

configured to give a 2m by 2m matrix that can be considered as an
element of SO(W,B) ⊆ O(W,B). As in Subsection 3.2, each distinct
SO2N+1(Fq)-conjugacy class (s) gives a distinctOα

2m(Fq)-conjugacy class
ψ(s). Writing the centralizer of s as (28), we again separate out the
factors corresponding to the eigenvalues not equal to 1, writing

H =
r∏
i=1

U+
ji
(F

qn
′
i
)×

t∏
i=1

U−
ki
(F

qn
′′
i
)× SO±

2ℓ(Fq)

so that

ZSO2N+1(Fq)(s) = H × SO2p+1(Fq)
and

ZSOα
2m(Fq)(ψ(s)) = HD × SOβ

2(N−m+p)(Fq),
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for a single determined choice of sign β (so that its product with the
other signs appearing in H agrees with α).

To construct the unipotent part of the Oα
2m(Fq)-Lusztig classification

data ψ(u), specially consider the symbol

uSO2p+1 =

(
λ1 < · · · < λa
µ1 < · · · < µb

)
and write uH

D
for the product of the remaining factors

⊗r
i=1 uU+

ji

⊗⊗t
i=1 uU−

ki

⊗ uSO±
2ℓ
. Switch the symbol rows so that the defect a− b is

1 mod 4 (which is possible since this symbol has odd defect). Let us
write

m′
ρ = m−N +

a+ b− 1

2
.

Then, if β = +, if µb < m′
ρ, putting

ψ(u) = ũHD ⊗
(

λ1 < · · · < λa
µ1 < · · · < µb < m′

ρ

)
gives a unipotent representation of the group H × SO+

2(N−m+p)(Fq) =
(ZSOα

2m(Fq)(ψ(s)))
D. Similarly, if β = −, if λa < m′

ρ, putting

ψ(u) = ũHD ⊗
(
λ1 < · · · < λa < µ′

ρ

µ1 < · · · < µb

)
gives a unipotent representation of the group H × SO−

2(N−m+p)(Fq) =
(ZSOα

2m(Fq)(ψ(s)))
D.

Now, as in Subsection 3.2, (s) and (ψ(s)) have the same multiplic-
ity of −1 eigenvalues. Therefore, the undetermined central sign data
needed to describe ζW,BV (ρ) if and only if central sign data is given in
ρ’s original Lusztig classification data. We take it to be the same in
this case.

Definition 12. Suppose we are given the above notation. We define
ζW,BV (ρ) to be the irreducible O(W,B)-representation with O(W,B)-
Lusztig classification data [ψ(s), ψ(u),±1], where the final sign is the
central sign of ρ arising if s has −1 eigenvalues and where we omit it
if s has no such eigenvalues

(44) ψW,BV (ρ) := ρψ(s),ψ(u),±1,

(we also neglect to write in the notation the determined central sign data
corresponding from the 1 eigenvalues of s, which is pre-determined).
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4. A combinatorial identity

Now recalling [11], a key step in decomposition the restriction of
an oscillator representation ω[V ⊗W ] to Sp(V )×O(W,B) is to sepa-
rate off its “top part,” which specifically singles out summands arising
from the eta or zeta correspondence with source corresponding to the
appropriate full-rank orthogonal or symplectic group, respectively. In
the symplectic stable range, we write

ω[V ⊗W ]top :=
⊕

ρ∈O(W,B)

ηVW,B(ρ)⊗ ρ,

and call it the top part of ω[V ⊗W ]. Similarly, in the orthogonal stable
range, we write

ω[V ⊗W ]top :=
⊕

ρ∈O(W,B)

ρ⊗ ζW,BV (ρ),

and call it the top part of ω[V ⊗W ].
From here, the proof of Theorem 2 separates into two key steps:

A combinatorial verification that the dimension of the direct sum of
matches the dimension of the top part of ω[V ⊗W ], and an inductive
argument showing that the claimed correspondence in Theorem 2 is
the only possible one. The first step is the goal of this section.

Theorem 13. If (Sp(V ), O(W,B)) is in the symplectic stable range,
the dimension of the top part of the restriction of ω[V ⊗W ] matches
the sum of products of the dimensions of irreducible representations of
O(W,B) and their ψVW,B correspondences:

(45) dim(ω[V ⊗W ]top) =
∑

ρ∈ ̂O(W,B)

dim(ρ) · dim(ϕVW,B(ρ)).

Similarly, if (Sp(V ), O(W,B)) is in the orthogonal stable range, the
dimension of the top part of the restriction of ω[V⊗W ] matches the sum
of products of the dimensions of irreducible representations of Sp(V )

and their ϕW,BV correspondences:

(46) dim(ω[V ⊗W ]top) =
∑

ρ∈Ŝp(V )

dim(ρ) · dim(ψW,BV (ρ)).

4.1. The dimension of the top part of the oscillator represen-
tation. First, we need a more explicit formula for the left hand side
of (45):
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Proposition 14. Consider symplectic and orthogonal spaces V and
(W,B) whose dimensions are in the symplectic stable range. Writing
dim(V ) = 2N and dim(W ) = 2m+1, the dimension of the top part of
the restriction of ω[V ⊗W ] is

(47)
m∑
i=0

(−1)m−i · q(
m−i
2 ) ·

(
m

i

)
q

·
m∏

k=i+1

(qk + 1) · q(2i+1)N

Proof. Write, for j < i

(48)

Ci,j := −
(
i

j

)
q

·
i∏

k=j+1

(qk + 1) =

(q2i − 1)(q2(i−1) − 1) . . . (q2(j+1) − 1)

(qi−j − 1)(qi−j−1 − 1) . . . (q − 1)

Let Xm denote the dimension of the top part ω[V ⊗W ] top, where W is
a 2m+1-dimensional Fq-space. Taking the dimension of (3) then gives
the recursive equation

(49) Xm = q(2m+1)N +
m−1∑
i=0

Cm,i ·Xi.

Our goal to prove (47) is to re-express the right-hand side of (49) in
terms of a sum of q(2i+1)N for 0 ≤ i ≤ m some lower coefficient. Now,
iteratively applying (49), we find that

Xm =
m∑
i=0

 ∑
i=ℓ1<···<ℓj=m

j−1∏
k=1

Cℓk+1,ℓk

 q(2i+1)N .

It suffices to prove

(50)
∑

i=ℓ1<···<ℓj=m

j−1∏
k=1

Cℓk+1,ℓk = Cm,i · q(
i
2).

Using (48), each term
∏j−1

k=1Cℓk+1,ℓk where i = ℓ1 < · · · < ℓj = m,
factors as

(q2m − 1)(q2(m−1) − 1) . . . (q2(m−i+1) − 1)
j−1∏
k=1

ℓk+1−ℓk∏
r=1

(qr − 1)

,
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which can be simplified as

Cm,i ·
(qm−i − 1)(qm−i−1 − 1) . . . (q − 1)

j−1∏
k=1

ℓk+1−ℓk∏
r=1

(qr − 1)

,

reducing the claim to

(51) q(
m−i
2 ) =

∑
i=ℓ1<···<ℓj=m

(qm−i − 1)(qm−i−1 − 1) . . . (q − 1)
j−1∏
k=1

ℓk+1−ℓk∏
r=1

(qr − 1)

.

The right-hand side of (51) can also be written as∑
0=ℓ′1<···<ℓ′j=m−i

(
ℓ′j
ℓ′j−1

)
q

(
ℓ′j−1

ℓ′j−2

)
q

. . .

(
ℓ′2
ℓ′1

)
q

,

by substituting ℓ′j = ℓj − i, so (51) follows from a q-version of the
multinomial theorem. □

We re-write (47) again as follows, to separate it into terms which
correspond to levels of singularity of semisimple elements (more specif-
ically, the multiplicity of eigenvalue −1) in the classification of irre-
ducible representations of SO2m+1(Fq):

Proposition 15. The top dimension of ω[V ⊗W ]top is

(52)
m∑
ℓ=0

(−1)ℓ qN+(m−ℓ)(m−ℓ−1)+ℓ2
(
m

ℓ

)
q2

m−ℓ−1∏
j=0

(q2(N−i) − 1).

Proof. Substituting i = m− ℓ, (47) can be re-written as

(53)
m∑
ℓ=0

(−1)ℓq(
ℓ
2)
(
m

ℓ

)
q2
(
ℓ∏

j=1

(qj + 1))q(2(m−ℓ)+1)+N .

Now in (52), using

(m− ℓ− 1)(m− ℓ) =
m−ℓ−1∑
j=0

2k,

we have

q(m−ℓ−1)(m−ℓ)
m−ℓ−1∏
j=0

(q2(N−i) − 1) =
m−ℓ−1∏
j=0

(q2N − q2i).
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Hence, (52) reduces to

m∑
ℓ=0

(−1)ℓqN+ℓ2
(
m

ℓ

)
q2

m−ℓ−1∏
i=0

(q2N − q2i).

Finally, at each ℓ,

m−ℓ−1∏
i=0

(q2N − q2i) =
m−ℓ∑
j=0

q2Nj ·
∑

1≤i1<···<im−ℓ−j≤m−ℓ−1

q2(i1+...im−ℓ−j) =

m−ℓ∑
j=0

q2Nj ·
(
m− ℓ

j

)
q2
.

Therefore, the coefficient of q(2(m−ℓ)+1)N in (53) for each ℓ is

ℓ∑
k=0

(−1)kqk
2

(
m

m− k

)
q2

(
m− k

m− ℓ

)
q2

(identifying
(
m
k

)
q2

with
(

m
m−k

)
q2
). Hence, the claim reduces to verifying

that

(54)

ℓ∑
k=0

(−1)kqk
2

(
m

m− k

)
q2

(
m− k

m− ℓ

)
q2

=

q(
ℓ
2)
(

m

m− ℓ

)
q2

ℓ∏
j=1

(qj + 1)

Further, we have(
m

m− k

)
q2

(
m− k

m− ℓ

)
q2

=

(
m

m− ℓ

)
q2

(
ℓ

ℓ− k

)
q2

=

(
m

m− ℓ

)
q2

(
ℓ

k

)
q2
,

reducing (54) again to a q-multinomial theorem. □

The purpose of re-writing the dimension of the top part of ω[V ⊗W ]
as (52) is because, for each ℓ, the prime to q part of the ℓth term of
(52) is

(55)

(
m

ℓ

)
q2

m−ℓ−1∏
i=0

(q2(N−i) − 1) =

|Sp2m(Fq)|q′ · |Sp2N(Fq)|q′
|Sp2(m−ℓ)(Fq)|q′ · |Sp2ℓ(Fq)|q′ · |Sp2(N−m−ℓ)(Fq)|q′ .
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We use Proposition 15 to conclude (45) by approximating the right
hand recursively by considering terms dim(π)dim(ϕW,B(π)) separately

for π ∈ ̂O(W,B) arising from a conjugacy class of a semisimple element
of the dual group Sp2m(Fq), which is singular of type (m − ℓ, ℓ) (i.e.
has −1 as an eigenvalue with multiplicity 2ℓ), using the elementary
fact that the sum of the squares of the dimensions of all irreducible
representations of a group G recover its group order. This gives that
the “level ℓ” approximation of the right hand side of (45) (which counts
correctly the terms from π arising from conjugacy classes of semisimple
elements Sp2m(Fq) with eigenvalue −1 of multiplicity less than or equal
to 2ℓ, and miss-counts the terms from π arising from conjugacy classes
with eigenvalue −1 of multiplicity more than 2ℓ) is the sum of the first
ℓ terms of (52).

More formally:

Proof of Theorem 13. Suppose W is an Fq-vector space of dimension
2m+1 with symmetric bilinear form B. First, consider irreducible rep-

resentations π ∈ ̂O(W,B) whose restrictionsResSO(W,B)(π) to SO(W,B)
correspond to a conjugacy class of a semisimple element s ∈ Sp2m(Fq)
where −1 is not an eigenvalue. Call such irreducible representations of
SO(W,B) the “level 0” representations of SO(W,B). For each such

π′ ∈ ̂SO(W,B), say with Lusztig classification given by the Jordan
decomposition ((s), u), the centralizer of s first must be of the form

Zs(Sp2m(Fq)) =
r∏
i=1

U+
ji
(Fq)×

t∏
i=1

U−
ki
(Fq)× Sp2p(Fq)

for
∑r

i=1 ji +
∑t

i=1 ki + p = m (where s has 1 as an eigenvalue with
multiplicity 2p), with the unipotent representation u then consisting of
the data of unipotent representations of U+

ji
(Fq), U−

ki
(Fq), and a symbol

of rank p and type C. Then,

Zs⊕σ±
N−m

(SO2N+1(Fq)) =
r∏
i=1

U+
ji
(Fq)×

t∏
i=1

U−
ki
(Fq)× SO2p+1(Fq)× SO±

2(N−m)(Fq)
,

wich has order

|Zs⊕σ±
N−m

(SO2N+1(Fq))| = |Zs(Sp2m(Fq))| · |SO±disc(B)
2(N−m) (Fq)|.

For both choices, the dimension of ϕW,B(u) is equal to the dimen-

sion of u. Hence, for every π′ ∈ ̂SO(W,B), the sum of dimensions
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dim(ϕW,B(π⊗ 1))+ dim(ϕW,B(π⊗−1)) is equal to the dimension of π,
multiplied by

|Sp2N(Fq)|q′
2|SO+

2(N−m)(Fq)× Sp2m(Fq)|q′
+

|Sp2N(Fq)|q′
2|SO−

2(N−m)(Fq)× Sp2m(Fq)|q′
=

1

|Sp2m(Fq)|q′
qN−m

m−1∏
i=0

(q2(N−i) − 1)

Hence, since the dimensions of the O(W,B) representations π ⊗ 1 and
π ⊗−1 are equal to dim(π), the sum of the two terms
(56)
dim(π′ ⊗ 1) dim(ϕW,B(π

′ ⊗ 1)) + dim(π′ ⊗−1) dim(ϕW,B(π
′ ⊗−1)) =

dim(π′)2

|Sp2m(Fq)|q′
qN−m

m−1∏
i=0

(q2(N−i) − 1)

If all representations π′ ∈ ̂SO(W,B) satisfied (56), then the right hand
side of (45) would equal

(57)

|SO(W,B)|
|Sp2m(Fq)|q′

qN−m
m−1∏
i=0

(q2(N−i) − 1) =

qN−m(m−1)

m−1∏
i=0

(q2(N−i) − 1)

(recalling that |SO(W,B)| = |Sp2m(Fq)|, with q-part equal to qm
2
).

We call (57) the level 0 approximation of (45). Note that it is pre-
cisely equal to the 0th term of (45). The remainder of the argument
consists of considering the ranges of irreducible representations arising
from semisimple elements one ℓ at a time (from ℓ = 1 to ℓ = m). We
must compute that adding the ℓth term of (52) cancels the “level ℓ-
error,” arising from miscounting the terms (45) for π′ arising from (s)
with exactly 2ℓ in the level (ℓ − 1)-approximation of (45) (though it
may create more error at higher levels), so that we can take the sum

ℓ∑
i=0

(−1)iqN+(m−i)(m−i−1)+i2
(
m

ℓ

)
q2

m−i−1∏
j=0

(q2(N−j) − 1)

to be the level ℓ approximation of (45).

We may therefore prove Theorem 13 inductively by verifying that
for every ℓ, the level ℓ-approximation is equal to the sum of the 0th to
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ℓth terms of (52), up to an error of terms with N -degree less than or
equal to 2(m− ℓ) + 1.

Lemma 16. Fix a symbol
(
λ1<···<λa
µ1<···<µb

)
of rank ℓ, type C, and write

c = (a + b − 1)/2. Choosing the sign of SO±
2N(Fq) in the denomi-

nator according to matching the defect of the written symbols with the
appropriate groups (depending on a− b mod 4), then the sum

(58)

|Sp2N(Fq)|q′
|SO±

2N(Fq)|q′
dim(

(
λ1 < · · · < λa

µ1 < · · · < µb < N − ℓ+ c

)
)+

|Sp2N(Fq)|q′
|SO∓

2N(Fq)|q′
dim(

(
λ1 < · · · < λa < N − ℓ+ c

µ1 < · · · < µb

)
)

is the product
(59)

(
|Sp2N(Fq)|q′

|SO2ℓ+1(Fq)× SO+
2(N−ℓ)(Fq)|q′

+
|Sp2N(Fq)|q′

|SO2ℓ+1(Fq)× SO−
2(N−ℓ)(Fq)

)·

dim(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
),

up to an error term equal to (59), multiplied again by dim(
(
λ1<···<λa
µ1<···<µb

)
)

and the factor

qN−(m−ℓ)(m−ℓ−1) |Sp2N(Fq)|q′
|Sp2(N−m+ℓ)(Fq)|q′

|SO2m+1(Fq)|q′
|SO2ℓ+1(Fq)× SO2(m−ℓ)+1(Fq)|q′|

Proof. Suppose, without loss of generality, a− b is 1 mod 4. Recalling
how to compute the dimensions of symbols, we have that

dim(

(
λ1 < · · · < λa

µ1 < · · · < µb < N − ℓ+ c

)
)

q(
a+b−1

2 )+(a+b−3
2 )+(a+b−5

2 )+... · |SO+
2N(Fq)|q′

=

dim(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
)

a∏
i=1

(qN−ℓ+c + qλi)
b∏
i=1

(qN−ℓ+c − qµi)

q(
a+b−2

2 )+(a+b−4
2 )+(a+b−6

2 )+... · |SO2ℓ+1(Fq)|q′
N−ℓ+c∏
i=1

(q2i − 1)
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and, similarly,

dim(

(
λ1 < · · · < λa < N − ℓ+ c

µ1 < · · · < µb

)
)

q(
a+b−1

2 )+(a+b−3
2 )+(a+b−5

2 )+... · |SO−
2N(Fq)|q′

=

dim(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
)

a∏
i=1

(qN−ℓ+c − qλi)
b∏
i=1

(qN−ℓ+c + qµi)

q(
a+b−2

2 )+(a+b−4
2 )+(a+b−6

2 )+... · |SO2ℓ+1(Fq)|q′
N−ℓ+c∏
i=1

(q2i − 1)

.

Summing the terms (58) then gives a product of the coefficient

|Sp2N(Fq)|q′

|SO2ℓ+1(Fq)|q′
N−ℓ+c∏
i=1

(q2i − 1)

dim(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
),

with the factor

q(
a+b−2

2 )+(a+b−4
2 )+(a+b−6

2 )+...

q(
a+b−1

2 )+(a+b−3
2 )+(a+b−5

2 )+...
=

1

q
∑c−1

i=0 (2(c−i)−1)
=

1

qc2
,

with the sum

(60)

a∏
i=1

(qN−ℓ+c − qλi)
b∏
i=1

(qN−ℓ+c + qµi)+

a∏
i=1

(qN−ℓ+c + qλi)
b∏
i=1

(qN−ℓ+c − qµi).

Since the defect a−b is odd, when multiplying out the factors (60) as a
sum of powers of qN−ℓ+c (with lesser coefficients, not involving N), we
find that only odd powers q(2k+1)(N−ℓ+c) have non-zero coefficient (for
k = 0, . . . , c). Explicitly, it is

2qN−ℓ+c(
c∑

k=0

q2k(N−ℓ+c) ·
∑

(−1)rq
∑r

s=1 λis+
∑2(c−k)−r

s=1 µjs )
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where the second sum runs over all choices of r and 1 ≤ i1 < · · · <
ir ≤ a, 1 ≤ j1 < · · · < j2(c−k)−r ≤ b. Consider

2qN−ℓ+c = qc((qN−ℓ − 1) + (qN−ℓ + 1)) =

qc(
|Sp2(N−ℓ)(Fq)|q′
|SO+

2(N−ℓ)(Fq)|q′
+

|Sp2(N−ℓ)(Fq)|q′
|SO−

2(N−ℓ)(Fq)|q′
).

Redistributing terms, this can be re-expressed as the product of

(
|Sp2N(Fq)|q′

|SO2ℓ+1(Fq)× SO+
2(N−ℓ)(Fq)|q′

+
|Sp2N(Fq)|q′

|SO2ℓ+1(Fq)× SO−
2(N−ℓ)(Fq)|q′

)·

dim(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
)

with the fraction

(61)

qc ·
c∑

k=0

q2k(N−ℓ+c) ·
∑

(−1)rq
∑r

s=1 λis+
∑2(c−k)−r

s=1 µjs

qc
2 ·

c∏
i=1

(q2(N−ℓ+i) − 1)

=

c∑
k=0

q2k(N−ℓ+c) ·
∑

(−1)rq
∑r

s=1 λis+
∑2(c−k)−r

s=1 µjs

c−1∏
i=0

(q2(N−ℓ+c) − q2i)

.

.

In particular, the top degree of q in both the numerator and demoniator
of (61) is 2c(N−ℓ+c). Finally, therefore (61) reduces as 1 (contributing
the claimed main term), summed with

c−1∑
k=0

q2k(N−ℓ+c) · (
∑

(−1)rq
∑r

s=1 λis+
∑2(c−k)−r

s=1 µjs −
(
c

k

)
q2
)

c−1∏
i=0

(q2(N−ℓ+c) − q2i)

,

recalling ∑
0≤ℓ1<...ℓc−k≤c−1

q2(ℓ1+···+ℓc−k) =

(
c

k

)
q2
.

□
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The previous terms arise from spillover from previous levele ℓ′ corre-
sponding to representations arising from semisimple elements at stage
ℓ′ with −1 an eigenvalue of multiplicity 2(ℓ − ℓ′). Again, summing
obtains a full sum of sqares of representations of Sp2(N−(m−ℓ))(Fq).

Summing these error terms then gives

(−1)ℓ
|Sp2N(Fq)|q′

|Sp2(N−m+ℓ)(Fq)|q′
|Sp2m(Fq)|q′

Sp2ℓ(Fq)× Sp2(m−ℓ)(Fq)|q′

|Sp2(m−ℓ)(Fq)|
|Sp2(m−ℓ)(Fq)|q′

qN−(m−ℓ) |Sp2ℓ(Fq)|
|Sp2ℓ(Fq)|q′

which equals the ℓth term of (52). □

4.2. Modifications for even-dimensional orthogonal spaces. In
the two cases of W with even dimension dim(W ) = 2m, similar argu-
ments for Theorem 13 apply, with the following modifications:

Case 1: B is totally split In this case, the orders of the parabolic
quotients of O(W,B) = O+

2m(Fq) are

|O+
2m(Fq)/PB,k| =

(
m

k

)
q

·
m−1∏
j=m−k

(qj + 1)

for k = 0, . . . ,m, again writing PB,k for the parabolic subgroup of
O(W,B) with Levi subgroup O+

2(m−k)(Fq) × GLk(Fq). Again, the di-

mension of can be directly computed by taking the dimension of (3)
and recursively computing. The analogue of (47) then is

dim(ω[V ⊗W ]top) =

m∑
i=0

(−1)m−iq(
m−i
2 )
(
m

i

)
q

·
m−1∏
j=i

(qj + 1) · q2iN

The second step of processing the dimension of the top part of the
oscillator representation, analogous to Proposition 15, is
(62)

dim(ω[V ⊗W ]top) =

m∑
ℓ=0

(−1)ℓqℓ(ℓ−1)+(m−ℓ)(m−ℓ−1)

(
m

ℓ

)
q2

(qm−ℓ + qℓ)

(qm + 1)

m−ℓ−1∏
j=0

(q2(N−j) − 1).
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The significance of the coefficients in (62) (similar to (55)) is that
for each ℓ,

(
m

ℓ

)
q2

(qm−ℓ + qℓ)

(qm + 1)

m−ℓ−1∏
i=0

(q2(N−j) − 1) =

1

2

(
|SO+

2m(Fq)|q′ · |Sp2N(Fq)|q′
|SO+

2ℓ(Fq)|q′ · |SO
+
2(m−ℓ)(Fq)|q′ · |Sp2(N−m+ℓ)(Fq)|q′

−

|SO+
2m(Fq)|q′ · |Sp2N(Fq)|q′

|SO−
2ℓ(Fq)|q′ · |SO

−
2(m−ℓ)(Fq)|q′ · |Sp2(N−m+ℓ)(Fq)|q′

)
.

Case 2: B is not totally split. In this case, the order of the parabolic
quotients of O(W,B) = O−

2m(Fq) are

|O−
2m(Fq)/PB,k| =

(
m− 1

k

)
q

·
m∏

j=m−k+1

(qj + 1),

for k = 0, . . . ,m− 1, again writing PB,k for the parabolic subgroup of
O(W,B) with Levi subgroup O−

2(m−k)(Fq)×GLk(Fq). The analogue of

(47) then is

dim(ω[V ⊗W ]top) =
m∑
i=1

(−1)m−iq(
m−i
2 )
(
m− 1

i

)
q

·
m∏

j=i+1

(qj + 1) · q2iN

Then the second step re-expresses (52) as
(63)

dim(ω[V ⊗W ]top) =

m−1∑
ℓ=0

(−1)ℓqℓ(ℓ−1)+(m−ℓ)(m−ℓ−1)

(
m

ℓ

)
q2

(qm−ℓ − qℓ)

(qm − 1)

m−ℓ−1∏
j=0

(q2(N−j) − 1)
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Similarly as in the non-split case, the ℓth factor of (63) can be inter-
preted by (

m

ℓ

)
q2

(qm−ℓ − qℓ)

(qm − 1)

m−ℓ−1∏
i=0

(q2(N−j) − 1) =

1

2

(
|SO−

2m(Fq)|q′ · |Sp2N(Fq)|q′
|SO−

2(m−ℓ)(Fq)|q′ · |SO
+
2ℓ(Fq)|q′ · |Sp2(N−m+ℓ)(Fq)|q′

−

|SO−
2m(Fq)|q′ · |Sp2N(Fq)|q′

|SO+
2(m−ℓ)(Fq)|q′ · |SO

−
2ℓ(Fq)|q′ · |Sp2(N−m+ℓ)(Fq)|q′

)
.

4.3. The case of the odd orthogonal stable range. The same ar-
gument as in the previous subsections also work for a choice of reductive
dual pair (Sp(V ), O(W,B)) in the orthogonal stable range. The same
calculation as in Proposition 14 also holds in this case.

Proposition 17. Consider symplectic and orthogonal spaces V and
(W,B) whose dimensions are in the orthogonal stable range. The di-
mension of the top part of ω[V ⊗W ] is

dim(ω[V ⊗W ]top) =

N∑
i=0

(−1)N−i · q(
N−i
2 ) ·

(
N

i

)
q

·
N∏

j=i+1

(qj + 1) · qi·dim (W ).

(Note again that nothing in the statement or proof of Proposition 17
uses the parity of the dimension of W .)

Again, we process this further:

Proposition 18. Consider symplectic and orthogonal spaces V and
(W,B) The dimension of the top part of the oscillator representation
ω[V ⊗W ]top is

(64)

dim(ω[V ⊗W ]top) =

N∑
ℓ=0

(−1)ℓ · q(N−ℓ)2+ℓ(ℓ−1) ·
(
N

ℓ

)
q2
·
N−ℓ−1∏
i=0

(q2(m−i) − 1).

Denote the ℓth term of (64) by

(65) Xℓ(N,m) := (−1)ℓ · q(N−ℓ)2+ℓ(ℓ−1) ·
(
N

ℓ

)
q2
·
N−ℓ−1∏
i=0

(q2(m−i) − 1).
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In particular, note that

(66) Xℓ(ℓ,m) = (−1)ℓ · qℓ(ℓ−1)

does not depend on m. Recalling that, for any rank r, the order of the
symplectic and odd special orthogonal group is

|Sp2r(Fq)| = |SO2r+1(Fq)| = qr
2

r∏
i=1

(q2i − 1),

we in fact find that
(67)

q(N−ℓ)2 ·
(
N

ℓ

)
q2
·
N−ℓ−1∏
i=0

(q2(m−i) − 1) = |Sp2(N−ℓ)(Fq)|·

|Sp2N(Fq)|q′
|Sp2(N−ℓ)(Fq)× Sp2ℓ(Fq)|q′

· |SO2m+1(Fq)|q′
|SO2(m−N+ℓ)+1(Fq)× SO2(N−ℓ)+1(Fq)|q′

.

In particular, using (66), we find that
(68)

Xℓ(N,m) = Xℓ(ℓ,m−N + ℓ) · |Sp2(N−ℓ)(Fq)|·

|Sp2N(Fq)|q′
|Sp2(N−ℓ)(Fq)× Sp2ℓ(Fq)|q′

· |SO2m+1(Fq)|q′
|SO2(m−N+ℓ)+1(Fq)× SO2(N−ℓ)+1(Fq)|q′

.

It remains to produce the terms Xℓ(N,m) from the summands on
the right hand side of (46).

We will recursively compute

(69)
∑

ρ∈Ŝp(V )

dim(ρ) · dim(ψW,BV (ρ))

using a series of N increasingly accurate approximations. For ℓ =
0, . . . , N , the “level ℓ” approximation will be equal to

X0(N,m) +X1(N,m) + · · ·+Xℓ(N,m),

and will correctly count the terms

(70) dim(ρ) · dim(ψ(V,W,B)(ρ))

for ρ with Lusztig data consisting of a conjugacy class of a semisimple
element s ∈ SO2N+1(Fq) with eigenvalue −1 occuring with multiplicity
less than or equal to 2ℓ.
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Definition 19. Say a representation ρ of a finite group of Lie type
occurs at level ℓ if the conjugacy class (s) of a semisimple element in
its Lusztig data has eigenvalue −1 with multiplicity 2ℓ.

The level ℓ approximation of (69) will also generate some error terms
that must be accounted for in approximations at later levels. At level
ℓ = N , we will have used all previous levels’ errors, and correctly

counted the contribution of every ρ ∈ ̂Sp2N(Fq).

First, we describe the level 0 approximation of (69). Consider irre-
ducible representations ρ[s,u] where s is a conjugacy class of a semisim-
ple element with no −1 eigenvalues. We then have

(71) ZSO2m+1(Fq)(ψ(s)) = (ZSp2N (Fq)(s))
D × Sp2(m−N)(Fq),

ψ(u) = ũ⊗1 (where 1 denotes the trivial representation of Sp2(m−N)(Fq)).
Therefore,

(72) dim(ψ
W,B)
V (ρ)) =

|Sp2m(Fq)|q′
|Sp2(m−N)(Fq)× Sp2N(Fq)|q′

· dim(ρ).

We define the level 0 approximation of (69), by imagining that (72)

holds for every ρ ∈ ̂Sp2N(Fq), giving∑
ρ∈ ̂Sp2N (Fq)

|Sp2m(Fq)|q′
|Sp2(m−N)(Fq)× Sp2N(Fq)|q′

· dim(ρ)2.

We can see that this is

|Sp2m(Fq)|q′
|Sp2(m−N)(Fq)× Sp2N(Fq)|q′

· |Sp2N(Fq)| = XN(0, N).

The error of the level 0 approximation consits of two kinds of contri-
butions for ρ occuring at level 1 ≤ ℓ ≤ N : the “true terms” (70), and
the negative of the “faked terms added at level 0,” which are precisely

(73) − |Sp2m(Fq)|q′
|Sp2(m−N)(Fq)× Sp2N(Fq)|q′

· dim(ρ)2.

Now let us consider the level ℓ approximation for 1 ≤ ℓ ≤ N . For a
representation ρ[s,u,±1] occuring at level ℓ, we have

ZSO2N+1(Fq)(s) = H × SO±
2ℓ(Fq),

where we may consider H as the centralizer of a semisimple element
s′, which is conjugate to the diagonalization of s restricted away from
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the 2ℓ coordinates with eigenvalues −1, in SO2(N−ℓ)+1(Fq):

(74) H = ZSO2(N−ℓ)+1(Fq)(s
′).

The centralizers of semisimple elements of SO2(N−ℓ)+1(Fq) which ap-
pear as (74) are precisely those with no factors of type D or 2D (since
s′ by definition has no −1 eigenvalues). Write a unipotent representa-
tion u of H × SO±

2ℓ(Fq) as

u = uH ⊗ uSO±
2ℓ(Fq)

,

for uH ∈ Ĥu, uSO±
2ℓ(Fq)

∈ ̂SO±
2ℓ(Fq)u. Then the sum of the true terms

contributed by ρ[s,u,1] and ρ[s,u,−1] is the product of the “induction fac-
tor”

(75)
|Sp2N(Fq)|q′ · |Sp2m(Fq)|q′

|H × SO±
2ℓ(Fq)|q′ · |H × SO2(m−n+ℓ)+1(Fq)|q′

dim(uH)
2

with

dim(uSO±
2ℓ(Fq)

)

2
· (dim(ψ+1(uSO±

2ℓ(Fq)
) + ψ−1(uSO±

2ℓ(Fq)
)).

Now (75) can be re-written as
(76)

|Sp2N(Fq)|q′ · |Sp2m(Fq)|q′
|SO2(N−ℓ)+1(Fq)× SO±

2ℓ(Fq)|q′ · |SO2(N−ℓ)+1(Fq)× SO2(m−N+ℓ)+1(Fq)|q′

dim(ρ[s′,uH ])
2,

where ρ[s′,uH ] denotes the irreducible representation of SO2(N−ℓ)+1(Fq)
associated to the Lusztig classification data of s ∈ SO2(N−ℓ)+1(Fq),
uH ∈ ̂ZSO2(N−ℓ)+1(Fq)(s)u. We introduce “faked terms occuring at level

ℓ” which consist of a product of (76) with Xℓ(ℓ,N).

Hence, by induction on N , this reduces (46) to checking the “highest
level” of singularity, i.e. find terms matching the Nth term. The “true”
new representations obtained at level N arise from Lusztig data

[σ±
m,

(
λ1 < · · · < λa
µ1 < · · · < µb

)
,±1],

recalling the description of σ±
m defined by (34) above, where

(
λ1<···<λa
µ1<···<µb

)
denotes a symbol specifying a unipotent representation of SO±

2N(Fq).
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Proposition 20. The sum of the “true” level N terms∑
u∈ ̂SO+

2N (Fq)u

dim(ρ[σ+
N ,u,±1]) · dim(ψV,W (ρ[σ+

N ,u,±1]))+∑
u∈ ̂SO−

2N (Fq)u

dim(ρ[σ−
N ,u,±1]) · dim(ψV,W (ρ[σ−

N ,u,±1]))

(where we sum over both central signs where left ambiguous) and every
level ℓ error contribution for 1 ≤ ℓ ≤ N − 1 to the N th level

(−1)ℓ+1 ·

 ∑
u∈ ̂SO+

2(N−ℓ)
(Fq)

u

dim(u)2 +
∑

u∈ ̂SO−
2(N−ℓ)

(Fq)
u

dim(u)2

 ·XN(ℓ,m)

is equal to
XN(N,m) = qN(N−1).

Proof. First, suppose
(
λ1<···<λa
µ1<···<µb

)
is a non-degenerate symbol of SO±

2N(Fq).
Let us write

x := N −m+
a+ b

2
Then the sum of dimensions

dimSO2N+1(Fq)(
(
λ1<···<λa<x
µ1<···<µb

)
)+

dimSO2N+1(Fq)(
(
λ1<···<λa
µ1<···<µb<x

)
)

is equal to the product of

(77) (qN ± 1) · dimSO±
2N (Fq)

(

(
λ1 < · · · < λa
µ1 < · · · < µb

)
)

with the factor

(78)

a∏
i=1

(qx − qλi)
b∏

j=1

(qx + qµj) +
a∏
i=1

(qx + qλi)
b∏

j=1

(qx − qµj)

(a+b)/2∏
i=1

(qx − qi)(qx + qi)

.

The top q-degrees of the numerator and denominator of (78) clearly
match, and are equal to x(a + b), suggesting a cancellation with the
corresponding “level 0” error term. Our goal is to re-express the nu-
merator of (78) in terms of the previous levels’ error terms. To do this,
we proceed inductively, replacing each error term’s XN(ℓ,m) factor
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with the induction hypothesis for Xℓ(ℓ,m), multiplied by (67). This
will give

(−1)N

2
·

∑ρ∈ ̂SO+
2N (Fq)

dim(ρ)2

|SO+
2N(Fq)|q′

+

∑
ρ∈ ̂SO−

2N (Fq)
dim(ρ)2

|SO−
2N(Fq)|q′

 ,

which is (−1)NqN(N−1) since the q part of the order of |SO±
2N(Fq)| is

qN(N−1).
□

4.4. Modifications for even orthogonal groups. Now consider or-
thogonal spaces W of even dimension dim(W ) = 2m. First, note that
there is no distinction in the dimension of the top part depending on
whether the symmetric bilinear form on W is completely split or not.
Our replacement for the calculation of the dimension of the top part is

Proposition 21. Suppose dim(W ) = 2m, dim (V ) = 2N . Then

(79)

ω[V ⊗W ]top =

N∑
ℓ=0

qℓ
2+(N−ℓ)(N−ℓ−1)

(
N

ℓ

)
q2
·
N−ℓ∏
i=1

(q2(m−N+ℓ+i) − 1)

Write Yℓ(N,m) for the ℓth term of (79), replacing (64).

Let us suppose that the symmetric bilinear form on W is completely
split, i.e. O(W,B) = O+

2m(Fq). (Again the non-split even case follows
similarly.) Consider a semisimple element s of SO2N+1(Fq) with 1 as
an eigenvalue of total multiplicity 2ℓ+ 1. Then its centralizer is of the
form

(80) ZSO2N+1(Fq)(s) = H × SO2ℓ+1(Fq),

for H now denoting a centralizer of a semisimple element with no
1 eigenvalues in an even special orthogonal group (of either parity)
SO±

2(N−ℓ)(Fq). Let us write H ⊆ SOϵ
2(N−ℓ(Fq). Then

(81) ZSO+
2m(Fq)

(ψ(s)) = HD × SOϵ
2(m−N+ℓ)(Fq).

Hence, inductively, the level ℓ approximation in this case has terms
equal to Yℓ(ℓ,m), multiplied by “inductive factor” equal to half of the
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sum of

(82)

|SOϵ
2(N−ℓ)(Fq)|

|SO2N+1(Fq)|q′
|SOϵ

2(N−ℓ)(Fq)× SO2ℓ+1(Fq)|q′

|SO+
2m(Fq)|q′

|SOϵ
2(N−ℓ)(Fq)× SOϵ

2(m−N+ℓ)(Fq)|q′

over the two choices of ϵ = ±. Now (82) can be simplified as

(83)
q(N−ℓ)(N−ℓ−1) ·

(
N

ℓ

)
q2
· (qm − 1) ·

N−ℓ−1∏
i=1

(q2(m−N+ℓ+i) − 1)·

(qN−ℓ + ϵ1) · (qm−N+ℓ + ϵ1),

and we further have

1

2
((qN−ℓ + 1) · (qm−N+ℓ + 1) + (qN−ℓ − 1) · (qm−N+ℓ − 1)) = qm + 1.

Therefore, the average of (83) over the two choices of parity ϵ = ± is

(84) q(N−ℓ)(N−ℓ−1) ·
(
N

ℓ

)
q2

N−ℓ∏
i=1

(q2(m−N+ℓ+i) − 1).

Hence, considering (79), it remains to find

(85) Yℓ(ℓ,m) = qℓ
2

.

Finding these terms proceeds exactly similarly to in the case of odd-
dimensional W , since it is the q-part of the order of SO2ℓ+1(Fq).

In the case when the symmetric bilinear form onW is not completely
split, i.e. O(W,B) = O−

2m(Fq), if we have (80), then instead of (81), we
have

ZSO−
2m(Fq)

(ψ(s)) = HD × SO−ϵ
2(m−N+ℓ)(Fq)

and therefore the inductive factor (82) is replaced by

(86)

|SOϵ
2(N−ℓ)(Fq)|

|SO2N+1(Fq)|q′
|SOϵ

2(N−ℓ)(Fq)× SO2ℓ+1(Fq)|q′

|SO−
2m(Fq)|q′

|SOϵ
2(N−ℓ)(Fq)× SO−ϵ

2(m−N+ℓ)(Fq)|q′
,
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which is simplified as

q(N−ℓ)(N−ℓ−1) ·
(
N

ℓ

)
q2
· (qm + 1) ·

N−ℓ−1∏
i=1

(q2(m−N+ℓ+i) − 1)·

(qN−ℓ + ϵ1) · (qm−N+ℓ − ϵ1).

Now we have
1

2
((qN−ℓ + 1) · (qm−N+ℓ − 1) + (qN−ℓ − 1) · (qm−N+ℓ + 1)) = qm − 1,

again simplifying the average of terms for different parities ϵ = ± into
(84), meaning that it remains to find the same terms (85).

5. An inductive argument

In this section, we conclude the statement of Theorem 2. First, we
note that the toral characters of the eta and zeta correspondence are
determined inductively, by examining the restriction of the oscillator
representations to finite general linear groups. This confirms that the
semisimple and cetnral sign data of ηVW,B(ρ) (resp. ζW,BV (ρ)) matches

that of ϕVW,B(ρ) (resp. ψ
W,B
V (ρ)). This is treated in Subsection 5.1.

It then remains in all cases to confirm the unipotent part of ηVW,B(ρ)

(resp. ζW,BV (ρ)) matches that of ϕVW,B(ρ) (resp. ψW,BV (ρ)). First, we
prove Proposition 3, and conclude that for N >> n, we have

(87) dim(ηVW,B(ρ)) = dim(ϕVW,B(ρ))

(and similarly, for n >> N , we have

(88) dim(ζVW,B(ρ)) = dim(ψVW,B(ρ))).

We may view these dimensions as polynomials of qN (resp. qn). The
results of [11] can be used to see that in either stable range, the idempo-
tent in the endomorphism algebra picking out any summand of the eta
(resp. zeta) correspondence does not depend on N (resp. n). There-
fore, we can apply the description from [11] to see that (96) and (88)
both hold for any choice ofN , n in the symplectic and orthogonal stable
ranges. Therefore, since each unipotent representation corresponding
to a different symbol has a different dimension, we find that our claimed
construction is the only possible choice. Hence, we conclude Theorem
2.

For the remainder of this section, we restrict attention to the case of
the eta correspondence and ϕVW,B, since the case of the zeta correspon-

dence and ψW,BV can be done completely similarly.
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5.1. Determining the semisimple and sign data. The purpose of
this subsection is to prove that the semisimple part (and sign data) of
the Sp(V )-Lusztig classification data of the representation obtained by
applying an eta correspondence ηVW,B(ρ) matches the semisimple part

(and sign data) of our constructed representation ϕVW,B(ρ) (and the

similar statement for ζW,BV and ψW,BV ).
Broadly, this can be concluded since, considering GLN(Fq) ⊆ Sp(V ),

the restriction of the oscillator representation is

ResGLN (Fq)(ω[V ]) ∼= ϵ(det)⊗ CFNq .

Now we also have the restriction

ResGL(V )(ω[V ⊗W ]) ∼= (ResGL(V )(ω[V ]))⊗W

where ⊗W denotes a degree dim(W ) tensor product of oscillator repre-
sentations ω[V ]. Since characters are matched exactly in the premuta-
tion representation factors, for example in the case of odd-dimensional
W , we know the underlying toral character and the sign data. We
now restrict attention to the case of comparing ηVW,B and ϕVW,B, for
(Sp(V ), O(W,B)) in the symplectic stable range. The case of compar-

ing ζW,BV and ψW,BV for the orthogonal stable range is similar.

Proposition 22. Suppose (Sp(V ), O(W,B)) is in the symplectic stable
range. If dim(W ) = 2m+1 is odd, for ρ an irreducible representation of
SO2m+1(Fq) arising from the conjugacy class of a semisimple element
s ∈ SO2m+1(Fq) and a unipotent representation u of its centralizer,
then in the Lusztig classification data of ηVW,B((±1)⊗ρ), its semisimple
part is

(ϕ±(s)) = (s⊕ σ±
N−m).

If dim(W ) = 2m is even, for ρ an irreducible representation of O±
2m(Fq)

arising from an SO±
2m(Fq)-representation corresponding to the conju-

gacy class of a semisimple element s ∈ SO±
2m(Fq) and a unipotent

representation u of its centralizer, then in the Jordan decomposition of
ηVW,B(ρ), its semisimple part is

(ϕ(s)) = (s⊕ I2(N−m)+1).

Proof. Suppose dim(W ) = 2m+ 1. Let us begin by considering

(89) SO±
2 (Fq)× · · · × SO±

2 (Fq)︸ ︷︷ ︸
m
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as a torus of SO(W,B). Fix a character

χa1 ⊗ · · · ⊗ χam ,

corresponding to a1, . . . , am ∈ µq∓1
∼= SO±

2 (Fq). Consider the max-
imal parabolic subgroup with Levi (89) (i.e. the Borel subgroup)
B(W,B) ⊆ SO(W,B). Then, for an irreducible representation ρ with
this character, i.e.

ρ ⊆ IndO(W,B)(χa1 ⊗ · · · ⊗ χam),

we need to prove that ηW,B(ρ) corresponds to a toral character

(90) χa1 ⊗ · · · ⊗ χam ⊗ (ϵ)⊗N−m

in SO±
2 (Fq)× · · · × SO±

2 (Fq)︸ ︷︷ ︸
N

⊆ Sp2N(Fq) (considering ϵ as the qua-

dratic character of µq∓1 = SO±
2 (Fq).

Consider the inclusion of the product of this torus with Sp(V )

(91)
SO±

2 (Fq)× · · · × SO±
2 (Fq)︸ ︷︷ ︸

m

×Sp(V ) ⊆ SO(W,B)× Sp(V )

⊆ Sp(V ⊗W ).

Pick the ith factor SO±
2 (Fq) in (91), taking the inclusion

(92) SO±
2 (Fq)× Sp(V ) ⊆ Sp(V ⊗W )

Restricting ω[V ⊗W ] along (92) gives a restriction

(93) ResSO±
2 (Fq)×Sp(V )(ω[V ⊗ F2

q])⊗ Cq(2m−1)N

considering F2
q with the split and non-split symmetric bilinear form,

respectively, (and taking the trivial action on Cq(2m−1)N
. Recalling the

results of [11], in each factor (93), it decomposes as a SO±
2 (Fq)×Sp(V )-

representation pairing every χai-type SO
±
2 (Fq)-representation with a

representation Sp(V ) in the induction

IndSO
±
2 (Fq)(χai),

considering SO±
2 (Fq) as a factor of a torus in Sp(V ) Since this holds

for every i, it also holds in the restriction of ω[V ⊗W ] along (91): in

ResSO±
2 (Fq)×···×SO±

2 (Fq)×Sp(V )(ω[V ⊗W ]),

the character χa1 ⊗ · · · ⊗ χam as a representation of SO±
2 (Fq) × · · · ×

SO±
2 (Fq) is paired with a representation of Sp(V ) in that character’s in-

duction, viewing the copies of SO±
2 (Fq)’s as blocks in a torus of Sp(V ).
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The remaining factors of ϵ in (90) corresponding to the remaining
N −m factors in a torus of Sp(V ) arise since the restriction of Sp(V )
to a representation of

GLN−m(Fq) ⊆ GL(Λ) ⊆ Sp(V )

is ϵ(det) tensored with a permutation representation.

A similar argument applies to both even-dimensional cases.
□

5.2. The proof of Propostion 3. The purpose of thie subsection is
to prove Propostion 3 by induction. Again, we restrict attention to the
case of N >> n, since the case of n >> N is completely similar.

First, we begin by observing the following

Lemma 23. Fix n, and consider N >> n. Every irreducible represen-
tation of Sp2N(Fq) with N-rank n is constructed by applying ϕVW,B to
an irreducible representation of O(W,B) for n-dimensional orthogonal
space (W,B).

Proof. First suppose dim(W ) = n = 2m+1. Writing out the definition
of ϕW,B, we find that the statement is equivalent to the claim that
every irreducible representation of Sp2N(Fq) of N -rank 2m + 1 arises
from a conjugacy class (s) of a semisimple element of SO2N+1(Fq) with
centralizer

(94)
r∏
i=1

U+
ji
(Fq)×

t∏
i=1

U−
ki
(Fq)× SO2ℓ+1(Fq)× SO±

2(N−m+p)(Fq)

and a unipotent representation u, whose SO±
2(N−m+p)(Fq)-representation

tensor factor uSO±
2(N−m+p)

corresponds to a symbol(
α1 < · · · < αa
β1 < · · · < βb

)
such that either αa = N −m+ p+ a+b−1

2
or βb = N −m+ p+ a+b−1

2
.

First note the prime to q part of the group orders

|SO2N+1(Fq)|q′ =
N∏
i=1

(q2i − 1), |SO2ℓ+1(Fq)|q′ =
ℓ∏
i=1

(q2i − 1),
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for the groups of type B

|SO±
2(N−m+p)(Fq)|q′ = (qN−m+p ∓ 1)

N−m+p−1∏
i=1

(q2i − 1),

for the froup of type D, and

|U+
ji
(Fq)|q′ =

ji∏
u=1

(qu − 1) for i = 1, . . . , r

|U−
ki
(Fq)|q′ =

ki∏
u=1

(qu − (−1)u) for i = 1, . . . , t.

Therefore, the total top degree of q in the quotient of prime to q
parts of group orders (30) is

N∑
i=1

2i− (
ℓ∑
i=1

2i+ (N −m+ p) +

N−m+p−1∑
i=1

2i+
r∑
i=1

ji∑
u=1

u+
t∑
i=1

ki∑
u=1

u),

which can be simplified as

(95) N(N+1)−(ℓ(ℓ+1)+(N−m+p)2+
r∑
i=1

ji(ji + 1)

2
+

t∑
i=1

ki(ki + 1)

2
).

The terms not involving N (arising from SO2ℓ+1(Fq) and the unitary
groups) do not affect the N -rank of the final Sp2N(Fq)-representation,
since

ℓ+
r∑
i=1

ji +
t∑
i=1

ki ≤ m <
N

2
.

The remaining terms of (95) are

N · (1− 2(m− p)) + (m− p)2.

Therefore, no smaller factor of type D can occur than those allowed by
(94).

The condition on the symbol arises since otherwise the factor (24)
contributes additional copies of N , unless it is cancelled by the denom-
inator of (18), which can only occur if the rank N−m+p+(a+b−1)/2
occurs as an entry in the symbol itself.

A similar argument applies to even cases of n = dim(W ).
□

The case of Proposition 3 for N >> n then follows by induction.
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Proof of Proposition 3, part (1). First we consider the case of W with
odd dimensions, and proceed by induction. Suppose for every m′ < m,
we know that the disjoint union of the images of the two eta corre-
spondences ηVW,B such that dim(W ) = 2m′ + 1 is exactly the set of
all irreducible representations of Sp2N(Fq) with N -rank 2m′ + 1, for
N >> m.

Suppose (W,B) forms an orthogonal space of dimension 2m+1. By
the definition of ηVW,B, the sum⊕

ρ∈ ̂O(W,B)

ρ⊗ ηVW,B(ρ)

is the top summand of ω[V ⊗W ]. In particular, its dimension less than
or equal to

dim(ω) = q(2m+1)N ,

so all Sp2N(Fq)-representations of higher N -rank cannot occur in the
image of ηVW,B. Additionally, the images of the different η-correspondences
are all disjoint. Therefore, by the induction hypothesis, no irreducible
representations of lesser odd N -rank may occur in the image of ηW,B.

To conclude Theorem 2, note that the pairing ϕW,B obtains the max-
imal possible dimension

dim(
⊕

ρ∈O(W,B)

ρ⊗ ϕW,B(ρ)).

If a representation of O(W,B) were paired by ηW,B with a Sp2N(Fq)-
representation of lesser N -rank, it would waste dimensions in

dim(
⊕

ρ∈ ̂O(W,B)

ρ⊗ ηW,B(ρ)),

which would be impossible to get back, by Theorem 13, since no other
representations of N -rank 2m+ 1 exist by Proposition 23. □

5.3. Concluding Theorem 2. In this subsection, we first conclude

that for every ρ ∈ ̂O(W,B),

(96) dim(ηVW,B(ρ)) = dim(ϕVW,B(ρ)).

for V of dimension 2N and W of dimension n, with N >> n. In our
construction, for a fixed choice of (W,B) and ρ, for every N ≥ n, the
dimension of our constructed representation ϕVW,B(ρ) for dim(V ) = 2N

can be expressed as a polynomial of qN (see (97) below). On the other
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hand, we recall the results of [11], which allow us to consider the eta
correspondence on the level of idempotents. By the stable description
of the endomorphism algebra of an oscillator representation given in
[11], we also know the dimensions of ηVW,B(ρ) for a fixed ρ and (W,B)

must be polynomial in qN . Therefore, 96 must in fact hold for every
N ≥ n. Combining this with the results of the previous subsection, we
conclude that

ηVW,B(ρ) = ϕVW,B(ρ),

since all symbols have different dimensions.

First, combining Proposition 22, Proposition 3, and Theorem 13
allows us to conclude (96) for N >> n: Our construction ϕVW,B satis-

fies the condition that, for representations ρ, π ∈ ̂O(W,B) such that
dim(ρ) < dim(π), we have

dim(ϕVW,B(ρ)) < dim(ϕVW,B(π)).

Therefore, ϕVW,B is an injective correspondence from which maximizes
the dimension sum ∑

ρ∈ ̂O(W,B)

dim(ρ) · dim(ϕW,B(ρ)),

which we know numerically matches with∑
ρ∈ ̂O(W,B)

dim(ρ) · dim(ηW,B(ρ))

by Theorem 13. Therefore, for N >> n, we must have that the di-
mensions of ηVW,B(ρ) match the dimensions of ϕVW,B(ρ). It remains to
prove that this holds for every N ≥ n, from which we can conclude
that the unipotent parts of their Lusztig classification data agree in
general. We do this now, concluding Theorem 2, art (1). The proof of
Part (2) is similar, using the analogue of Proposition 22 for the zeta
correspondence, and the orthogonal stable cases of Proposition 3, and
Theorem 13.

Proof of Theorem 2, part (1). We restrict attention to the case of W
odd dimensional. The even dimensional case proceeds similarly. Fix
an orthogonal space (W,B) of dimesion n = 2m + 1, and fix an irre-
ducible representation ρ of O(W,B). Considering O(W,B) = Z/2 ×
SO2m+1(Fq), write ρ as a tensor product

ρ = (α)⊗ ρ(s),u
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for α denoting a sign specifying a Z/2-action, and [(s), u] denoting the
SO2m+1(Fq)-Lusztig classification data corresponding to the restriction

of ρ to SO2m+1(Fq). Let us consider the symbol
(
λ1<···<λa
µ1<···<µb

)
associated

to the factor of u corresponding to the −1 eigenvalues of s, as in the
construction of ϕVW,B(ρ). Recall the notation N

′
ρ = N −m+ a+b−1

2
. For

every V of dimension 2N with N ≥ 2m+ 1, the dimension of ϕVW,B(ρ)
is then equal to

(97)

dim(ρ) ·
N∏

i=N ′
ρ+1

(q2i − 1) ·
a∏
i=1

(qN
′
ρ + α · qλi) ·

b∏
i=1

(qN
′
ρ − α · qµi)

2 · q(a+b−1)(a+b+1)/4 · |SO2m+1(Fq)|q′
.,

which is a polynomial expression applied to qN .
On the other hand, let us consider the values of dim(ηVW,B(ρ)) for

V of dimension 2N as a function of N . We recall the description of
endomorphism algebra of ω[V ⊗W ] over Sp(V ) given in Section 2 of
[11]: Considering the Schrödinger model of the oscillator representa-
tion, there is an isomorphism between the endomorphism algebra and
the space of Sp(V )-fixed points in C(V ⊗W )

(98) (EndSp(V )(ω[V ⊗W ]), ◦) ∼= (C(V ⊗W )Sp(V ), ⋆),

where ⋆ is defined by

(v1 ⊗ w1) ⋆ (v2 ⊗ w2) = ψ(
S(v1, v2) ·B(w1, w2)

2
) · (v1 ⊗ w1 + v2 ⊗ w2)

(here ψ denotes the non-trivial additive character corresponding to
1 ∈ F×

q , under our identification of Fq with its Pontrjagin dual). To

consider the eta correspondence ηVW,B, in [11] we consider ω[V ⊗W ] as
a degree dim(W ) tensor product of oscillator representations ωa1 [V ]⊗
· · · ⊗ ωan [V ] (considering B to be equivalent to the symmetric bilinear
form corresponding to a diagonal matrix with entries a1, . . . , an). This
essential corresponds to writing out V ⊗W as a direct sum of n copies
of V . Therefore we also view (98) as describing

(99) EndSp(V )(ωa1 [V ]⊗ · · · ⊗ ωan [V ])).

We note that as long as N ≥ n, the right hand side of (98), as an
algebra, is stable and does not depend on N . Therefore the same lin-
ear combination of n-tuples of V vectors in the right hand side of (98)
describes the idempotent with image ηVW,B(ρ) for any choice of N ≥ n.

In particular, the dimension of ηVW,B(ρ) (expressible as the trace of this

idempotent in (99) for V of dimension 2N , is also polynomial in qN ,
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since, considering one tensor factor at a time, trace of a linear com-
bination of V -vectors (v) as an endomorphism of ωai [V ] is computed
according to

tr((v)) =

{
0 if v ̸= 0

qN if v = 0
.

Hence, since this polynomial agrees with the polynomial (97) for in-
finitely many values i.e., when applied to qN for N large enough, they
must in fact always agree. Therefore, we obtain (96) for every N ≥ n.

Combining this with the results of the previous subsection which
confirm that the semisimple and sign parts of the Lusztig classifica-
tion data for ηVW,B(ρ) and ϕVW,B(ρ) always match, we obtain that the
unipotent parts must match also (since every symbol has a different
dimension). Therefore, we obtain that

ηVW,B(ρ) = ϕVW,B(ρ),

by Lusztig’s classification of irreducible representations, as claimed. □

6. An Explicit Example: The case of SL2(Fq)

Consider, for example, the case of N = 1 (i.e. Sp2(Fq) = SL2(Fq)),
for n = 2m + 1. The oscillator representation ω[F2

q] is q-dimensional,
and decomposes along the central Z/2-action into pieces

ω[F2
q] = ω+[F2

q]⊕ ω−[F2
q]

of dimension (q + 1)/2, (q − 1)/2, respectively. Applying Lemma 17
and Proposition 18 above gives that the top part of ω[F2

q ⊗ W ] has
dimension

q2m+1 − (q + 1) = q · (q2m − 1)− 1.

Consider representations ρ of SL2(Fq). The Lusztig classification
consists of the data of a conjugacy class of a semisimple element

s ∈ SO3(Fq) = SL2(Fq)D,

a unipotent representation u of ZSO3(Fq)(u), and an additional choice
of sign when s has −1 eigenvalues. There are (q−3)/2, resp. (q−1)/2,
conjugacy classes (s) (corresponding to having eigenvalues {λ, λ−1} ⊆
µq−1 ∖ {±1}, resp. µq+1 ∖ {±1}) with

ZSO3(Fq)(s) = U+
1 (Fq), resp. U−

1 (Fq),
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whose only unipotent representation is trivial, and whose corresponding
SL2(Fq)-representation then has dimension

dim(ρ[s,1]) = q + 1, resp. q − 1.

There is a single choice of semisimple conjugacy class (σ±
1 ) each with

centralizer ZSO3(Fq)(s) = SO±
2 (Fq) (corresponding to having eigenvalue

−1 with multiplicity two, with sign determined by the placement of the
last eigenvalue 1, depending on the presentation of the form defining
SO3(Fq)), which again has only the trivial unipotent representation,
giving representations of dimension

dim(ρ[σ±
1 ,1,+1]) = dim(ρ[σ±

1 ,1,−1]) = (q ± 1)/2.

Finally, only (s) = (I) has centralizer the full SO3(Fq), which has
two non-trivial unipotent representations corresponding to symbols

(
1
∅

)
,(

0<1
1

)
, of dimesions 1 and q, respectively.

We call the s with no −1 eigenvalues the “level 0” choices. Call the
other choices of s the “level 1” choices. For the level 0 choices of s, we
have that

ZSp2m(Fq)(ψ(s)) = ZSO3(Fq)D × Sp2(m−1)(Fq),

with ψ(u) defined as the representation corresponding to u of the first
factor, tensored with the trivial representation of Sp2(m−1)(Fq). We
assign the central sign describing the action of of according to the
discriminant of the form on W and the quadratic character This fully
describes ζ(ρ[s,1]) for the level 0 s, and we find

dim(ζ(ρ[s,1])) = dim(ρ[s,1]) ·
|SO2m+1(Fq)|q′

|Sp2(m−1)(Fq)|q′ · |SO3(Fq)|q′
=

dim(ρ[s,1]) ·
q2m − 1

q2 − 1

For both level 1 choices of s (in this case, precisely (s) = (σ±
1 )), we

have

ZSp2m(Fq)(ψ(s)) = Sp2m(Fq),
and we need to assign two choices of unipotent representations in both
cases of the sign. We alter the trivial representation of SO+

2 (Fq) (cor-
responding to the symbol

(
1
0

)
of rank 1, type D) by adjoining the

coordinate m to obtain the two choices of symbols(
1 < m

0

)
,

(
1

0 < m

)
,
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describing unipotent representations of SO2m+1(Fq). Similarly, we alter
the trivial representation of SO−

2 (Fq) (corresponding to the symbol(
0<1
∅

)
of rank 1, type 2D) by adjoining the cooedinate m to obtain the

two choices of symbols(
0 < 1 < m

∅

)
,

(
0 < 1

m

)
.

Therefore, for level 1 representations of SL2(Fq), we have

dim(ζ(ρ[σ+
1 ,1,±1])) =

(qm ± 1)(qm ∓ q)

2(q − 1)

dim(ζ(ρ[σ−
1 ,1,±1])) =

(qm ± 1)(qm ± q)

2(q + 1)
.

We may now apply our general combinatorial argument, but this
case is small enough to verify directly. Indeed, we can explicitly write
out ∑

ρ∈ ̂SL2(Fq)

dim(ρ) · dim(ζ(ρ)) =

q − 3

2
· (q + 1)2(q2m − 1)

q2 − 1
+
q − 1

2
· (q − 1)2(q2m − 1)

q2 − 1
+

(1 + q2)(q2m − 1)

q2 − 1

+
(q + 1)(qm + 1)(qm − q)

4(q − 1)
+

(q + 1)(qm − 1)(qm + q)

4(q − 1)

+
(q − 1)(qm + 1)(qm + q)

4(q + 1)
+

(q − 1)(qm + 1)(qm + q)

4(q + 1)

(the first row corresponds to the level 0 ρ, the second row corresponds to
ρ from (s) = (σ+

1 ), and the third row corresponds to ρ from (s) = (σ−
1 )),

and verify that it equals q(q2m − 1)− 1.
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[1] A.-M. Aubert, W. Kraśkiewicz, T. Przebinda. Howe correspondence and
Springer correspondence for dual pairs over a finite field, In: Lie Algebras,
Lie Superalgebras, Vertex Algebras and Related Topics, Proc. Sympos. Pure
Math., 92, Amer. Math. Soc., Providence, RI, 2016, pp. 17-44.

[2] A.-M. Aubert, J. Michel, R. Rouquier. Correspondance de Howe pour les
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