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SOPHIE KRIZ

Abstract. This is the first in a series of papers on type I Howe
duality for finite fields, concerning the restriction of an oscillator
representation of the symplectic group to a product of a symplec-
tic and an orthogonal group. The goal of the series is describing
this restriction completely. In this first paper, we construct the
correspondence in the two so called stable ranges, where the rank
of one of the factors is large enough with respect to the other.

1. Introduction

This is the first paper in a series dedicated to the Howe correspon-
dence for finite fields, which was first brought into the spotlight by the
paper by S. Gurevich and R. Howe [13]. This is the finite field case of
the Howe duality conjecture [19] for locally compact fields. In rough
terms, the correspondence concerns the decomposition of the restric-
tion of the oscillator representation of a symplectic group to a product
of a symplectic and an orthogonal group which are each other’s cen-
tralizers. The goal of this series of papers is to answer this question
completely.

The case of a finite field is specific in that we are dealing with
finite dimensional representations. The representation theory of in-
finite locally compact fields has continuous parts, which allows for-
mulations suppressing certain “degenerate terms” (see e.g. [19, 10]).
While the representation theory of finite groups is simpler, the de-
generate summands must be understood to get the correct dimension
count. This was the subject of a number of recent papers, for exam-
ple [2, 3, 8, 13, 14, 38, 39, 44]. Our goal is a complete description of
this situation.

This first paper of the series constructs the correspondence in two so
called stable ranges, in which all irreducible representations of either
the symplectic or the orthogonal group occur. We precisely construct
the summands. (In the symplectic stable range, the summands were
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previously described by F. Montealegre-Mora and D. Gross [36] in a less
explicit way.) In the next paper, we will make these summand explicit
using the Lusztig classification of representations of finite groups of Lie
type, (extending the results of S.-Y. Pan [38, 39]). In the last paper
of the series, we extend that descriptions beyond the stable ranges, to
cover all cases of the Howe correspondence.

For a symplectic vector space V over a field k, given a non-trivial
additive character

k → C,
one may consider the associated oscillator or Weil-Shale representation
ω of the symplectic group Sp(V) (when, for example, k = C or Fq), or
the metaplectic group Mp(V) (when k = R or Qp). The question of
Howe duality asks about the decomposition of the restriction of ω to
the product of a reductive dual pair of subgroups of Sp(V) or Mp(V).
Denote this reductive dual pair by G,H. Consider the decomposition

(1) ResG×H(ω) =
⊕

ρ∈Ĝ,π∈Ĥ

µ(ρ, π) · (ρ⊗ π)

for some multiplicities

µ : Ĝ× Ĥ → N0.

(In this paper, for a group G, Ĝ denotes the set of irreducible unitary
G-representations.)

For fields k = C,R, or Qp, there in fact exist subcollections SG

and SH of the irreducible representations of G and H, and a bijective
correspondence (called the theta correspondence)

θ : SG → SH ,

such that

(2)

ResG×H(ω) =∫
ρ∈SG

ρ⊗ θ(ρ) =

∫
π∈SH

θ−1(π)⊗ π.

This result, referred to as Howe duality, is the culmination of a long
history of work, (see, for example, R. Howe, [19] for the case of k =
R and W.T. Gan, S. Takeda, [10] for k = Qp), and has many deep
applications in arithmetic geometry, number theory, and representation
theory. It is an interesting and difficult question to find its appropriate
analogue in the case when k is a finite field. This case, where k = Fq

(for q a power of an odd prime), is the main topic of the present note.
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Due to the large isotropic subspaces of symmetric bilinear forms over
a finite field, a bijective correspondence θ giving a decomposition (2)
is not the correct formalism. Still, one can study the decomposition
of ResSp(V )×O(W,B)(ω[V ⊗W ]), which exhibits interesting relationships
between irreducible representations of Sp(V ) and O(W,B), and many
meaningful patterns regarding which pairs ρ ⊗ π appear in the de-
composition (1) have been constructed and studied, see for example
[2, 3, 8, 13, 14, 38, 39, 44].

As in the context of an infinite locally compact field, over a finite
field, we may still choose to either consider the decomposition of the
restricted oscillator representation to be indexed by the irreducible rep-
resentations of Sp(V )

(3) ResSp(V )×O(W,B)(ω[W ⊗ V ]) =
⊕

ρ∈Ŝp(V )

ρ⊗Ψ(ρ)

or by the irreducible representations of O(W )

(4) ResSp(V )×O(W,B)(ω[W ⊗ V ]) =
⊕

ρ∈Ô(W )

Φ(ρ)⊗ ρ,

for some (not necessarily irreducible or non-zero) Sp(V )- and O(W )-
representations Φ(ρ) and Ψ(ρ). We investigate (3) or (4) by examining
the Sp(V )- or O(W,B)-equivariant endomorphism algebras

EndSp(V )(ω[V ⊗W ]), EndO(W,B)(ω[V ⊗W ]),

respectively (note that in this notation, the choice of B is assumed
to specify the restriction of ω[V ⊗W ] to Sp(V ), but is hidden in the
notation). It intuitively makes sense to consider (3) (resp. (4)) if in the
reductive dual pair (Sp(V ), O(W,B)) the symplectic group is “much
larger” (resp. “much smaller”) than the orthogonal group.

The case of reductive dual pairs (Sp(V ), O(W,B)) where V has a
large enough dimension compared to W (specifically, where dim(V ) ≥
2dim(W )), which we will refer to as the symplectic stable case, has
been especially studied. S. Gurevich and R. Howe [13] proved that
in this case, every irreducible representation ρ of O(W,B) appears in
the restriction of ResSp(V )×O(W,B)(ω[V ⊗W ]) further to O(W,B), and
therefore, there exists a non-zero representation of Sp(V ) whose tensor
product with ρ is a summand of ResSp(V )×O(W,B)(ω[V ⊗W ]). Further,
there is a unique “top” irreducible piece of this representation giving
the eta correspondence η(ρ), which was constructed by S. Gurevich
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and R. Howe to specifically have highest U-rank (see [13, 14] for more
details). Here, we write

ηVW,B : ̂O(W,B) ↪→ Ŝp(V )

for the eta correspondence (we omit the subscript and superscript when
they are clear).

Examining the structure of the endomorphism algebra of oscillator
representations (and their tensor powers) can be used to investigate
ηVW,B and derive an explicit decomposition of the restricted oscillator
representation in terms of it. In fact, from this perspective, the roles of
the symplectic and orthogonal groups can be switched. In this paper,
we find that for an opposite orthogonal stable range (where dim(V ) is
less than or equal to the dimension of the maximal isotropic subspace
of W ), there exists a system of injections

ζW,B
V : Ŝp(V ) ↪→ ̂O(W,B)

we call the zeta correspondence, along with an accompanying explicit
decomposition of the restricted oscillator representations. Like ηVW,B in

the symplectic stable range, ζW,B
V all have disjoint images in the orthog-

onal stable range, each giving a new range of O(W,B)-representations.
To state this concretely, we introduce some notation.

Consider an n-dimensional orthogonal space and form bilinear form
(W,B), and a 2N -dimensional symplectic space and form (V, S). The
maximal dimension of an isotropic subspace of V with respect to S is
N . We denote by hW the maximum dimension of an isotropic subspace
of W with respect to B. Over a finite field, in the case when n = 2m
is even, we either have hW = m − 1 or m (giving rise to the two
orthogonal groups O+

2m(Fq) and O−
2m(Fq), respectively). In the case

when n = 2m + 1 is odd, then we must have hW = m. Then B
can be expressed as a direct sum of hW copies of the 2-dimensional

hyperbolic symmetric bilinear form

(
0 1
1 0

)
, and a final anisotropic

part of dimension 0, 1, or 2. For k the dimension of an isotropic space
Z in V (resp. W ), we denote by (V [−k], S[−k]) (resp. (W [−k], B[−k]))
the subspace of dimension 2N−2k (resp. n−2k) and its accompanying
non-degenerate symplectic (resp. symmetric) form, which are obtained
by projecting away from Z and its dual in V with respect to S (resp.
B). Let us also denote by P V

k (resp. PB
k ) the parabolic subgroups of

Sp(V ) (resp. O(W,B)) corresponding to an k-dimensional isotropic
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subspace of V (resp. W ) with Levi subgroup

GLk(Fq)× Sp2N−2k(Fq)

(resp.

GLk(Fq)×On−2k(Fq)).

The stable ranges are characterized by the smaller of the symplec-
tic and orthogonal spaces being of a lesser or equal dimension to the
maximal dimension of an isotropic subspace of the other space and
form:

Definition 1. Consider a reductive dual pair (Sp(V ), O(W,B)) of sub-
groups of Sp(V ⊗W ). Assume the previous paragraph’s notation.

(1) We say (Sp(V ), O(W,B)) is in the symplectic stable range if
n ≤ N .

(2) We say (Sp(V ), O(W,B)) is in the orthogonal stable range if
2N ≤ hW .

The purpose of this paper is then to prove the following

Theorem 2. There are mirroring results in the two stable ranges of
reductive dual pairs:

(1) For (Sp(V ), O(W,B)) in the symplectic stable range, we find

(5) EndSp(V )(ω[V ⊗W ]) =

hW⊕
k=0

M|O(W,B)/PB
k |(CO(W [−k], B[−k]))

giving an explicit isomorphism of ResSp(V )×O(W,B)(ω[V ⊗ W ])
with

(6)

hW⊕
k=0

⊕
ρ∈ ̂O(W [−k],B[−k])

ηV (ρ)⊗ IndP
B
k (ρ⊗ ϵ(det))

where ϵ(det) is considered as a representation of the GLk(Fq)
factor of the Levi factor of PB

k in each term.

(2) For (Sp(V ), O(W,B)) in the orthogonal stable range, we find

(7) EndO(W,B)(ω[V ⊗W ]) ∼=
N⊕
k=0

M|Sp(V )/PV
k |(CSp(V [−k]))

In fact, there exists a system of injections

ζ
(W,B)
V : Ŝp(V ) ↪→ ̂O(W,B)
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with disjoint images such that ResSp(V )×O(W,B)(ω[V ⊗W ]) de-
composes as

(8)
N⊕
k=0

⊕
ρ∈ ̂Sp(V [−k])

IndP
V
k (ρ⊗ ϵ(det))⊗ ζ(W,B)(ρ),

where ϵ(det) is considered as a representation of the GLk(Fq)
factor of the Levi factor of P V

k in each term.

Comment: The existence of the isomorphism (6) was established from
the point of view of mathematical physics by F. Montealegre-Mora and
D. Gross [36]. In this paper, we follow a different approach which can
be applied to both the symplectic and orthogonal stable ranges, and
which gives an explicit combinatorial formula for the decomposition.

In the stable ranges, we can use these results to find an explicit
description of ηVW,B and ζW,B

V in terms of Lusztig’s classification of irre-
ducible representations of finite groups of Lie type, using information
about the possible dimensions of irreducible representations of Sp(V ),
O(W,B). This is done in [29, 30], (extending the results of [38, 39]).

These results obtain explicit decompositions ofResSp(V )×O(W,B)(ω[V⊗
W ]) in the symplectic and orthogonal stable ranges, covering about half
of the general cases of type I reductive dual pairs (Sp(V ), O(W,B)).
One may ask if Theorem 2 and the following results in [29, 30] can
be extended into the unstable ranges, and specifically the cases up to
and including the “middle” where the ranks of Sp(V ) and O(W,B)
are equal or close. This is possible using interpolated category theory,
and this result is concluded in [31] (completing a full description of
ResSp(V )×O(W,B)(ω[V ⊗W ]) for a general case of (Sp(V ), O(W,B))).

The present paper is organized as follows: In Section 2, we discuss
the endomorphism algebras of ω[V ⊗W ] over Sp(V ) and O(W,B). We
interpret endomorphisms fixed points in CV⊗W and introduce an oper-
ation ⋆ corresponding to ◦. Using this description, we can elementarily
calculate the dimensions of EndSp(V )(ω[V ⊗W ]) and EndO(W,B)(ω[V ⊗
W ]) and find elements corresponding to generators of the group al-
gebras of orthogonal and symplectic groups, respectively. In Section
3, we prove a combinatorial identity verifying that the dimensions of
both sides of (5), (7) match, and therefore they are equal. In Section 4,
we use an inductive argument and information about Hom-spaces be-
tween oscillator representations (and their tensor powers) to conclude
Theorem 2.
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2. The endomorphism algebra of an oscillator
representation

In this section, we discuss the structure of the endomorphism alge-
bra of a tensor products of oscillator representations. In Subsection
2.1, we express the endomorphism algebra over G ⊆ V of an oscillator
representation ω[V] as isomorphic to the fixed point space CVG with
a certain algebra operation. In Subsection 2.2, we use this to compute
the dimension of the endomorphism algebra of ω[V ⊗W ] over Sp(V )
and O(W,B). In Subsection 2.3, we discuss the “top part” of the endo-
morphism algebra of a restricted oscillator representation over Sp(V )
or O(W,B), and find the group algebra CO(W,B) in the top part over
Sp(V ), in the case of (Sp(V ), O(W,B)) in the symplectic stable range.
In Subsection 2.4, we find the group algebra CSp(V ) in the top part
of the endomorphism algebra of ω[V ⊗W ] over O(W,B).

2.1. Endomorphisms and the Schrödinger model. First, consider
a general symplectic space and form (V,S). Recall that for an oscillator
representation ωa[V], its dual is the oscillator representation of opposite
character ω−a[V] (see [16]). Their tensor product gives the standard
representation CV, where Sp(V) acts geometrically.

Hence, for a subgroup G ⊆ Sp(V), the endomorphism algebra of the
restriction of the oscillator representation to G is, as a vector space,

EndG(ωa[V]) ∼= HomG(1, ωa[V]⊗ ω−a[V]) ∼= (CV)G,

which can also be considered as the C-vector space with a basis indexed
by G-orbits on V.

In fact, we can introduce an operation ⋆V on CV corresponding to
composition in the endomorphism algebra such that, as C-algebras,

(EndV ect(ωa[V]), ◦) ∼= (C(V), ⋆V)

(for subgroups G ⊆ Sp(V), the endomorphism algebra of ω[V] over
G is again isomorphic to the subalgebra generated by G-orbits on V).
We put, for u, v ∈ V,

(u) ⋆V (v) = ψa(
1

2
S(u, v)) · (u+ v).

This can be considered as an “untwisted” variant of the algebra opera-
tion arising from the Schrödinger model of the oscillator representation:
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Recall that for a decomposition of a symplectic space V into La-
grangians Λ+ ⊕ Λ−, we may identify ωa[V] ∼= CΛ−. The action of
an element (v, c) of the Heisenberg group H (for v ∈ V, c ∈ Fq) on a
generator x ∈ Λ− is given by

(v, c)(x) = ψa(c+
1

2
S(v+, x)) · (v− + x),

where v = v+ + v− is the unique decomposition of a vector v into
v+ ∈ Λ+, v− ∈ Λ−. This gives ωa[V] the structure of a Weil-Shale rep-
resentation. The action of Sp(V) making it an oscillator representation
arises from the uniquess of the Weil-Shale representation for each cen-
tral character. We then see a natural action of an algebra (CV, ∗V)
for algebra operation ∗ given by, for u = u+ + u−, v = v+ + v− ∈ V,
u±, v± ∈ Λ±,

(u) ∗ (v) = ψa(S(u+, v−)) · (u+ v)

(See also Remark 7.2.6 of [13], identifying a vector generator (v) with
its indicator function.)

Applied to x ∈ Λ−, a vector v ∈ (CV, ∗V) acts by

(v)(x) = ψa(S(v+, x)) · (v− + x).

Now our choice of algebra (CV, ⋆V) is isomorphic to the algebra
(CV, ∗V) along

(CV, ⋆V) → (CV, ∗V)

(v) 7→ ψa(
1

2
S(v+, v−)) · (v)

for v = v++ v− ∈ V with v± ∈ Λ±. Therefore, an element v ∈ (CV, ⋆)
acts on x ∈ Λ− by

(9) (v)(x) = ψa(S(v+, x) +
1

2
S(v+, v−))(v− + x)

for v = v+ + v− with v± ∈ Λ±.
For a vector v ∈ V, considering it as an endomorphism (v) ∈ CV =

EndV ect(ωa[V]), its trace is

tr(v) =

{
0, for v ̸= 0

|V| for v = 0

where |V| denotes the set order of V.

Applying this to the present situation, whereV = W⊗V , S = B⊗S,
we have (EndV ect(ω[W ⊗V ]), ◦) ∼= (C(W ⊗V ), ⋆W⊗V . For u1, u2 ∈ W ,
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v1, v2 ∈ V

(10)

(v1 ⊗ w1) ⋆V⊗W (v2 ⊗ w2) =

ψ(
S(v1, v2) ·B(w1, w2)

2
) · (v1 ⊗ w1 + v2 ⊗ w2).

When the ground space is clear, we omit the subscript in ⋆ (in this
context, it will typically be V ⊗W ). In particular, we have that the
Sp(V )- and O(W,B)-equivariant endomorphism algebras on ω[V ⊗W ]
can be expressed as

(11) (EndSp(V )(ω[V ⊗W ]), ◦) ∼= (C(V ⊗W )Sp(V ), ⋆)

(12) (EndO(W,B)(ω[V ⊗W ]), ◦) ∼= (C(V ⊗W )O(W,B), ⋆)

2.2. Counting orbits. In this subsection, we calculate the dimensions

dim(EndSp(V )(ω[V ⊗W ])) = dim(C(V ⊗W )Sp(V )),
dim(EndO(W,B)(ω[V ⊗W ])) = dim(C(V ⊗W )O(W,B))

by counting the numer of orbits of Sp(V ) on V ⊗W = V ⊕n and the
number of orbits of O(W,B) on V ⊗W = W⊕2N , respectively.

Lemma 3. Consider a symplectic space V of dimension 2N and an
space with symmetric bilinear form (W,B) of dimension n with maxi-
mal dimension of an isotropic subspace denote by hW .

(1) If (Sp(V ), O(W,B)) for a reductive dual pair in the symplectic
stable range i.e. n ≤ N , then

(13) dim(C(V ⊗W )Sp(V ))) = 2(q + 1) . . . (qn−1 + 1)

(2) If (Sp(V ), O(W,B)) for a reductive dual pair in the orthogonal
stable range i.e. 2N ≤ hW , then

(14) dim(C(V ⊗W )O(W,B)) = (q + 1)(q2 + 1) . . . (q2N + 1)

Proof. We begin with the proof of (1). We write S for the symplectic
form on V . For (14), we need to compute the number of Sp(V )-orbits
on V ⊗ W = V ⊕n (with Sp(V ) acting diagonally). First recall that
orbits of this Sp(V ) action on n-tuples of vectors in V correspond to
the data of

• A d×n matrixM over Fq in reduced row echelon form for some
0 ≤ d ≤ n.

• A choice of
(
d
2

)
scalars ai<j corresponding to each pair of indices

i < j ∈ {1, . . . , d}.
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Given this data, its corresponding Sp(V )-orbit is

(15)
{(v1, . . . , vd) ·M | v1, . . . , vd ∈ V linearly independent,

for every i < j S(vi, vj) = ai<j}

(where (v1, . . . , vd) ·M is computed by treating (v1, . . . , vd) as a 1× d
matrix, so that the result is a 1 × n matrix of vectors in V , i.e. is
an element of V ⊕n). Now the range condition that n ≤ N precisely
ensures that every choice of data (M,ai<j) gives a non-empty orbit
(15), since (15) is non-empty if and only if

dim(V ) ≥ d+ dim(ker(S|⟨v1,...,vd⟩))
where S|⟨v1,...,vd⟩ denotes the possibly degenerate symplectic form ob-
tained from restricting S to the span of v1, . . . , vd.

Therefore, it suffices to count all choices of data (M,ai<j). Given

M , the number of choices of scalars (ai<j) is q(
d
2). Now the number

of d× n matrices in reduced row echelon form is well-known to be the
q-combination number

(
n
d

)
q
, giving

(16) dim(EndSp(V )(ω[V ⊗W ])) =
n∑

d=0

(
n

d

)
q

· q(
d
2).

To see the simplification to (14) elementarily, it is actually easier to
naively write down the number of reduced row echelon d× n matrices
as (

n

d

)
q

=
∑

1≤ℓ1<···<ℓd≤n

qdn−(ℓ1+···+ℓd)−(d2),

taking ℓi to be the length of each row from the left up to an including
the pivot, which leaves exactly dn− (ℓ1+ · · ·+ ℓd)−

(
d
2

)
un-determined

entries (the
(
d
2

)
= 1 + 2 + · · · + (d − 1) term arises from the entries

directly above a pivot being 0). Using this in (16) gives

dim(EndSp(V )(ω[V ⊗W ])) =
∑

1≤ℓ1<···<ℓd≤n

qdn−(ℓ1+···+ℓd) =

∑
1≤ℓ1<···<ℓd≤n

∏
qn−ℓi =

n−1∏
j=0

(qj + 1),

as claimed.

The proof of (2) follows similarly: As in the symplectic case, the
orbits of O(W,B) on V ⊗W = W⊕2N correspond to the data of

• A d × 2N matrix M over Fq in reduced row echelon form for
some 0 ≤ d ≤ 2N .
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• A choice of
(
d+1
2

)
=
(
d
2

)
+ d scalars ai≤j corresponding to each

pair of indices i ≤ j ∈ {1, . . . , d}.
The orbit corresponding to (M,ai≤j) is

(17)
{(v1, . . . , vd) ·M | v1, . . . , vd ∈ V linearly independent,

for every i ≤ j B(vi, vj) = ai≤j}

(again, treating (v1, . . . , vd) as a 1 × d matrix). As before, the range
condition precisely ensures that each (17) from any choice of (M,ai≤j)
is non-empty. (We note that the cardinality of (17), like the range
condition, depends on the form of B when n is even.) Therefore, by
the above argument, we have

dim(EndO(W,B)(ω[V ⊗W ])) =
2N∑
d=0

(
2N

d

)
q

· q(
d
2)+d,

which can be simplified using the naive expression for
(
2N
d

)
q
to

dim(EndO(W,B)(ω[V ⊗W ])) =
∑

1≤ℓ1<···<ℓd≤2N

qd(2N+1)−(ℓ1+···+ℓd) =

∑
1≤ℓ1<···<ℓd≤2N

∏
q2N+1−ℓi =

2N∏
j=1

(qj + 1),

as claimed.
□

2.3. The “top subalgebra” and generators of the orthogonal
group. First note that

(18) ResSp(V )(ω[V ⊗W ]) ∼= ωa1 [V ]⊗ · · · ⊗ ωan [V ]

where a1, . . . , an are the eigenvalues of B and

(19) ResO(W,B)(ω[V ⊗W ]) = (ResO(W,B)(ω[F2
q ⊗W ])⊗N ,

where we consider ω[F2
q ⊗W ] to be the oscillator representation on F2

q

with the standard symlectic form tensored with (W,B). We take its
restriction along the inclusion

O(W,B) ↪→ SL2(Fq)×O(W,B)

(writing SL2(Fq) = Sp(F2
q)). In fact, we note that actually the restric-

tion

(20) ResO(W,B)(ω[F2
q ⊗W ]) ∼= CW−
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is isomorphic to the (twisted) permutation representation of O(W,B),
where − indicates the sign character of Z/2 = O(W,B)/SO(W,B), (by
considering first the restriction to GL(W )).

Now to approach both the symplectic and orthogonal stable ranges,
our strategy will be to first consider the top subalgebras

EndtopSp(V )(ω[V ⊗W ]) ⊆ EndSp(V )(ω[V ⊗W ]),

EndtopO(W,B)(ω[V ⊗W ]) ⊆ EndO(W,B)(ω[V ⊗W ]),

consisting of endomorphisms of the restricted oscillator representations
considered as the tensor products (18), (19) which do not factor through
a lower degree tensor product of factors ωa[V ], ResO(W,B)(ω[F2

q ⊗W ]),
respectively. In the symplectic case, in the language of Gurevich and
Howe, EndtopSp(V )(ω[V ⊗W ]) is precisely the endomorphism algebra of

the part of ResSp(V )(ω[V ⊗W ]) with highest ⊗-rank.

The purpose of the next two subsections is to prove the following

Proposition 4. Suppose V is a symplectic space of dimension 2N and
W is an n-dimensional space with symmetric bilinear form B. Write
hW for the maximal dimension of an isotropic subspace of W with
respect to B.

(1) If (Sp(V ), O(W,B)) is in the symplectic stable range, then

(21) CO(W,B) ⊆ EndtopSp(V )(ω[V ⊗W ])

(2) If (Sp(V ), O(W,B)) is in the orthogonal stable range, then

(22) CSp(V ) ⊆ EndO(W,B)(ω[V ⊗W ]),

In fact, in both cases, this group algebra will act on ω[V ⊗ W ] pre-
cisely according to the representation action as a subgroup of Sp(V )×
O(W,B) ⊆ Sp(V ⊗W ).

In this subsection, we will prove part (1) of this proposition, for
(Sp(V ), O(W,B)) in the symplectic stable range. The case is simpler
since the orthogonal group has a simpler set of generators that the sym-
plectic group. Due to the complexity of the generators of Sp(V ) and
their corresponding elements in EndO(W,B)(ω[V ⊗W ]) as the fixed point

space (CV ⊗W )O(W,B), we will treat part (2) separately in Subsection
2.4 below.

Proof of Proposition 4, part (1). In the orthogonal groupO(W,B), con-
sider the set of generators consisting of Our approach will be to find
generators corresponding to
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Let us consider, for λ = (λ1, . . . , λn) a 1×nmatrix over Fq in reduced
row echelon form, the element

fλ :=
∑
v∈V

(λ1v, . . . , λnv) =
∑
v∈V

v ⊗ λ ∈ (CV ⊗W )Sp(V )

(we may consider λ ∈ Fn
q = W .

Lemma 5. For λ ∈ W a 1 × n matrix in reduced row echelon form
such that B(λ, λ) ̸= 0, the element fλ/q

N is a reflection

(23) (fλ/q
N) ⋆ (fλ/q

N) = (0) = Idω[V⊗W ]

Proof. Suppose λ ∈ W is a 1× n matrix in reduced row echelon form.
Then, applying (10), we get that

(24)

fλ ⋆ fλ =
∑
u,v∈V

(u⊗ λ) ⋆ (v ⊗ λ) =

∑
u,v∈V

ψ(
B(λ, λ) · S(u, v)

2
)((u+ v)⊗ λ).

If B(λ, λ) ̸= 0, substituting u′ = u+ v gives

fλ ⋆ fλ =
∑
u,v∈V

ψ(
S(u′, v) ·B(λ, λ)

2
) · (u′ ⊗ λ).

Collecting terms, for each non-zero u′ ∈ V , the coefficient of u′ ⊗ λ
is a non-trivial sum of characters, giving 0. At u′ = 0, each v ∈ V
contributes coefficient ψ(0) = 1. Hence,

fλ ⋆ fλ = q2N · (0) ∈ (CV ⊗W )Sp(V ),

giving (23).
□

Now we verify that these proposed generators fλ for λ satisfying
B(λ, λ) ̸= 0 really do act as the reflection elements of O(W,B) across
the orthogonal hyperspaces in W to each λ. To see this we use the
Schrödinger model for each factor ωai [V ] in ResSp(V )(ω[V ⊗ W ]) =
ωa1 [V ]⊗ · · · ⊗ ωan [V ] and use (9) to each ωai [V ].

Claim 1. Consider a λ ∈ W in reduced row echelon form such that
B(λ, λ) ̸= 0. For x ∈ Λ−, w ∈ W , we have

(25)
fλ(x⊗ w)

qN
= x⊗ (w − 2

wBλT

B(λ, λ)
λ).
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Proof of Claim 1. Fix λ ∈ W in reduced row echelon form such that
B(λ, λ) ̸= 0. Consider an element x ∈ Λ−, w = (w1, . . . , wn) ∈ W =
Fn
q . Writing out fλ, we have

(26)

fλ(w ⊗ x) = fλ(w1x, . . . , wnx) =∑
v±∈Λ±

(λ1v+ + λ1v−, . . . , λnv+ + λnv−)(x1, . . . , xn)

Recalling (9), for each i = 1, . . . , n, applying an element λiv+ + λiv−
of V acts on xi ∈ Λ−, according to the structure of ωai [V ], by

(λiv+ + λiv−)(wix) =

ψai(λiwi · S(v+, x) + λ2i
S(v+, v−)

2
)(λiv− + wix).

Therefore, in the tensor product ωa1 [V ]⊗ · · · ⊗ ωan [V ], a term of (26)
for a choice of v+ ∈ Λ+, v− ∈ Λ− reduces to the n-tuple of vectors

(27) (λ1v− + w1x, . . . , λnv− + wnx) = λ⊗ v− + w ⊗ x,

writing λ⊗v− = (λ1v−, . . . , λnv−) as a 1×n matrix with entries in Λ−,
multiplied by the coefficient

(28)

ψ(
n∑

i=1

ai(λiwi · S(v+, x) + λ2i
S(v+, v−)

2
)) =

ψ1(S(v+,
n∑

i=1

ai(λiwix+
λ2i v−
2

))).

Now, since the term (27) does not depend on v+, for a fixed v−, its
coefficient in (26) is the sum over all v+ ∈ Λ+ of terms (28). Again,
since linear sums of characters are 0, this gives that the coefficient of
(27) vanishes unless

(29)
n∑

i=1

ai(λiwix+
λ2i v−
2

) = 0,

in which case for every choice of v+ (28) is 1, and therefore the coeffi-
cient is qN . Now we may rewrite (29) as

(a1λ
2
1 + · · ·+ anλ

2
n)v−

2
+ (

n∑
i=1

aiλiwi)x =
B(λ, λ)

2
v− + (wBλT ) · x,

using wBλT =
∑n

i=1 aiλiwi, considering λ as a 1 × n matrix, B as an
n× n matrix, and wT = (w1, . . . , wn)

T as an n× 1 matrix. Therefore,
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the only surviving term (27) occurs with coefficient qN for

v− = −2
wBλT

B(λ, λ)
x.

Substituting this in (27), we get that

fλ(w ⊗ x) = qN · (x⊗ (w − 2
wBλT

B(λ, λ)
λ)),

giving (25). □

Since these reflections generate O(W,B), this claim therefore implies
that for any ϕ ∈ O(W,B), it acts on an element x⊗ w ∈ Λ− ⊗W by

x⊗ w 7→ x⊗ ϕ(w),

which is precisely its action as an element of O(W,B) ⊆ Sp(V ) ×
O(W,B) ⊆ Sp(V ⊗ W ). Therefore the subalgebra generated by the
elements fλ for λ ∈ W in reduced row echelon form such that B(λ, λ) ̸=
0 is isomorphic to the group algebra

CO(W,B) ⊆ EndSp(V )(ω[V ⊗W ])

with each generating group element acting according to the geometric
representation action on ω[V ⊗ W ]. In particular, every generating
element of O(W,B) is an automorphism of ω[V ⊗W ], and therefore
cannot factor through any smaller tensor power of oscillator represen-
tations ωa[V ]. Hence, it is in the top part of the endomorphism algebra
and we have (21). □

Remark: One may ask what the significance of an element fλ is for
λ ∈ W in reduced row echelon form such that B(λ, λ).

Proposition 6. Suppose λ1, . . . , λk ∈ W are 1×n matrices in reduced
row echelon form which are linearly independent and such that their
span ⟨λ1, . . . , λk⟩ ⊆ W is an isotropic subspace with respect to B. Then
fλi
/q2N are all commuting idempotents and

(30) Im(
fλ1 ⋆ · · · ⋆ fλk

q2Nk
) ∼= ResSp(V )(ω[V ⊗W [−k]])

considering the restriction of ω[V ⊗W [−k]] to Sp(V ) along the inclu-
sion

Sp(V ) ↪→ Sp(V )×O(W [−k], B[−k]) ↪→ Sp(V ⊗W [−k]).



16 SOPHIE KRIZ

Proof. Now in the case when B(λ, λ) = 0, in (24), the coefficient of
every term is trivial. Substituting u′ = u+ v gives

fλ ⋆ fλ =
∑

u′,v∈V

u′ ⊗ λ = q2Nfλ,

and so fλ/q
2N is an idempotent. Now for any λ, µ ∈ W considered as

1× n matrices in reduced row echelon form, we have

fλ ⋆ fµ =
∑
u,v∈V

(u⊗ λ) ⋆ (v ⊗ µ) =

∑
u,v∈V

ψ(
B(λ, µ) · S(v, w)

2
) · (u⊗ λ+ v ⊗ µ).

In particular, this immediately gives that for λ, µ such that ⟨λ, µ⟩ is
isotropic with respect to B then fλ and fµ commute.

It remains to prove that (30) holds. Fix k ≤ hW . For simplicity,
without loss of generality, let us write

(31) B =

(
1 0
0 −1

)⊕k

⊕B[−k], B[−k] =


a2k+1 0 . . . 0
0 a2k+2 0
...

...
0 0 . . . an


(i.e. B is diagonal, and the first 2k diagonal entries are alternating
±1). Then (18) gives

(32)
ResSp(V )(ω[V ⊗W ]) =

(ω[V ]⊗ ω−1[V ])⊗k ⊗ResSp(V )(ω[V ⊗W [−k]]).
Let us consider an individual ω[V ]⊗ ω−1[V ] factor, i.e. consider the

case of n = 2 and B =

(
1 0
0 −1

)
. In this case, λ = (1, 1) gives an

idempotent

f(1,1)/q
2N =

1

q2N

∑
v∈V

(v, v).

Now the only term of f(1,1)/q
2N contributing to its trace is v = 0, giving

dim(Im(f(1,1)/q
2N)) = tr(f(1,1)/q

2N) = 1,

and hence Im(f(1,1)/q
2N) is the trivial representation of Sp(V ) (since

it is the only one-dimensional dimension).
Now let us return to the general case of n and B of the form (31).

Consider λi to be the n-tuple with all entries 0 except for the (2i−1)th
and 2ith which are prescribed to be 1. Then as an element of (32),
each fλi

is a tensor product of Idω[V ]⊗ω−1[V ] factors, except for the ith
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one, which is replaced by a factor f(1,1) ∈ End(ω[V ] ⊗ ω−1[V ]), with
Idω[V⊗W [−k]]. Therefore, we may consider

fλ1 ⋆ · · · ⋆ fλk

q2Nk
= (f(1,1))

⊗k ⊗ Idω[V⊗W [−k]],

which then has image

1⊗k ⊗ResSp(V )(ω[V ⊗W [−k]]) = ResSp(V )(ω[V ⊗W [−k]]).

To get the statement in the general case of λ1, . . . , λk, note that the
images of idempotents (fλ1 ⋆ · · · ⋆ fλk

)/q2Nk) for λi ∈ W generating
a k-dimensional isotropic subspace are isomorphic, since any basis of
any k-dimensional istorpic subspace can be transformed into any other
using an orthogonal group element, by Witt’s Theorem. Hence, all
images of such (fλ1 ⋆ · · · ⋆ fλk

)/q2Nk) are isomorphic. □

2.4. Generators of the symplectic group. The purpose of this sub-
section is to prove Proposition 4, part (2) in the case when the reductive
dual pair (Sp(V ), O(W,B)) in Sp(V ⊗W ) is in the orthogonal stable
range.

Proof of Proposition 4, (2). We use the same method as in the previ-
ous subsection, by finding elements of C(V ⊗ W )O(W,B) and proving
they act on ω[V ⊗W ] according to the representation-theory action of
corresponding generators of Sp(V ).
Let us again recall how to apply an endomorphism in We will again

use the Schrödinger model of ω[V ⊗W ]. Let us write V = Λ+ ⊕ Λ−

for V ’s decomposition into complementary Lagrangians with respect to
S. According to (9), writing an element of the algebra (C(V ⊗W ), ⋆)
as (v+1 + v−1 , . . . , v

+
n + v−n ) for v±i ∈ Λ±, and writing an element of

ω[V ⊗W ] = CW ⊗ Λ− as (x1, . . . , xn) for xi ∈ Λ−, we have

(33)

(v+1 + v−1 , . . . , v
+
n + v−n ) · (x1, . . . , xn) =

ψ(
n∑

j=1

ai · (S(v+i , xi) +
S(v+i , v

−
i )

2
)) · (v−1 + x1, . . . , v

−
n + xn)

(where ψ denotes the non-trivial additive character corresponding to
our choice of oscillator representation ω).

To write this in terms of the symmetric bilinear form B and vectors
u ∈ W , let us fix bases of the Lagrangians Λ+, Λ− such that, with
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respect to the basis e+1 , . . . , e
+
N , e

−
1 , . . . , e

−
N of V , the symplectic form S

is (
0 I
−I 0

)
.

Then, alternatively, writing an element ofW⊗V as (z+1 , z
−
1 , . . . , z

+
N , z

−
N)

for z±i ∈ W ⊗ Fq{e±i }, and an element of W ⊗ Λ− as (u1, . . . , uN) for
ui ∈ W ⊗ Fq{e−i }, we have

(34)

(z+1 , z
−
1 , . . . , z

+
N , z

−
N) · (u1, . . . , uN) =

ψ(
N∑
i=1

B(z+i , ui) +
B(z+i , z

−
i )

2
) · (u1 + z−1 , . . . , uN + z−N)

Now we can pick elements of C(V ⊗ W )O(W,B) designed to act as
generators of Sp(V ).

Let us first consider the case when dim(V ) = 2. In this case, we may
reduce (34) to

(z+, z−) · (u) = ψ(B(z+, u) +
B(z+, z−)

2
) · (u+ z−).

From this perspective, the action of the matrices in SL2(Fq)(
0 1
−1 0

)
,

(
1 0
t 1

)
on the oscillator representation should correspond to transformations
(35)

(u) 7→ 1

qn/2
·
∑
w∈W

ψ(B(−u,w)) · (w), (u) 7→ ψ(
t ·B(u, u)

2
) · (u)

respectively. The matrices (
s 0
0 1/s

)
act by (u) 7→ (s · u), for s ∈ F×

q . Now consider, for example, the
operators given by the action of

gt =
1

qn/2
·
∑
z∈W

ψ(
tB(z, z)

2
) · (z, tz) ∈ C(W ⊗ V )O(W )

for t ∈ F×
q . Applied to u ∈ W , these endomorphisms give

gt · (u) =
1

qn/2
·
∑
z∈W

ψ(B(z, u) +B(z, tz)) · (u+ tz),
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which, replacing w = u+ tz, can be simplified to

1

qn/2
·
∑
w∈W

ψ(B(
w − u

t
, w))·(w) = 1

qn/2
·
∑
w∈W

ψ(
B(w,w)

t
)·ψ(B(

−u
t
, w))·(v).

Therefore, each gt corresponds to the group action of the composition
of matrices

(36)

(
1 0
2/t 1

)(
0 1
−1 0

)(
1/t 0
0 t

)
=

(
0 t

−1/t 2

)
on ω[W ⊗ V ]. These matrices generate SL2(Fq).

Now, for general V , dim(V ) = 2N , we may find these generators for
all choices of 1-dimensional subspaces in a Lagrangian (and its dual).
This system of group algebras over SL2(Fq) corresponding to choices of
isotropic 1-dimensional subspace of V therefore generate Sp(V ). Hence,
we get

(37) CSp(V ) ⊆ EndO(W )(ω[W ⊗ V ]).

Additionally, since these endomorphisms encode the geometric action
of Sp(V ) ⊆ Sp(W ⊗ V ) on ω[W ⊗ V ] and are, in particular, bijective,
they are inexpressible as compositions factoring through a lower degree
tensor power of ResO(W,B)(ω[F2

q ⊗W ]) ∼= CW . □

The reason why we use the matrices (36) (instead of a more common
set of generators of SL2(Fq), such as (38) below) is due to the fact that
their corresponding elements of C(W ⊗ F2

q)
O(W ) are fairly simple and

easy to guess. While not directly necessary to the logic of the proof
of the results of the above proposition, it is, however, instructive to
write down the explicit formulae for the elements corresponding to the
matricies

(38)

(
t 0
0 1/t

)
,

(
0 1
−1 0

)
,

(
1 0
s 1

)
for t, s ∈ F×

q .

To do this, we need to introduce certain constants, arising from the
quadratic sums of characters. They will depend on our choice of charc-
ter ψ. If we use a different character, the answer may differ by a sign.
Let us write q = pℓ for p an odd prime, and ℓ ∈ N. To avoid confusion,
we denote the quadratic multiplicative characters of Fq and Fp by

ϵp : F×
p → {±1}, ϵq : F×

q → {±1},
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respectively. As usual, we extend these to 0 by ϵp(0) = ϵq(0) = 0.
Denoting the norm of the field extension by NFq/Fp : F×

q → F×
p , we

have

(39) ϵp ◦NFq/Fp = ϵq.

We may re-write the classical quadratic Gauss sum as

(40)
∑
n∈Fp

e
2πi
p

n2

=
∑
m∈Fp

(1 + ϵp(m)) · e
2πi
p

n2

=
∑
m∈Fp

ϵp(m) · e
2πi
p

n2

(since the linear sum of characters is 0, and for each m ∈ Fp, there
are exactly 1 + ϵp(m) elements in Fp whose square is m), which is
well-known to equal

(41)
∑
n∈Fp

e
2πi
p

a·n2

= ϵp(a) ·
√
ϵp(−1) · p.

Now the same argument as (40) can be applied to give∑
x∈Fq

ψ(x2) =
∑
x∈Fq

e
2πi
p

TrFq/Fp (x
2) =

∑
y∈Fq

ϵq(y) · e
2πi
p

TrFq/Fp (y).

Applying the Hasse-Davenport relation for Gauss sums to (41), we get
that ∑

y∈Fq

ϵq(y) · e
2πi
p

TrFq/Fp (y) = (−1)ℓ+1 ·
(√

ϵp(−1) · p
)ℓ

,

which simplifies to give

(42)
∑
x∈Fq

ψ(x2) = (−1)ℓ+1
√
ϵq(−1) · q

Now, for c ∈ F×
q , again since a linear sum of characters vanishes, we

have ∑
x∈Fq

ψ(c · x2) = ϵq(c) ·
∑
x∈Fq

ψ(x2).
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Combining this with (42), we find that∑
u∈W

ψ(c ·B(u, u)) =
∑

u1,...,un∈Fq

ψ(
n∑

i=1

c · ai · u2i ) =

n∏
i=1

∑
ui∈W

ψ(c · ai · u2i ) = ϵq(c
n · a1 . . . an) · (

∑
x∈Fq

ψ(x2))n =

(−1)n(ℓ+1) · disc(B) · qn/2 · ϵq(c)n · ϵq(−1)n/2,

where disc(B) denotes is discriminant, i.e. ϵq(det(B)). For notational
brevity, we denote these coefficients by

(43)
K(c) :=

∑
u∈W

ψ(c ·B(u, u)) =

(−1)n(ℓ+1) · disc(B) · qn/2 · ϵq(c)n · ϵq(−1)n/2.

Proposition 7. Consider an Fq-space W and a symmetric bilinear
form B.

(1) For t ∈ F×
q , the element

αt :=
1

qn
·
∑

y+,y−∈W

ψ(− t+ 1

2(t− 1)
·B(y+, y−)) · (y+, y−)

acts as the matrix (
t 0
0 1/t

)
.

(2) The element

β :=
1

K(1) · qn/2
∑

y+,y−∈W

ψ

(
1

4
(B(y+, y+) +B(y−, y−))

)
· (y+, y−)

acts as the matrix (
0 1
−1 0

)
.

(3) For s ∈ F×
q , the element

γs :=
1

K(−1/2s)

∑
z∈W

ψ(− 1

2s
B(z, z)) · (z, 0)

acts as the matrix (
1 0
s 1

)
.
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Proof. We begin with the proof of (1): For an element u ∈ W ∼=
W ⊗ Λ−, we can calculate that ft acts as follows:

(44)

αt(u) =

1

qn
·
∑

y+,y−∈W

ψ

(
(
1

2
− t+ 1

2(t− 1)
) ·B(y+, y−) +B(y+, u)

)
· (y− + u)

=
1

qn
·
∑

y+,y−∈W

ψ(B(y+,− y−

t− 1
+ u)) · (y− + u).

The sum runs over arbitrary choices of y+, meaning that for fixed
u ∈ W and chosen y− ∈ W , the coefficient sum

(45)
∑

y+∈W

ψ(B(y+,− y−

t− 1
+ u))

of the vector (y− + u) is a linear sum of characters, and is therefore
0, unless u = y−/(t − 1), in which case (45) is qn. Hence, the only
contributing choice of y− is y− = (t− 1) · u. Therefore, (44) simplifies
as

αt(u) =
qn

qn
· ((t− 1) · u+ u) = (t · u),

agreeing with the action of the proposed matrix on the oscillator rep-
resentation CW .

Now we prove (2): For u ∈ W , at each choice of y+, y− ∈ W , applying
the corresponding term of the sum in β (disregarding the coefficient,
for now) gives

ψ

(
1

4
(B(y+, y+) +B(y−, y−))

)
· (y+, y−)(u) =

ψ

(
1

4
(B(y+, y+) + 2B(y+, y−) +B(y−, y−)) +B(y+, u)

)
· (y− + u) =

ψ(B(
y+ + y−

2
,
y+ + y−

2
) +B(y+, u)) · (y− + u)

Therefore, we have

(46)

β(u) =

1

K(1) · qn/2
∑

y+,y−∈W

ψ(B(
y+ + y−

2
,
y+ + y−

2
) +B(y+, u)) · (y− + u).
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Renaming variables using z = y− + u, we may rewrite this as

(47)
1

K(1) · qn/2
∑

y+,z∈W

ψ(B(
y+ + z − u

2
,
y+ + z − u

2
)+B(y+, u))·(z).

Now we may also notice that

B(
y+ + z − u

2
,
y+ + z − u

2
) +B(y+, u) =

B(
y+ + z + u

2
,
y+ + z + u

2
)−B(z, u),

allowing us to rewrite (47) as

1

K(1) · qn/2
∑

z,y+∈W

ψ(B(
y+ + z + u

2
,
y+ + z + u

2
)−B(z, u)) · (z).

Renaming variables using w = (y+ + z + u)/2 gives

1

K(1) · qn/2
∑

z,w∈W

ψ(B(w,w))ψ(−B(z, u)) · (z),

which, applying (43), reduces to

β(u) =
1

qn/2

∑
z∈W

ψ(−B(z, u)) · (z),

which is precisely the action (35).

Finally, we prove (3): For u ∈ W ,

(48)

γs(u) =

1

K(−1/2s)

∑
z∈W

ψ(− 1

2s
B(z, z)) · (z, 0)(u) =

1

K(−1/2s)

∑
z∈W

ψ(− 1

2s
B(z, z) +B(z, u)) · (u).

Now we may notice that

B(z, u)− 1

2s
B(z, z) = − 1

2s
(−2s ·B(z, u) +B(z, z)) =

− 1

2s

(
B(su− z, su− z)− s2 ·B(u, u)

)
=

− 1

2s
·B(su− z, su− z) +

s

2
·B(u, u).
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Therefore, substituting w = su− z, we can rewrite (48) as

(49) γs(u) =
1

K(−1/2s)

∑
w∈W

ψ(− 1

2s
·B(w,w)) · ψ(s

2
·B(u, u)) · (u).

Since, by definition,∑
w∈W

ψ(− 1

2s
·B(w,w)) = K(−1/2s),

(49) then reduces to

γs(u) = ψ(
s

2
·B(u, u)) · (u),

agreeing precisely with (35).
□

It may also be helpful to compute some examples of ⋆ applied to these
elements, and see how it recovers matrix multiplication (especially to
see the relationship between gt, αt, β, and γ2/t). We do an example of
such a computation in the Appendix.

3. Combinatorics

In the previous section, we were able to find a subalgebra in the en-
domorphism. To set up for an inductive argument, we therefore need
to prove some combinatorial identities about the relationship between
ω[V ⊗W ] and lower ω[V ⊗W [−ℓ] (resp. ω[V [−ℓ]⊗W ]) for the sym-
plectic (resp. orthogonal) stable statements. We will also need to prove
that the dimensions of the endomorphism algebras of the restricted os-
cillator representations match the dimensions of their claimed decom-
positions into matrix algebras of group algebras. This is the purpose
of this section:

Proposition 8. We use the notation in the assumptions of Theorem
2.

(1) If (Sp(V ), O(W,B)) is a reductive dual pair in the symplectic
stable range, then for every

(50)

dim(HomSp(V )(ω[V ⊗W [−ℓ]], ω[V ⊗W ])) =

hW−ℓ∑
k=0

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

k |
· |O(W,B)|

|PB
k+ℓ|

· |O(W [−(k + ℓ)], B[−(k + ℓ)])|.
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(2) If (Sp(V ), O(W,B)) is a reductive dual pair in the orthogonal
stable range, then

(51)

dim(HomSp(V )(ω[V ⊗W [−ℓ]], ωB)) =

N∑
k=0

|Sp(V [−ℓ])|
|P V [−ℓ]

k |
· |Sp(V )|

|P V
k+ℓ|

· |Sp(V [−(k + ℓ)])|.

In particular, plugging in ℓ = 0 gives

Corollary 1. We use the notation in the assumptions of Theorem 2.

(1) If (Sp(V ), O(W,B)) is in the symplectic stable range then

(52)

dim(EndSp(V )(ω[V ⊗W ])) =
hW∑
k=0

|O(W,B)/PW,B
k |2 · |O(W [−k], B[−k])|

(2) If (Sp(V ), O(W,B)) is in the orthogonal stable range then

(53) dim(EndO(W,B)(ω[V ⊗W ])) =
N∑
k=0

|Sp(V )/P V
k |2 · |Sp(V [−k])|

In other words, this result also combinatorially verifies that the dimen-
sions of both sides of (5) (resp. (7)) in part (1) (resp. part (2)) of
Theorem 2 match.

In Subsection 3.1, we state a combinatorial lemma on Gaussian bi-
nomial coefficients and use it to derive Proposition 8. In Subsection
3.2, we prove the lemma.

3.1. A key lemma. Let us write Qn = qn + 1. Recall the Gaussian
binomial coefficients

(54)

(
a

b

)
q

:=
(qa − 1) · (qa−1 − 1) . . . (qa−b+1 − 1)

(qb − 1) · (qb−1 − 1) . . . (q − 1)
.

The purpose of this section is to prove the following

Lemma 9. For every p ∈ N0, for every r > b ∈ N0,

(55)

Qr+p ·Qr−1+p . . . Qb+p =
p∑

a=0

qa(b+a−1) ·
(
r − b+ 1

a

)
q

·
p∏

i=p−a+1

(qi − 1) ·
r∏

j=b+a

Qj

Assume Lemma 9 holds.
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Proof of Proposition 8. First, let us process the left hand sides of (50)
and (51). Recalling (18) and that the tensor product of an oscillator
representation with its dual oscillator representation is the permutation
representation, for 0 ≤ ℓ ≤ hW , we get

ResSp(V )(ω[V ⊗W ]) = ResSp(V )(ω[V ⊗W [−ℓ]])⊗ (CV )⊗ℓ.

Therefore, for 0 ≤ ℓ ≤ hW , we have

HomSp(V )(ω[V ⊗W [−ℓ]], ω[V ⊗W ]) ∼= HomSp(V )(1,C(V ⊕(n−ℓ)))

Similarly, recalling (19) and (20), for 0 ≤ ℓ ≤ N , we have

HomO(W,B)(ω[V [−ℓ]⊗W ], ω[V ⊗W ]) ∼= HomO(W,B)(1,C(W⊕2N−ℓ))

Thus, we may rewrite the left hand side of (50) as

(56) dim(HomSp(V )(ω[V ⊗W [−ℓ]], ω[V ⊗W ])) = 2Q1 . . . Qn−ℓ−1

and the left hand side of (51)

(57) dim(HomO(W,B)(ω[V [−ℓ]⊗W ], ω[V ⊗W ])) = Q1 . . . Q2N−ℓ

by Lemma 3. In particular, also note that (57) is precisely half of (56)
in the case of n = 2N + 1.

To reduce the right hand sides of (50) and (51), we need expres-
sions for the group orders of finite orthogonal groups, finite symplectic
groups, and their parabolic quotients. First, recall that

(58)

|O2m+1(Fq)| = 2qm
2

m∏
i=1

(q2i − 1)

|O±
2m(Fq)| = 2qm(m−1)(qm ∓ 1)

m−1∏
i=1

(q2i − 1)

|Sp2N(Fq)| = |O2N+1(Fq)|/2 = qN
2

N∏
i=1

(q2i − 1)

(recalling the notation that for n = 2m even, O+
2m(Fq) denotes the or-

thogonal group O(W,B) when hW = m and O−
2m(Fq) denotes O(W,B)

when hW = m− 1).
To compute the orders of the parabolic quotients of orthogonal and

symplectic groups first note that

|O(W,B)/PB
k | =

|O(W,B)/PB
1 | · |O(W [−1], B[−1])/P

B[−1]
k−1 |

|Pk−1(Fq)|
,
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and therefore,

(59) |O(B)/PB
k | =

k−1∏
ℓ=1

|O(B[−ℓ])/PB[−ℓ]
1 |

k−1∏
ℓ=1

|Pℓ(Fq)|
.

It is also well known that for any symmetric bilinear form B on Fn
q , the

number of elements in O(B)/PB
1 , which is the set of points the quadric

defined by B in Pn−1(Fq), is

(60) |O(W,B)/PB
1 | =



qn−1 − 1

q − 1
n odd

qn−1 − 1

q − 1
± q(n−2)/2 n even, where

O(W,B) = O±
n (Fq).

Now the , and in fact, it turns out that

|Sp2N(Fq)/P
F2N
q

k | = |O2N+1(Fq)/P
F2N+1
q

k |

(again this can be interpreted as caused by the fact that the symplectic
groups are dual to the special orthogonal groups). In particular, com-
bined with (58), this allows us to rewrite the right hand side of (51)
entirely in terms of orders of odd orthogonal groups and their parabolic
quotients. In fact, we find that this right hand side is precisely half of
the right hand side. Since we observed the same effect for the left hand
side at the beginning of the proof, we therefore find that (51) is, as an
expression, exactly (50) at n = 2N + 1 (in which case N = hW , giving
the same range of ℓ), multiplied by 1/2. Thus, it suffices to prove part
(1) of the proposition.

Case 1: n is odd. Let us write n = 2m+ 1, in which case m must be
the number of hyperbolics hW in B. In this case, for k = 0, . . . ,m− ℓ,
combining (59) and (60),

|O(W,B)|
|PB

k+ℓ|
=

(q2m − 1) · (q2(m−1) − 1) . . . (q2(m−k−ℓ+1) − 1)

(qk+ℓ − 1) · (qk+ℓ−1 − 1) . . . (q − 1)
.

We may rewrite this as

|O(W,B)|
|PB

k+ℓ|
=

(
m

k + ℓ

)
q

·
m∏

i=m−k−ℓ+1

(qi + 1).
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Similarly,

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

k |
=

(q2(m−ℓ) − 1) . . . (q2(m−k−ℓ+1) − 1)

(qk − 1) . . . (q − 1)
.

Applying (58), we also have

|O(W [−k − ℓ], B[−k − ℓ])| = 2q(m−k−ℓ)2
m−k−ℓ∏
j=1

(q2k − 1) =

2q(m−k−ℓ)2
m−k−ℓ∏
j=1

(qj − 1)(qj + 1).

Combining this with (56), the statement reduces to

(61)

2Q2m−ℓ . . . Q1 =

m−ℓ∑
k=0

2q(m−k−ℓ)2 ·
(

m

k + ℓ

)
q

·
m∏

j=m−k−ℓ+1

Qj ·

m−ℓ∏
i=1

(qi − 1) ·Qi

(qk − 1) . . . (q − 1)

We may divide both sides of (61) by 2Q1 . . . Qm−ℓ, giving

(62)

Q2m−ℓ . . . Qm−ℓ+1 =

m−k∑
ℓ=0

q(m−k−ℓ)2
(

m

k + ℓ

)
q

·
m∏

i=m−k−ℓ+1

Qj ·
m−ℓ∏

j=k+1

(qj − 1).

Replacing
(

m
k+ℓ

)
q
=
(

m
m−k−ℓ

)
q
, this follows exactly from Lemma 9 by

putting r = m, p = m− ℓ, b = 1 and substituting a = m− k − ℓ.

Case 2: n is even. Let us write n = 2m.
Case 2A: Suppose B decomposes completely into hyperbolics, i.e.

hW = m. In this case, combining (59) and (60), noting first that we
may first re-write this case of (60) as

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

1 |
=
q2m−2ℓ−1 − qm−ℓ+1 + qm−ℓ − 1

q − 1
=

(qm−ℓ − 1)(qm−ℓ+1 + 1)

q − 1

,
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we have

|O(W,B)|
|PB

k+ℓ|
=

m−1∏
i=m−k−ℓ

(qi+1 − 1) ·Qi

(qk+ℓ − 1) · (qk+ℓ−1 − 1) . . . (q − 1)
=

(
m

k + ℓ

)
q

·
m−1∏

i=m−k−ℓ

Qi.

Similarly, we have

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

k |
=

m−ℓ−1∏
i=m−k−ℓ

(qi+1 − 1)Qi

(qk − 1) . . . (q − 1)
.

We also have

|O(W [−k − ℓ], B[−k − ℓ])| =

2q(m−k−ℓ)(m−k−ℓ−1) · (qm−k−ℓ − 1)
m−k−ℓ−1∏

j=1

(q2j − 1) =

2q(m−k−ℓ)(m−k−ℓ−1) · (qm−k−ℓ − 1)
m−k−ℓ−1∏

j=1

(qj − 1)(qj + 1).

Again, combining with (56), we can reduce the claimto

(63)

2Q2m−ℓ−1 . . . Q1 =

m−ℓ∑
k=0

q(m−k−ℓ)(m−k−ℓ−1)

(
m

k + ℓ

)
q

m−1∏
i=m−k−ℓ

Qi

(qm−ℓ − 1)
m−ℓ−1∏
j=1

(qj − 1)Qj

(qk − 1) . . . (q − 1)

Again, we may divide both sides of (65) by 2Qm−ℓ−1 . . . Q1, giving

(64)

Q2m−ℓ−1 . . . Qm−ℓ =

m−ℓ∑
k=0

q(m−k−ℓ)(m−k−ℓ−1) ·
(

m

k + ℓ

)
q

·
m−1∏

i=m−k−ℓ

Qi ·
m−ℓ∏

j=k+1

(qj − 1).

Rewriting
(

m
k+ℓ

)
q
=
(

m
m−k−ℓ

)
q
, this statement follows directly from ap-

plying Lemma 9 to r = m − 1, p = m − ℓ, b = 0, and substituting
a = m− k − ℓ.
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Case 2B: Suppose B has a non-trivial anisotropic part, i.e. hW =
m− 1. In this case, combining (59) and (60), noting first that we may
first re-write this case of (60) as

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

1 |
=
q2m−2ℓ−1 + qm−ℓ+1 − qm−ℓ − 1

q − 1
=

(qm−ℓ + 1)(qm−ℓ+1 − 1)

q − 1
,

we have

|O(W,B)|
|PB

k+ℓ|
=

m∏
i=m−k−ℓ+1

(qi−1 − 1) ·Qi

(qk+ℓ − 1) · (qk+ℓ−1 − 1) . . . (q − 1)
=

(
m− 1

k + ℓ

)
q

·
m∏

i=m−k−ℓ+1

Qi.

Similarly, we have

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

k |
=

m−ℓ∏
i=m−k−ℓ+1

(qi−1 − 1)Qi

(qk − 1) . . . (q − 1)
.

We also have

|O(W [−k − ℓ], B[−k − ℓ])| =

2q(m−k−ℓ)(m−k−ℓ−1) · (qm−k−ℓ + 1)
m−k−ℓ−1∏

j=1

(q2j − 1) =

2q(m−k−ℓ)(m−k−ℓ−1) · (qm−k−ℓ + 1)
m−k−ℓ−1∏

j=1

(qj − 1)(qj + 1).

Again, combining with (56), we can reduce the statement to

(65)

2Q2m−ℓ−1 . . . Q1 =

m−ℓ−1∑
k=0

q(m−k−ℓ)(m−k−ℓ−1) ·
(
m− 1

k + ℓ

)
q

m∏
i=m−k−ℓ+1

Qi

Qm−ℓ

m−ℓ−1∏
j=1

(qj − 1) ·Qj

(qk − 1) . . . (q − 1)
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Similarly as in the previous cases, we may divide both sides of (65) by
2Qm−ℓ . . . Q1, giving

(66)

Q2m−ℓ−1 . . . Qm−ℓ+1 =

m−ℓ−1∑
k=0

q(m−k−ℓ)(m−k−ℓ−1) ·
(
m− 1

k + ℓ

)
q

·
m∏

i=m−k−ℓ+1

Qi ·
m−ℓ−1∏
j=k+1

(qj − 1).

Rewriting
(
m−1
k+ℓ

)
q
=
(

m−1
m−k−ℓ−1

)
q
, this statement follows directly from

applying Lemma 9 to r = m, p = m − ℓ − 1, b = 2, and substituting
a = m− k − ℓ− 1.

□

3.2. The proof of Lemma 9. The proof of Lemma 9 proceeds by
induction. The argument is perhaps slightly unusual due to the fact
that our formula does not reduce well at q → 1 and is therefore not a
“quantization” of a classical formula.

Proof of Lemma 9. To prove (55), we begin by rewriting

(67)

Qr+p . . . Qb+p =

Qr . . . Qb +
r∑

k=b

(Qp+k −Qk) ·
r∏

j=k+1

Qj ·
k−1∏
j′=b

Qj′+p.

Now, for each b ≤ k ≤ r, we have

Qp+k −Qk = qk · (qp − 1),

so we may rewrite (67) as

(68)

Qr+p . . . Qb+p =

Qr . . . Qb +
r∑

k=b

qk(qp − 1)
r∏

j=k+1

Qj ·
k−1∏
j′=b

Qj′+p.

Our goal is now to process each term of the right hand side of (68)
to convert, step by step, the highest appearing Qj′+p factor into the
next smallest Qj not yet appearing. In the statement of Lemma 9, all
terms consist of multiples of products of the form

Qr ·Qr−1 . . . Qb+a+1 ·Qb+a,

so we cannot skip any Qj’s in the process. We make the following
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Claim 2. For b ≤ k ≤ r, we have

(69)

qk(qp − 1)
r∏

j=k+1

Qj ·
k−1∏
j′=b

Qj′+p =

k−b+1∑
a=1

( ∑
a+b−1≤ℓ1≤···≤ℓa=k

qℓ1+···+ℓa

)
·

p∏
i=p−a+1

(qi − 1) ·
r∏

j=b+a

Qj

Proof of Claim 2. We will proceed inductively, step by step, converting
each factor Qj′+p in a term of the previous step’s reduction of (69),
starting with the largest appearing j′, into a sum of the next lower Qj

not yet appearing, with the appropriate error term of qj multiplied by
a factor (qj

′+p−j − 1). This process will terminate in k − b steps (we
are already done when k = b).

The induction hypothesis is that after n steps, we will have reduced
(69) to

(70)
n+1∑
a=1

( ∑
a−n+k−1≤ℓ1≤···≤ℓa=k

qℓ1+···+ℓa

)
·

p∏
i=p−a+1

(qi − 1) ·
r∏

j=k−n+a

Qj

k−n−1∏
j′=b

Qj′+p

Let us describe the first step of this process for (69). The largest
appearing j′ is j′ = k − 1. The next lower Qj factor not yet appearing
is for j = k. Therefore, this step uses the replacement

Qk−1+p = Qk + qk(qp−1 − 1).

This gives

qk(qp − 1)
r∏

j=k

Qj ·
k−2∏
j′=b

Qj′+p+

qk+k(qp − 1)(qp−1 − 1)
r∏

j=k+1

Qj ·
k−2∏
j′=b

Qj′+p

proving (70) at n = 1.
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Suppose (70) holds at Step n. We now need to perform Step (n+1).
For 1 ≤ a ≤ n+ 1, consider the term

(71)

( ∑
a−n+k−1≤ℓ1≤···≤ℓa=k

qℓ1+···+ℓa

)
·

p∏
i=p−a+1

(qi − 1) ·
r∏

j=k−n+a

Qj ·
k−n−1∏
j′=b

Qj′+p,

of (70).

The highest occuring Qj′+p is at j′ = k − n− 1. The next lower Qj

factor not yet appearing is for j = k − (n + 1) + a. Therefore, in this
term, we must use the replacement

Qk−n−1+p = Qk−(n+1)+a + qk−(n+1)+a · (qp−a − 1).

This reduces (71) to

(72)

( ∑
a−n+k−1≤ℓ1≤···≤ℓa=k

qℓ1+···+ℓa

)
·

p∏
i=p−a+1

(qi − 1) ·
r∏

j=k−(n+1)+a

Qj ·
k−n−2∏
j′=b

Qj′+p+

+

( ∑
a−n+k−1=ℓ0≤ℓ1≤···≤ℓa=k

qℓ0+ℓ1+···+ℓa

)
·

p∏
i=p−a

(qi − 1) ·
r∏

j=k−n+a

Qj ·
k−n−2∏
j′=b

Qj′+p

These terms appear in the (n + 1)th inductive step; the first one
occurs in the expression (70) with n replaced by n+1 with no reindexing
of a or ℓi, and the second one occurs after replacing a by a + 1 and
shifting ℓ0 ≤ · · · ≤ ℓa to ℓ1 ≤ · · · ≤ ℓa+1.

Therefore, we may proceed inductively, and at Step n = k − b, we
obtain the reduction (69).

□

Recombining the terms (69) according to (68), we get

(73)

Qr+p . . . Qb+p =
p∑

a=0

( ∑
a+b−1≤ℓ1≤···≤ℓa≤r

qℓ1+···+ℓa

)
·

p∏
i=p−a+1

(qk − 1) ·
r∏

j=b+a

Qj

(note that the a = 0 term arises from the single term Qr . . . Qb in (68)).
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Finally, we compute ∑
a+b−1≤ℓ1≤···≤ℓa≤r

qℓ1+···+ℓa =

qa(a+b−1) ·
∑

0≤ℓ1≤···≤ℓa≤r−a−b+1

qℓ1+···+ℓq =

qa(a+b−1) ·
(
r − b+ 1

a

)
q

,

by the Gaussian binomial coefficient theorem. Plugging this into (73)
gives (55).

□

4. The proof of Theorem 2

In this section, we conclude the proof of Theorem 2 using an induc-
tive argument that proceeds completely similarly in both stable ranges.

Proof. We begin with (1). Fix a symplectic space V . We proceed by
induction on hW . Suppose the statement of (5) holds for every choice of
(W,B) with hW < m. Now consider a choice of (W,B) with hW = m.

For every 1 ≤ k ≤ m, the induction hypothesis applies to ω[V ⊗
W [−k]]. Write, for 1 ≤ ℓ ≤ m,

Zℓ =
⊕

ρ∈ ̂O(W [−ℓ],B[−ℓ])

ηVW [−ℓ],B[−ℓ](ρ)⊗ ρ

as an Sp(V )×O(W [−ℓ], B[−ℓ])-representation. We have

CO(W [−ℓ], B[−ℓ]) = EndSp(V )(Zℓ) = EndtopSp(V )(ω[V ⊗W [−ℓ]]),
and

ResSp(V )(ω[V ⊗W [−ℓ]]) ∼=
hW−ℓ⊕
k=0

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

k |
ResSp(V )(Zk+ℓ).

First, we claim that as Sp(V )-representations, a sum of |O(W,B)/PB
ℓ |

copies of ResSp(V )(Zℓ) appears in ResSp(V )(ω[V ⊗W ]). Now this holds
since by the induction hypothesis, we have

(74)

HomSp(V )(ω[V ⊗W [−ℓ]], ω[V ⊗W ]) =

hW−ℓ⊕
k=0

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

k |
·HomSp(V )(Zk+ℓ, ω[V ⊗W ]).
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Applying Proposition 8, the dimension of the left hand side of (74) can
be re-expressed as

hW−ℓ∑
k=0

|O(W [−ℓ], B[−ℓ])|
|PB[−ℓ]

k |
· |O(W,B)|

|PB
k+ℓ|

· |O(W [−k − ℓ], B[−k − ℓ])|

giving a linear system of equations for the dimensions of the Hom-
spaces HomSp(V )(Zk+ℓ, ω[V ⊗W ]), giving

dim(HomSp(V )(Zℓ, ω[V ⊗W ])) =
|O(W,B)|

|PB
ℓ |

|O(W [−ℓ], B[−ℓ])|.

This gives the claim since this Hom-space is a free module over the
endomorhism algebra EndSp(V )(Zk) = CO(W [−k], B[−k]), and we can
consider

HomSp(V )×O(W [−k],B[−k])(Zk, ω[V ⊗W ]).

Since we have

(75) ResSp(V )×O(W [−k],B[−k])(ω[V ⊗W ]) = ω[V ⊗W [−k]]⊗ (CV )⊗k,

where O(W [−k], B[−k]) acts trivially on the CV factors, the action of
O(W [−k], B[−k]) on each copy of Zk is preserved and therefore, Zk

occurs as a summand of (77) with mutliplicity |O(W,B)/PB
k |. Now,

since we know that

ResGLN (Fq)(ω[V ⊗W ]) = (CFN
q )⊗ ϵ(det),

we get, by adjunction, summands

hW⊕
k=1

⊕
ρ∈ ̂O(W [−k],B[−k])

ηVW [−k],B[−k](ρ)⊗ IndP
B
k (ρ⊗ ϵ(det)),

as in the claimed expression (6). From the perspective of endomor-
phism algebras, we have

hW⊕
k=1

M|O(W,B)/PB
k |(CO(W [−k], B[−k])) ⊆ EndSp(V )(ω[V ⊗W ]),

all occuring independently from the top part, since they specifically all
arise from terms appearing in EndSp(V )(ω[V ⊗ W [−k]]). Combining
with Proposition 4 gives the k = 0 term as well:

hW⊕
k=0

M|O(W,B)/PB
k |(CO(W [−k], B[−k])) ⊆ EndSp(V )(ω[V ⊗W ]).

This must be an equality, however, since the dimensions match by
Corollary 1.
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Similarly, to prove part (2), we fix (W,B). and proceed by induction
on N . Suppose the statement of (7) holds for every symplectic space
V of dimension 2M with M < N . Now consider a symplectic space V
of dimension 2N .

For every 1 ≤ k ≤ N , the induction hypothesis applies to ω[V [−k]⊗
W ]. Write, for 1 ≤ ℓ ≤ m,

Yℓ =
⊕

ρ∈ ̂Sp(V [−ℓ])

ρ⊗ ζW,B
V [−ℓ](ρ)

as an Sp(V [−ℓ])×O(W,B)-representation. We have

CSp(V [−ℓ]) = EndO(W,B)(Yℓ) = EndtopO(W,B)(ω[V [−ℓ]⊗W ]),

and

ResO(W,B)(ω[V [−ℓ]⊗W ]) ∼=
hW−ℓ⊕
k=0

|Sp(V [−ℓ])|
|P V [−ℓ]

k |
ResO(W,B)(Yk+ℓ).

Again, we begin by arguing that is O(W,B)-representations, a sum of
|Sp(V )/P V

ℓ | copies of ResO(W,B)(Yℓ) appears in ResO(W,B)(ω[V ⊗W ]),
which holds by applying the induction hypothesis to get

(76)

HomO(W,B)(ω[V [−ℓ]⊗W ], ω[V ⊗W ]) =

hW−ℓ⊕
k=0

|Sp(V [−ℓ])|
|P V [−ℓ]

k |
·HomO(W,B)(Yk+ℓ, ω[V ⊗W ]).

Applying Proposition 8, the dimension of the left hand side of (76) can
be re-expressed as

hW−ℓ∑
k=0

|Sp(V [−ℓ])|
|P V [−ℓ]

k |
· |Sp(V )|

|P V
k+ℓ

· |Sp(V [−k − ℓ])|

giving a linear system of equations for the dimensions of the Hom-
spaces HomO(W,B)(Yk+ℓ, ω[V ⊗W ]), giving

dim(HomO(W,B)(Yℓ, ω[V ⊗W ])) =
|Sp(V )|
|P V

ℓ |
|Sp(V [−ℓ])|.

This gives the claim since this Hom-space is a free module over the
endomorphism algebra EndO(W,B)(Yk) = CSp(V [−k]), and we can con-
sider

HomSp(V [−k])×O(W,B)(Yk, ω[V ⊗W ]).

Since we have

(77) ResSp(V [−k])×O(W,B)(ω[V ⊗W ]) = ω[V [−k]⊗W ]⊗ (CW )⊗k,
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where Sp(V [−k]) acts trivially on the CW factors, the action of Sp(V [−k])
on each copy of Yk is preserved and therefore, Yk occurs as a summand
of (77) with mutliplicity |Sp(V )/P V

k |. Again, by adjunction, we get
summands

N⊕
k=1

⊕
ρ∈ ̂Sp(V [−k])

IndP
V
k (ρ⊗ ϵ(det))⊗ ζW,B

V [−k](ρ),

as in the claimed expression (8). From the perspective of endomor-
phism algebras, we have

N⊕
k=1

M|Sp(V )/PV
k |(CSp(V [−k])) ⊆ EndO(W,B)(ω[V ⊗W ]),

all occuring independently from the top part, since they specifically all
arise from terms appearing in EndO(W,B)(ω[V [−k] ⊗W ]). As before,
combining with Proposition 4 gives that, in fact,

N⊕
k=0

M|Sp(V )/PV
k |(CSp(V [−k])) ⊆ EndO(W,B)(ω[V ⊗W ])

This must be an equality, again, since the dimensions match by Corol-
lary 1. □

Appendix A. An Explicit Composition Computation

Fix t ∈ F×
q . In this appendix, we complete the calculation that

(78) gt ⋆ αt = γ2/t ⋆ β.

The composition gt ⋆ αt is 1/q3n/2 times the sum over all choices of
y+, y−, z ∈ W of terms

(79) ψ(
t

2
B(z, z)− t+ 1

2(t− 1)
B(y+, y−)) · (z, tz) ⋆ (y+, y−).

Writing out

(z, tz) ⋆ (y+, y−) = ψ(
1

2
(B(z, y−)− t ·B(z, y+))),

each term (79) can be simplified to the pair of vector (y+ + z, y− + tz)
multiplied by the coefficient

ψ(
t

2
B(z, z)− t+ 1

2(t− 1)
B(y+, y−) +

1

2
B(z, y−)− t

2
B(z, y+)).
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By considering

− t+ 1

2(t− 1)
=

1

2
− t

t− 1
, − t

2
=
t

2
− t,

this can be rewritten as

ψ(
1

2
B(y+ + z, y− + tz)− t

t− 1
B(y+, y− + (t− 1)z)).

Substituting u = y+ + z, v = y− + tz gives

ψ(
1

2
B(u, v)− t

t− 1
B(u− z, v − z)).

Therefore, we have reduced gt ⋆ αt to

(80)
1

q3n/2

∑
z,u,v∈W

ψ(
1

2
B(u, v)− t

t− 1
B(u− z, v − z)) · (u, v).

Writing

B(u− z, v − z) = B(u, v)−B(u+ v, z) +B(z, z),

we may “complete the square” by noticing that

−B(u+ v, z) +B(z, z) =

B(z − u+ v

2
, z − u+ v

2
)−B(

u+ v

2
,
u+ v

2
).

Substituting variables using w = z − (u + v)/2, putting the terms
together, we get

B(u− z, v − z) = B(u, v) +B(w,w)−B(
u+ v

2
,
u+ v

2
) =

B(w,w)−B(
u− v

2
,
u− v

2
).

Therefore, (80) reduces to

(81)

gt ⋆ αt =

1

q3n/2

∑
w,u,v∈W

ψ(
1

2
B(u, v)− t

t− 1
(B(w,w)−B(

u− v

2
,
u− v

2
))) · (u, v) =

K(−t/(t− 1))

q3n/2

∑
u,v∈W

ψ(
1

2
B(u, v) +

t

t− 1
B(

u− v

2
,
u− v

2
)) · (u, v).

Now let us consider the other side of (78). The composition γ2/t ⋆ β

is 1/qn/2K(−t/4)K(1) times the sum over all choices of y+, y−, z ∈ W
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of terms

ψ(− t

4
B(z, z) +

1

4
(B(y+, y+) +B(y−, y−))) · (z, 0) ⋆ (y+, y−)

Writing out

(z, 0) ⋆ (y+, y−) = ψ(
1

2
B(z, y−)) · (z + y+, y−),

this term is the pair of vectors (z+y+, y−) multiplied by the coefficient

ψ(− t

4
B(z, z) +

1

4
(B(y+, y+) +B(y−, y−)) +

1

2
B(z, y−)) =

ψ(−t ·B(
z

2
,
z

2
) +B(

y+ − y−

2
,
y+ − y−

2
) +

1

2
B(z + y+, y−))

Substituting variables u = z+ y+, v = y−, w = z/2 we reduce γs ⋆ β
to∑
u,v,w∈W

ψ(−tB(w,w) +B(
u− v

2
− w,

u− v

2
− w) +

1

2
B(u, v)) · (u, v).

Writing

B(
u− v

2
− w,

u− v

2
− w) =

B(
u− v

2
,
u− v

2
)− 2B(

u− v

2
, w) +B(w,w),

we have

−tB(w,w) +B(
u− v

2
− w,

u− v

2
− w) =

−(t− 1) ·B(w,w)− 2 ·B(
u− v

2
, w) +B(

u− v

2
,
u− v

2
).

Completing the square gives

B(w,w) +
2

t− 1
B(

u− v

2
, w) =

B(w +
u− v

2(t− 1)
, w +

u− v

2(t− 1)
)− 1

(t− 1)2
B(

u− v

2
,
u− v

2
).
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Replacing variables x = w + 1
2(t−1)

(u− v) gives

−tB(w,w) +B(
u− v

2
− w,

u− v

2
− w) +

1

2
B(u, v) =

−(t− 1)B(x, x) + (1 +
t− 1

(t− 1)2
)B(

u− v

2
,
u− v

2
) +

1

2
B(u, v) =

−(t− 1)B(x, x) +
t

t− 1
B(

u− v

2
,
u− v

2
) +

1

2
B(u, v)

Thus, γt ⋆ β is the factor 1
qn/2K(−t/4)K(1)

times∑
u,v,x∈W

ψ(−(t− 1)B(x, x) +
t

t− 1
B(

u− v

2
,
u− v

2
) +

1

2
B(u, v)) · (u, v) =

K(−(t− 1)) ·
∑

u,v∈W

ψ(
t

t− 1
B(

u− v

2
,
u− v

2
) +

1

2
B(u, v)) · (u, v).

This agrees with our above calculation of gt ⋆ αt in (81), up to a
constant. It remains to check that the constants precisely agree, i.e.

(82)
K(−(t− 1))

qn/2K(−t/4)K(1)
=
K(−t/(t− 1))

q3n/2
.

Recalling (43), first note that since

K(c) = (−1)n(ℓ+1)disc(B) · qn/2 · ϵq(c)n · ϵq(−1)n/2

only depends on ϵq(c), we have K(−t/4) = K(−t). We can therefore
simplify (82) to

qn ·K(−(t− 1)) = K(−t/(t− 1)) ·K(−t) ·K(1).

Next, the signs, i.e. the factors (−1)n(ℓ+1)disc(B) in each K factor will
cancel, since both the left and right hand side have and odd number of
K factors. Further, collect the powers of q, both sides have a factor of
q3n/2, which we may factor out. This reduces the claim to

ϵq(−(t− 1))n · ϵ(−1)n/2 = ϵq(−t/(t− 1))nϵq(−t)nϵq(−1)3n/2.

Dividing both sides by ϵq(−1)n/2 and collecting terms gives

ϵq(−(t− 1))n = ϵq(
−t
t− 1

· (−t) · (−1))n,

which holds, since ϵq(−(t− 1)) = ϵq(−1/(t− 1)).
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[4] P. Deligne. La catégorie des représentations du groupe symétrique St, lorsque t
n’est pas un entier naturel. Algebraic groups and homogeneous spaces, 209-273,
Tata Inst. Fund. Res. Stud. Math., 19, Tata Inst. Fund. Res., Mumbai, 2007.

[5] P. Deligne. Catégories Tensorielles. Mosc. Math. J. 2 2 (2002) pp. 227-248.

[6] P. Deligne, J. Milne: Catégories Tannakiennes, Grothendieck Festschrift, vol.
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