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Abstract. The local cohomology groups of FI-modules were com-
puted in characteristic 0 by Sam and Snowden, but remain un-
known integrally. In this paper we compute them for the Spech-
tral FI-modules corresponding to the L-shaped Young diagrams
(i.e. the partitions (2, 1, . . . , 1)). We also find and discuss some
interesting features of this computation, including the presence of
torsion.

1. Introduction

In representation stability, representations of the category of finite
sets and injections, called FI-modules, were introduced by Church,
Ellenberg, and Farb in [1]. Their applications of this concept include
results about the cohomology of configuration spaces on manifolds,
diagonal coinvariant algebras, moduli spaces of n-pointed curves, rank
varieties of square matrices, and more.

Now for an FI-module M , its torsion submodule TM is defined to
consist of those elements of M which are sent to 0 by inclusions into
large enough finite sets. An important topic in representation stability
is the calculation of local cohomology, i.e., the derived functors of the
FI-torsion of a given FI-module. Rationally, this was solved by Sam
and Snowden [9, 10]. Modulo torsion, rationally, the simple objects of
the category of FI-modules were called Spechtral modules by A. Snow-
den. Using Schur–Weyl duality, Sam and Snowden [9, 10] reduced the
problem of calculating rational local cohomology of Spechtral modules
to questions of cohomology of GL-equivariant-quasicoherent sheaves on
P∞, which can be resolved using the Borel-Weil-Bott Theorem.

Integrally, however, very little is known. The main result of this
paper is

Theorem 1. Let λk = (2, 1, . . . , 1︸ ︷︷ ︸
k−2

). The local cohomology of the inte-

gral Spechtral module Mλk is given as follows:
1
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(1) If k ≥ 2 is odd,

(RiT (Mλk))n =


Z− if n = k, and i = 2
(Z/k)− if n = k + 1, and i = 2
Z if n = 1, and i = k
0 else.

(2) If k ≥ 2 is even,

(RiT (Mλk))n =


Z− if n = k, and i = 2
(Z/k

2
)− if n = k + 1, and i = 2

Z/2 if n ≤ k − 1, and i = 3
Z if n = 1, and i = k
0 else.

Here the superscript − denotes the sign representation. The FI-module
map from degree n to degree n+1 is surjective in the same cohomological
degree.

Thus, torsion does occur in FI-local cohomology of Spechtral FI-
modules. One could ask how Theorem 1 relates to the local cohomology
of integral versions of the objects to which the FI-modules we consider
correspond to under Schur–Weyl duality rationally. This very question,
however, is ambiguous, precisely due to the fact that Schur–Weyl du-
ality fails integrally. We make some basic comments on this question
on the Appendix, focusing mainly on the case of the Spechtral module
M(2).

The proof of Theorem 1 starts with the well-known fact that the
representation ring of a symmetric group Σn is generated by exterior
powers of the irreducible representation of rank (n− 1) (see, e.g., [5]).
Therefore, it makes sense to look for a resolution of Spechtral modules
by tensor products of modules of the form M(1r). For the module Mλk ,
it turns out that two tensor factors suffice, one of which satisfies r = 1.
One can then take advantage of the explicit calculations of Remmel
[8]. Based on these calculations, one writes down a rational resolution
of Mλk which has an integral analogue, giving a resolution of an FI-
module which I denote by M ′

λk
. The proof of Theorem 1 has two major

steps: First, we use the resolution we constructed to calculate the local
cohomology of M ′

λk
, then we prove that M ′

λk
∼= Mλk .

In principle, the same method should apply to the case of Spechtal
modules M(p,1r). (The case of p = 1, in fact, is easy and is treated
in the Example in Section 2 and in Proposition 6 below.) For p > 2,
one should be able to construct a resolution based on a tensor prod-
uct of the form M(1r) ⊗ M(1s). One would then use the formulas of
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Remmel [7] calculating the tensor product of two hook-shaped Specht
modules. One sees, however, that the formulas in [7] are considerably
more complicated. The complexity increases progressively for larger
Young diagrams. In the general case, calculating tensor products of
Specht modules is, in fact, an NP-hard problem [3], so other methods
may be necessary.

The present paper is organized as follows: We introduce the ba-
sic concepts in Section 2. This includes the construction of integral
Spechtral modules, the tensor product, and the calculation of the local
cohomology of tensor products of Spechtral modules of the form M(1k),
which basically mimics the rational case. In Section 3, we introduce a
certain resolution of an integral FI-module M ′

λk
, and compute its local

cohomology. In Section 4, we prove that Mλk
∼= M ′

λk
. In Section 5 (the

Appendix), we briefly discuss integral versions of the Schur–Weyl dual
of M(2) and their local cohomology.

Acknowledgement: I am very indebted to Professor A. Snowden for
introducing me to this topic and for guidance and to Professor S. Sam
for helpful comments.

2. Preliminaries

2.1. The construction of the integral Spechtral modules. First,
we shall recall a definition of the integral Specht module of a Young
diagram and then use it to construct the integral Spechtral module of
a given Young diagram. This will also allow us to establish notation
that will be used throughout this paper.

To begin with, denote the symmetric group on n elements by Σn.
Fix a Young diagram Y . Our notation for Young diagrams will be to
write Y = (`1, . . . , `k) where k is the number of rows of Y , and for
each i = 1, . . . k, `i is the length of the ith row of Y We will use the
convention that i ≤ j implies `i ≥ `j.

Suppose Y has n total boxes (meaning
∑k

i=1 `i = n). Of course, Σn

acts on the boxes of Y by permutation. Denote by Σr
Y and Σc

Y the
subgroups of Σn which preserve the rows and columns (respectively) of
Y when acting.

To define the integral Specht module of Y , we shall first define a
homomorphism of Σn-modules

(1) Z(Σn/Σ
r
Y )∗ ⊗ Z(Σn/Σ

c
Y )→ Z−,
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where M∗ denote the dual of a representation M , i.e.,

M∗ = HomZ(M,Z),

and Z− denotes the sign representation.
Note first that both representations Z(Σn/Σ

r
Y ) and Z(Σn/Σ

c
Y ) are

self-dual since they are permutation representations. (If a group G
acts on a set S, then as G-representations, there is an isomorphism
between Z(S) and its dual by dualizing with respect to the basis S.)
In addition, the tensor product

Z(Σn/Σ
r
Y )⊗ Z(Σn/Σ

c
Y ) = Z(Σn/Σ

r
Y × Σn/Σ

c
Y )

has a well-defined direct summand representation corresponding to the
unique free orbit of Σn/Σ

r
Y × Σn/Σ

c
Y . Define (1) as the projection

to this direct summand composed with an onto homomorphism to Z−,
which is unique up to sign. By using tensor-hom adjunction (and strong
dualizability over Z), we have

Hom(Z(Σn/Σ
r
Y )∗ ⊗ Z(Σn/Σ

c
Y ),Z−) ∼=

Hom(Z(Σn/Σ
c
Y )⊗ Z−,Z(Σn/Σ

r
Y )).

Thus, (1) gives another unique (up to sign) homomorphism of Σn-
modules

(2) ϕY : Z(Σn/Σ
c
Y )⊗ Z− → Z(Σn/Σ

r
Y ).

Then one can define the integral Specht module, which we will denote
by SY , to be the image Im(ϕY ).

Now fix a Young diagram Z = (`1, `2, . . . , `k). Let

Z ′ = (`1 + 1, `2, . . . , `k).

Denote the k-th iteration of this by

Z(i) = (`1 + i, `2, . . . , `k).

Definition 2. Let FI be the category of finite sets and injective maps.
An FI-module is a covariant functor from FI to abelian groups.

Then to construct an FI-module, it suffices to give maps between
the Specht modules

SZ → SZ′

which are Σn-equivariant and such that in the composition of such
maps

(3) SZ → SZ′ → SZ′′ → · · · → SZ(i) ,
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the image is fixed under the Σi-action on the last i squares in the first
row of Z(i).

Thus, consider the group homomorphism

ρ : Σn → Σn+1

given by sending a permutation σ of 1, . . . , n (corresponding to a per-
mutation of the boxes of Z) to a permutation of 1, . . . , n+ 1 by swap-
ping 1, . . . , n according to σ and using the identity on n + 1 (which
corresponds to using the permutation of the boxes of Y except for the
(`1 + 1)-th one in the first column, on which one uses the identity). A
permutation on the boxes of Z which preserves its rows (respectively,
columns) will preserve the rows (respectively, columns) of Z ′ after ap-
plying ρ.

Thus, ρ induces maps

Σn/Σ
c
Z → Σn+1/Σ

c
Z′

Σn/Σ
r
Z → Σn+1/Σ

r
Z′ .

Hence, after taking free abelian groups, we get a diagram

Z(Σn/Σ
c
Z)⊗ Z−

ϕZ //

��

Z(Σn/Σ
r
Z)

��
Z(Σn+1/Σ

c
Z′)⊗ Z− ϕZ′

// Z(Σn+1/Σ
r
Z′).

This diagram commutes because, in Z ′, preserving columns means pre-
serving the new box, and therefore, in the target of the bottom hori-
zontal map, we are summing over the same terms as in the target of
the top horizontal map.

This induces a Σn-equivariant map on

(4) SZ = Im(ϕZ)→ Im(ϕZ′) = SZ′ .

Definition 3. The integral Spechtral module Mλ where λ = (`2, . . . , `k)
is the FI-module

S(`2,`2,...,`k) → S(`2+1,`2,...,`k) → S(`2+2,`2,...,`k) → . . .

given by the maps (4).

Example: λ = (1k). Then

(Mλ)n = S(n−k,1k).
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The image of the generators under (2) are alternating sums of gener-
ators corresponding to ordered choices of k elements in a given k + 1
element subset of {1, . . . , n}. Consider the Z[Σn]-module

Vn = Z(Σn/Σn−1).

Let Ṽn = Ker(Z(Σn/Σn−1) → Z) be the kernel of the augmentation
map. Then we have an embedding Λk(Vn) ⊆ (Vn)⊗k given by taking
alternating sums, which induces an embedding

(5) Λk(Ṽn) ⊆ (Ṽn)⊗k.

Therefore, the image of (2) is canonically indentified with the image
of (5). Hence,

(Mλ)n ∼= Λk(Ṽn).

In fact, the right hand side Λk(Ṽn) is directly seen to form an FI-
module by the emebeddings {1, . . . , n} ⊆ {1, . . . , n + 1}. We will also

sometimes denote this Spechtral module by Λk(Ṽ ).

Note that we can similarly define embeddings

Λk(Vn) ↪→ Λk(Vn+1),

thus giving another FI-module, which we will denote by Λk(V ).

2.2. Finitely generated FI-modules and the tensor product. A
finitely generated FI-module is defined to be one that is expressable as
a quotient of a finite sum of principal projectives P (n), the m-th term
of which (for a fixed n) is

P (n)m = ZMorFI([n], [m])

where [n] = {1, . . . , n}. A Spechtral module is, by definition, finitely
generated. The Noetherian property says that the submodule of a
finitely generated module is finitely generated [11].

We define the tensor product M⊗N of FI-modules M , N by letting,
at FI-degree n,

(M ⊗N)n = Mn ⊗Nn

with FI acting diagonally. (Then also define a tensor product of mor-
phisms of FI-modules at each FI-degree separately in the obvious
way).

Lemma 4. If two FI-modules M , N are finitely generated, then so is
their tensor product M ⊗N .
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Proof. See [1], Proposition 2.3.6.
�

2.3. Local cohomology. First examples. Define for an FI-module
M , its torsion submodule TM by

(6) TMn = {x ∈Mn | ∃i : {1, . . . , n} → {1, . . .m}, i∗(x) = 0}.
We also sometimes speak of FI-torsion to distinguish it from Z-torsion
(i.e., torsion in the category of abelian groups).

Definition 5. The i-th local cohomology of an FI-module M is defined
as the i-th right derived functor RiTM .

A torsion FI-module M has a resolution by torsion injectives of the
form

Q(n)m = Map(MorFI([m], [n]), J)

(for divisible abelian groups J , where Map denotes the abelian group
of maps from a set into an abelian group), which are also FI-torsion,
and thus

R0TM = M

RiTM = 0 for i > 0.

Now let

(7) Λ(Ṽ ) =
⊕
k

Λk(Ṽ ),

and correspondingly,

(8) Λ(V ) =
⊕
k

Λk(V ).

In degree n, these FI-modules are equal to the exterior algebras Λ(Ṽn),
Λ(Vn), respectively. Let, also, Z{n} denote the torsion FI-module that
is Z in FI-degree n and is 0 at all other degrees.

Note that Λ(Ṽ ), Λ(V ) are not finitely generated. In addition, one
has

(9) Λ(Ṽ )0 = 0,

and also Λ(Ṽ )1 = Z, Λ(V )0 = Z. (For (9), recall our earlier definition

of Λk(Ṽ ) as a Spechtral module.)
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Proposition 6. The i-th local cohomology of Λ(Ṽ ) is Z given by

(10) RiTΛ(Ṽ ) = Z{0} for all i ≥ 1.

More specifically,

(11) RiTΛk(Ṽ ) =

{
Z{0} for i = k + 1
0 else

Proof. Let us denote by v1, . . . , vn the elements of Σn/Σn−1, which gen-

erate Vn. (Note that then Ṽn is generated by vi − vj for all i 6= j.) In
addition, note that for k ≥ 1, i1, . . . , ik ∈ {1, . . . , n} distinct,

vi1 ∧ · · · ∧ vik = vi1 ∧ (vi2 − vi1) ∧ · · · ∧ (vik − vi1).
We will define maps for k ≥ 1

θk : Λk(V )→ Λk−1(Ṽ )

by sending vi1 ∧ · · · ∧ vik = vi1 ∧ (vi2 − vi1) ∧ · · · ∧ (vik − vi1) to

(vi2 − vi1) ∧ · · · ∧ (vik − vi1).
To see that this map is well-defined, we need to show that our definition
does not depend on which of the elements vij we put first. To this end,
consider an alternate expression

vi1 ∧ · · · ∧ vik = (−1)j−1vij ∧ (vi1 − vij) ∧ . . . ̂(vij − vij) · · · ∧ (vik − vij)
for some j ∈ {1, . . . , k}. Our definition of θk sends this element to

(−1)j−1(vi1 − vij) ∧ . . . ̂(vij − vij) · · · ∧ (vik − vij).
To show that this is consistent, we need to prove that for every j =
1, . . . , k,

(vi2 − vi1) ∧ · · · ∧ (vik − vi1) =

= (−1)j−1(vi1 − vij) ∧ . . . ̂(vij − vij) · · · ∧ (vik − vij),
which follows from the formula

(12) (vi0−vi1)∧· · ·∧ (vi0−vim) =
m∑
j=0

(−1)m+jvi0 ∧· · ·∧ v̂ij ∧· · ·∧vim .

Also, let

θ0 : Λ0(V ) = Z→ Z{0}
be identity at FI-degree 0 and 0 elsewhere.

Taking the direct sum of all θk for k = 0, 1, . . . , k gives an onto map
of FI-modules

θ : Λ(V )→ Z{0} ⊕ Λ(Ṽ ).
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One checks by direct computation that

(13) Λ(Ṽ ) ⊆ Ker(θ)

Additionally, both source and target have the same rank in each FI-
degree. Thus, the cokernel of (13) is Z-torsion, and hence must be 0,

since Λ(V )/Λ(Ṽ ) has no Z-torsion.
Therefore, we have a short exact sequence of FI-modules

(14) 0 // Λ(Ṽ )
⊆ // Λ(V )

θ // Z{0} ⊕ Λ(Ṽ ) // 0.

Putting copies of (14) together, we get a resolution of Λ(Ṽ ) of the
form

(15) Λ(V )→ Z{0} ⊕ Λ(V )→ Z{0} ⊕ Λ(V )→ . . . .

One has
RiT (Λ(V )) = 0 for all i ≥ 0

because these FI-modules are semi-induced (for a thorough discussion,

see [2, 4, 6]). Hence the i-th local cohomology of Λ(Ṽ ) is Z{0} for every
i ≥ 1 (and 0 for i = 0). Decomposing using (7), we get the i-th local
cohomology

Rk+1TΛk(Ṽ ) = Z{0}
RiTΛk(Ṽ ) = 0 for i 6= k + 1.

�

Proposition 7. For any choice of k1, . . . , k` ≥ 0, the i-th local coho-

mology of Λk1(Ṽ )⊗ · · · ⊗ Λk`(Ṽ ) is given by

RiT (Λk1(Ṽ )⊗ · · · ⊗ Λk`(Ṽ )) =

{
Z{0} for i = k1 + · · ·+ k` + 1
0 else.

Proof. First, recalling (15), the local cohomology of each individual

Λkj(Ṽ ) can be obtained from its resolution of the form

(16) Λkj(V )→ Λkj−1(V )→ Λkj−2(V )→ · · · → Λ0(V )→ Z{0}.

To calculate the local cohomology of Λk1(Ṽ ) ⊗ · · · ⊗ Λk`(Ṽ ), we will
take the tensor product C of the resolutions (16) for all j = 1, . . . , `.

First note that

Λk(V )⊗ Z{0} =

{
Z{0} for k = 0
0 else,

Z{0} ⊗ Z{0} = Z{0}.
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Additionally, the last map of (16) induces an isomorphism after ten-
soring with Z{0}.

Consider the chain complex

I` =
⊗
`

(Id : Z→ Z)

in homological degrees 0, . . . , `.

The resolution C of Λk1(Ṽ )⊗· · ·⊗Λk`(Ṽ ) has a last Z{0} in cohomo-
logical degree k1 +· · ·+k`+`, and thus, its torsion part is the homology
of

(17) I`≤`−1[−k1 − k2 − · · · − k` − `]
(where in the formula (17), [−k1 − k2 − · · · − k` − `] denotes a shift
in homological degree, and we consider the cohomological degree to be
the opposite of the homological degree).

Now to calculate the homology of (17), first note that we have an
injective chain map

0→ I`≤`−1 → I`,
whose cokernel is Z[`] (again, shifting in homological degree), thus
giving the short exact sequence of chain complexes

(18) 0→ I`≤`−1 → I` → Z[`]→ 0.

Taking homology of (18) gives a long exact sequence of the form

· · · → Hr(I`≤`−1)→ Hr(I`)→ Hr(Z[`])→ Hr−1(I`≤`−1)→ . . . .

Now we have for all r ∈ Z, Hr(I`) = 0, and also

Hr(Z[`]) =

{
Z for r = `
0 else.

Hence,

Hr(I`≤`−1) =

{
Z for r = `− 1
0 else.

Thus, after converting to cohomological grading by reversing the
signs of all degrees,

T (Λk1(Ṽ )⊗ · · · ⊗ Λk`(Ṽ ))

has cohomology Z{0} exactly in degree k1 + · · · + k` + ` − (` − 1) =
k1 + · · ·+ k` + 1 and 0 else, i.e.,

RiT (Λk1(Ṽ )⊗ · · · ⊗ Λk`(Ṽ )) =

{
Z{0} for i = k1 + · · ·+ k` + 1
0 else.

�
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Lemma 8. The map ∧ : Λk−1(Ṽ ) ⊗ Ṽ → Λk(Ṽ ) induces an isomor-
phism in local cohomology

RiT (Λk−1(Ṽ )⊗ Ṽ ) ∼= RiT (Λk(Ṽ ).

Proof. We will prove this by proving the existence of a chain map from

a resolution of Λk−1(Ṽ ) ⊗ Ṽ to a resolution of Λk(Ṽ ) which induces a
quasiisomorphism after applying T .

Now as in (16), there is a resolution B of Λk−1(Ṽ ) of the form

(19) Λk−1(V )→ Λk−2(V )→ · · · → Λ0(V )→ Z{0}.

Applying this to Λ1(Ṽ ) = Ṽ , we get that Ṽ has a resolution of the
form

V → Z→ Z{0}.
As in the proof of Proposition 7, we can obtain a resolution of

Λk−1(Ṽ )⊗ Ṽ

by tensoring these two resolutions as chain complexes. Denote this
resolution by C:

(20)

Λk−1(V )⊗ Z{0} // . . . // Λ0(V )⊗ Z{0} // Z{0}

Λk−1(V ) //

OO

. . . // Λ0(V )

OO

// Z{0}

OO

Λk−1(V )⊗ V //

OO

. . . // Λ0(V )⊗ V

OO

// Z{0} ⊗ V

OO

Note that Λ1(V )⊗ Z{0} = Z{0} ⊗ V = 0. There is a morphism from C
to

Λk(V )→ Λk−1(V )→ · · · → Λ0(V )→ Z{0}
where we send the top row of (20) to 0, and the bottom two rows are
sent by the map

(−1)k−1Id⊕ ∧ : Λi(V )⊕ Λi−1(V )⊗ V → Λi(V ),

(−1)k−1 : Z{0} → Z{0}.
Clearly, this induces an isomorphism in cohomology after applying T .

�
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3. The local cohomology of M ′
λk

The main goal of this paper is to compute the local cohomology of
the Spechtral module Mλk . In this section, we will define another FI-
module M ′

λk
and compute its local cohomology, and in the next section,

we will prove that

Mλk
∼= M ′

λk
.

3.1. Certain chain complexes of FI-modules. Let D denote the
chain complex

Λk(V )⊗ V → Λk−1(V )⊗ V → · · · → Λ0(V )⊗ V
where the differential is given by

d(vi1 ∧ · · · ∧ vij ⊗ v`) =

=

{
(−1)j−s−1vi1 ∧ . . . v̂is · · · ∧ vij ⊗ v` if is = ` for some s
0 else.

The FI-degree n summand of this chain complex can be alternately
described as

nD =
⊕n

i=1 Λ[v1, . . . , v̂i, . . . , vn]⊗ (Z{vi ⊗ vi}
∼= // Z{vi}),

where the isomorphism Z{vi⊗vi} → Z{vi} is given by sending vi⊗vi to
vi, and the chain complex is indexed homologically, putting the term
Λk(V ) ⊗ V in homological degree k. Thus, for every FI-degree n,
H∗(nD) = 0.

At every FI-degree n and homological degree k, the differential of

nD sends
(21)
(vi2−vi1)∧· · ·∧ (vik−vi1)⊗vi1 7→ −(vi2−vik)∧· · ·∧ (vik−1

−vik)⊗vi1 .

Hence, by always restricting differentials to Λk(Ṽ )⊗ V , there is a sub-

complex D̃ of the form

Λk(Ṽ )⊗ V
dD̃k // Λk−1(Ṽ )⊗ V

dD̃k−1 // . . .
dD̃1 // Λ0(Ṽ )⊗ V.

Now in the case of n > 1, for every m ∈ Z,

(22) Hm(nD̃) = 0,

since, recalling formula (12), Λk(Ṽ )⊗V is generated by elements in the
source of (21) and the target of (21) (where in the target, k is replaced
by k + 1).
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If n = 1, then the chain complex 1D̃ is of the form

0→ 0→ · · · → 0→ Z

(where the Z is in homological degree 0). Hence, in this case,

(23) Hm(1D̃) =

{
Z for m = 0
0 else.

3.2. The definition of the FI-module M ′
λk

. Let K be the FI-
module defined as the kernel

(24) 0→ K → Λk−1(Ṽ )⊗ Ṽ → Λk(Ṽ )

of the canonical map Λk−1(Ṽ )⊗ Ṽ ∧ // Λk(Ṽ ) . Consider the map

δ : K → Λk−2(Ṽ )⊗ V

that is the restriction of the differential of D̃. We put

M ′
λk

= Ker(δ).

Thus, we have a candidate for a resolution of M ′
λk

of the form

K
dE0 // Λk−2(Ṽ )⊗ V

dE1 // Λk−3(Ṽ )⊗ V
dE2 // . . .

dEk−2 // Λ0(Ṽ )⊗ V

where dE0 = δ. Denote it by E . Let us use chain cohomological grading

for E , i.e., E0 = K, E1 = Λk−2(Ṽ )⊗ V , etc., and

dEm : Em → Em+1.

We will see that E is “close enough” to a resolution to calculate the
local cohomology of M ′

λk
. To do this, we begin by calculating the chain

cohomology of E . By definition, H0(E) = M ′
λk

.

3.3. The chain cohomology of E.

Theorem 9. Let k ≥ 2.

(1) For m > 1,

Hm(nE) =

 0 if n > 1, and m ≥ 2
0 if n = 1, and 2 ≤ m < k − 1
Z if n = 1, and m = k − 1.
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(2) We have

H1(nE) =


Z− if n = k
(Z/k)− if n = k + 1
Z/2 if n > k + 1 and k is even
Z if n = 1, k = 2
0 else

where Z−, (Z/k)− denote the sign representations of Σn.

Comment: The penultimate case of (2) is part of the last case of (1).

Proof of the cases m > 1 and m = 1, n ≤ k. First, note that, for m >
1,

Hm(E) = Ker(dEm)/Im(dEm−1) = Hk−1−m(D̃),

thus proving (1) of the Theorem by (22), (23).
It remains to calculate the first chain chomology H1(nE) for every

n ≥ 1.
First, suppose n ≤ k− 1. In this case, dim(Ṽ ) = n− 1 < k− 1, and

therefore Λk−1(Ṽ ) ⊗ Ṽ = 0. Hence, K = 0. Then the chain complex

nE is of the form

0→ Λk−2(Ṽ )⊗ V → Λk−3(Ṽ )⊗ V → · · · → Λ0(Ṽ )⊗ V,

which is isomorphic to D̃[1 − k]. Hence, H1(nE) = Hk−2(nD̃) = 0,
except in the case n = 1, k = 2, which was already discussed.

Now suppose n = k. In this case, dim(Ṽ ) = n−1. Thus, Λk(Ṽ ) = 0,
and (24) gives

K ∼= Λk−1(Ṽ )⊗ Ṽ .
The chain complex nE is of the form

Λk−1(Ṽn)⊗ Ṽn → Λk−2(Ṽn)⊗ Vn → · · · → Λ0(Ṽn)⊗ Vn.

Thus, it forms a short exact sequence

0→ nE → nD̃[1− k]→ Z− → 0

(where Z− represents the cochain complex

Z− → 0→ · · · → 0,

and, again, [1− k] denotes the shift in homological degree). This gives
a long exact sequence

H0(D̃[1− k])→ H0(Z−)→ H1(E)→ H1(D̃[1− k])→ . . . .
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Hence, since

H0(D̃[1− k]) = Hk−1(D̃) = 0,

H1(D̃[1− k]) = Hk−2(D̃) = 0,

we have

H1(nE) = H0(Z−) = Z−.
�

3.4. The proof of Theorem 9, part (2) in the case n ≥ k + 1.

Proof of Theorem 9, (2) for n = k + 1. Note that we have canonical
isomorphisms

(25) Λk(Ṽk+1) ∼= Z−, Λk−1(Ṽk+1) ∼= Z− ⊗ Ṽ ∗k+1.

Thus, we have a short exact sequence of chain complexes

(26) 0→ k+1E → k+1D̃[1− k]→ K → 0

where K is of the form

(27) Λk(Ṽk+1)⊗ Vk+1
δ // (Λk−1(Ṽk+1)⊗ Vk+1)/K

in homological degrees 0,−1. By (25), we have an idenfication

(28) K0 = Z− ⊗ Vk+1,

which has dimension k + 1.
To understand K, first note that we can identify

(29)
Kk+1 = Z− ⊗ {f ∈ Hom(Ṽ , Ṽ )|tr(f) = 0},

Λk−1(Ṽ )⊗ V = Z− ⊗Hom(Ṽ , V ).

Writing V/Ṽ = Z, we thus get a short exact sequence

(30) 0 // Z− // K−1
π // Z− ⊗ Ṽ ∗ // 0.

In particular, dim(K−1) = dim(K0) = k+1. By the long exact sequence
in cohomology associated with (26), we need to show that the cokernel
of δ is isomorphic to (Z/k)−.

By Noether’s isomorphism theorem, we have

Coker(δ) =

Z/(tr((Im(d
D̃[1−k]
0 ) ⊆ Z− ⊗Hom(Ṽk+1, Vk+1))∩

(Z− ⊗Hom(Ṽk+1, Ṽk+1))))
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Now define ei ∈ Ṽ ∗k+1 by setting, for j 6= k,

ei(vj − vk) =

 1 if i = j
−1 if k = j
0 else.

We have

d
D̃[1−k]
0 (vi) = ei ⊗ vi.

Thus,

Im(d
D̃[1−k]
0 ) ∩ (Z− ⊗Hom(Ṽk+1, Ṽk+1))

is generated by

(31) d
D̃[1−k]
0 (v1 + · · ·+ vk+1) =

k∑
i=1

ei(vi − vk+1)

(using vk+1 = −v1 − · · · − vk ∈ Ṽk+1).
Now for i = 1, . . . , k,

ei(vi − vk+1) = 1,

ei(vj − vk+1) = 0, for i 6= j.

Thus, the trace of the right hand side of (31) is k, as claimed.
�

Next, we have the following

Lemma 10. For every n ≥ k + 1, Kn is generated by elements of the
form

(32) (vi1 − vi2) ∧ (vi1 − vi3) ∧ · · · ∧ (vi1 − vik−1
) ∧ (vi − vj)⊗ (vi − vj)

where i 6= j and all i1, . . . , ik−1 are different, and

(33) |{i, j} ∩ {i1, . . . , ik−1}| = 0 or 1.

Proof. The statement that the set of the elements (32) for any

i, j, i1, i2, . . . , ik−1 ∈ {1, . . . , n}
generates Kn follows from the fact that for variables w1, . . . , ws,

ΛZ[w1, . . . , ws] = T [w1, . . . , ws]/I

where T [w1, . . . , ws] denotes the tensor algebra on w1, . . . , ws, and I
is generated by wi ⊗ wi, wi ⊗ wj + wj ⊗ wi, and additionally, for any
i, j, i′, j′ ∈ {1, . . . , n},

(vi − vj)⊗ (vi′ − vj′) + (vi′ − vj′)⊗ (vi − vj) =
= −(vi − vi′)⊗ (vi − vi′) + (vi − vj′)⊗ (vi − vj′)+

+(vj − vi′)⊗ (vj − vi′)− (vj − vj′)⊗ (vj − vj′).
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Now in view of formula (12), unless i1, . . . , ik−1 are different and
i 6= j, and (33) holds, the expression (32) is 0.

�

Now denote by
ε : Λk−2(Vn)⊗ Vn → Z/2

the map which sends

vi1 ∧ · · · ∧ vik−2
⊗ vj 7→ 1

for i1, . . . , ik−2 different. Let ε̃ denote the composition

Λk−2(Ṽn)⊗ Vn ↪→ Λk−2(Vn)⊗ Vn
ε // Z/2.

We have

Lemma 11. For k even, the compostion

Kn

dE0 // Λk−2(Ṽn)⊗ Vn
ε̃ // Z/2

is 0.

Proof. This follows from the fact that, by formula (12), the dE0 images
of the generators (32) with the condition (33) can be expressed as a
sum of evenly many terms of the form

(34) vi1 ∧ · · · ∧ vik−2
⊗ vj

for i1, . . . , ik−2 different.
�

Proof of Theorem 9, (2) for n > k + 1. First note that we have

(35)
dE0 ((vi−1 − vi2) ∧ · · · ∧ (vi1 − vik)⊗ (vi1 − vi2)) =

= (−1)k((vi1 − vi3) ∧ · · · ∧ (vi1 − vik)⊗ vi2+
+(vi2 − vi3) ∧ · · · ∧ (vi2 − vik)⊗ vi1)

for i1, . . . ik ∈ {1, . . . , n} different. Also, for i1, . . . , ik+1 ∈ {1, . . . , n}
different, we have

(36)
dE0 ((vi1 − vi2) ∧ (vi3 − vi4) ∧ · · · ∧ (vi3 − vik+1

)⊗ (vi1 − vi2)) =
= (−1)k((vi3 − vi4) ∧ · · · ∧ (vi3 − vik+1

)⊗ (vi1 + vi2)).

Since n ≥ k + 2, the set

S = {1, . . . n}r {i3, i4, . . . , ik+1}
has cardinality ≥ 3, and thus, the elements of the form (36) generate
an index 2 subgroup in

(37) 〈(vi3 − vi4) ∧ · · · ∧ (vi3 − vik+1
)⊗ vj|j ∈ S〉
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Additionally, elements of the right hand side of (35) identify, in

Ker(dE1 )/Im(dE0 ),

the generators (37) for different choices of {i3, . . . , ik+1}. Since elements
(37) generate Ker(dE1 ), this represents H1(nE) as a factor of Z/2.

If k is even, then the onto map

Z/2→ H1(nE)

must be an isomorphism (since H1(nE) surjects onto Z/2 by Lemma
11).

If k is odd, we also know from the case n = k+1 that the k-multiple
of

(38) (vi3 − vi4) ∧ · · · ∧ (vi3 − vik+1
)⊗ vj

for j 6= i3, . . . ik+1 is 0 ∈ H1(nE), and since the 2-multiple of (38) is
also 0 in H1(nE), which is generated by elements of this form, we know
that

H1(nE) = 0,

as claimed.
�

3.5. The local cohomology of M ′
λk

.

Theorem 12. (1) If k ≥ 2 is odd, we have

RiT (M ′
λk

) =


Z− if n = k, and i = 2
(Z/k)− if n = k + 1, and i = 2
Z if n = 1, and i = k
0 else.

(2) If k ≥ 2 is even, we have

RiT (M ′
λk

) =


Z− if n = k, and i = 2
(Z/k

2
)− if n = k + 1, and i = 2

Z/2 if n ≤ k − 1, and i = 3
Z if n = 1, and i = k
0 else.

Proof. We will begin by proving (1). Suppose k is odd. The chain
complex of FI-modules

(39) (K → Λk−2(Ṽ )⊗ V → Λk−3(Ṽ )⊗ V → · · · → Λ0(Ṽ )⊗ V )n≥k+2
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(where the subscript means restricting to FI-degree ≥ k + 2) gives a
resolution of Mλk , by Theorem 9, since the chain cohomology is only
nonzero in FI-degree ≤ k + 1.

Now in general, if C denotes a resolution of an object M in an abelian
category with enough injectives, and T is a left exact functor into
another abelian category, we have a spectral sequence

Ep,q
1 = RqT (Cp)

that converges to Rp+qT (M), (meaning that there exists a decreasing
filtration Fp(R

mT (M)) such that

Ep,q
∞ = Fp(R

p+qT (M))/Fp+1(Rp+qT (M))).

In this case, of course, we take the category of FI-modules, T is the
torsion functor (6), C is (39), and M is M ′

λk
.

In addition, for an FI-module M , if

(40) ∀q ≥ 0 RqT (M) = 0,

then we have

(41) RqT (Mn≥s) =

{
M/Mn≤s−1 if q = 1
0 else

by the short exact sequence of FI-modules

0→Mn≥s →M →Mn≤s−1 → 0

(where the subscripts again mean restricting to the indicated FI-degrees).
Note that K satisfies (40) by Proposition 7 (and the map

Λk−1(Ṽ )⊗ Ṽ → Λk(Ṽ )

induces an isomorphism in local cohomology, see Lemma 8), and the

FI-module Λk(Ṽ )⊗ V satisfies (40) because Z{0} ⊗ V = 0.
So, in this case, the E1-term is nonzero only for q = 1, (and therefore

the spectral sequence collapses to E2), and is equal to the chain complex
at n ≤ k + 1, which is

Kn≤k+1 → (Λk−2(Ṽ )⊗ V )n≤k+1 → · · · → (Λ0(Ṽ )⊗ V )n≤k+1.

The cohomology of this chain complex is given by Theorem 9, thus
implying our result.

Now we shall prove (2). Suppose k is even. Let Ê denote the chain
complex

K → Λk−2(Ṽ )⊗ V → Z/2n≥0 ⊕ Λk−3(Ṽ )⊗ V → · · · → Λ0(Ṽ )⊗ V
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(the maps Λk−2(Ṽn)⊗Vn → Z/2 are given by the number of terms (34)

of the source modulo 2). Then Ên≥k+2 gives a resolution of M ′
λk

, by
Theorem 9.

By the discussion in the previous case, the resulting spectral sequence
is only non-trivial at q = 1 (hence, it collapses again to E2). For q = 1,

we get the chain complex Ên≤k+1. Now we have a short exact sequence

0→ Z/2n≤k+1[−2]→ Ên≤k+1 → En≤k+1 → 0.

Thus, we get a long exact sequence in local cohomology which is

(42)

0 // R1T Ên≤k+1
// R1TEn≤k+1

δ // Z/2n≤k+1

��

R2T Ên≤k+1

��
0

(the connecting map δ would go to R2 which is shifted down by 2 on
the FI-torsion module Z/2n≤k+1).

The term R1TEn≤k+1 is calculated by Theorem 9. The map δ is onto
in FI-degrees k and k + 1 by the definition of the connecting map.
Thus, our result follows.

�

4. Proof that M ′
λk

is isomorphic to Mλk

Theorem 13. For all k ≥ 2, there is an isomorphism

ψ : Mλk

∼= // M ′
λk
.

Proof. We begin by describing explicitly the integral Specht module

S(n−k, 2, 1k−2) = (Mλk)n.

The generators are certain sums in Z(Qr
n) where Qr

n is the set of
all ordered choices of different elements i1, . . . , ik−2 ∈ {1, . . . , n} and
a 2-element set I ⊆ {1, . . . , n} r {i1, . . . , ik−2} (which is identified
with Σn/Σ

r). They are images of elements of Z(Σn/Σ
c), which can
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be identified with Z(Qc
n), where Qc

n is the set of different elements
ι1, . . . , ιn−k−2 ∈ {1, . . . n}, and a 2-element set

J ⊆ {1, . . . , n}r {ι1, . . . , ιn−k−2}.
The sum ranges over all compatible choices in Qr

n with a given element
of Qc

n with signs determined by the sign of the overall permutation of
{1, . . . , n} which the choice determines. Note that up to sign, these
generators actually only depend on the sets J, J ′ ∈ {1, . . . , n}, |J | = 2,
|J ′| = k, J ∩ J ′ = ∅, where J ′ = {1, . . . , n}r ({ι1, . . . , ιn−k−2} ∪ J).

We will denote the corresponding generator by xJ,J ′ . Putting

J = {j1 < j2}, J ′ = {j′1 < · · · < j′k},
we can write

(43) xJ,J ′ =
∑

σ∈Σ2,τ∈Σk

sign(σ) · sign(τ) · ((j′τ(3), . . . , j
′
τ(k)), {jσ(1), j

′
τ(2)}).

Now the element (43) determines (up to sign) an element of

Ker(∧ : Λk−1(Vn)⊗ Vn → Λk(Vn))

given by
(44)

xJ,J ′ =
∑

p=1,...,k, q=1,2

(−1)p+q(k − 1)vj′1 ∧ . . . v̂j′p · · · ∧ vj′k ⊗ vjq

+
∑

1≤p1 6=p2≤k, q=1,2

(−1)p1+qvj′1 ∧ . . . v̂
′
jp1
. . . v̂′jp2 ∧ vjq · · · ∧ vj′k ⊗ vj′p2 .

We claim that the elements (43), (44) span isomorphic representa-
tions. In fact, the passage from (43) to (44) can be described as follows:
(43) can be considered as an element of V ⊗k−2

n ⊗ Sym2(Vn), where the
Sym2(Vn) corresponds to the {jσ(1), j

′
τ(2)} coordinate of (43). Embed-

ding into V ⊗k−2
n ⊗ V ⊗2

n = V ⊗kn , however, provides an element in

Λk−1(Vn)⊗ Vn ↪→ V ⊗kn

given by anti-symmetrization, which is given (up to sign) by (44).
Now by definition,

(45) xJ,J ′ ∈ Ker(dD̃k−1 : Λk−1(Vn)⊗ Vn → Λk−2(Vn)⊗ Vn)

(since no element vj occurs on both sides of the ⊗ in any of the sum-
mands). We claim also that

(46) xJ,J ′ ∈ Λk−1(Ṽn)⊗ Ṽn.
This is obvious for the first summand (44), whose term for a given p is

eJ ′r{j′p} ⊗ eJ
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where e(i0,...,im) denotes the element (12) and we write

e{i0<···<im} = e(i0,...,im).

The sum of the other summand of (44) is seen to be in Λk−1(Vn)⊗ Ṽn
by grouping the terms with given {p1, p2}, q, and in Λk−1(Ṽn)⊗ Vn by
grouping the terms with a given p2. Thus, (46) holds. By (45), (46),
we have produced a map of Σn-representations

(47) ψn : (Mλk)n → (M ′
λk

)n.

This map is non-zero and hence injective (since the representations
(Mλk)n are irreducible after tensoring with Q).

We first claim that ψn⊗Q is an isomorphism. To this end, Remmel
[8], Theorem 2.1 proves that rationally,

Λk−1(Ṽn)⊗ Ṽn ∼= (Mλk)n ⊕ (Mλk−1
)n ⊕ Λk(Ṽn)⊕ Λk−1(Ṽn)⊕ Λk−2(Ṽn).

Inductively, it follows that rationally,

Lk := Ker(dD̃k−2 : Λk−2(Ṽn)⊗ Vn → Λk−3(Ṽn)⊗ Vn)
∼= (Mλk−1

)n ⊕ Λk−1(Ṽn)⊕ Λk−2(Ṽn).

On the other hand, rationally,

Kn
∼= (Mλk)n ⊕ (Mλk−1

)n ⊕ Λk−1(Ṽn)⊕ Λk−2(Ṽn)

so we have a short exact sequence

0→ (Mλk)n → Kn → Lk → 0,

as claimed.
Thus, the cokernel of (47) is torsion, and we need to show that the

torsion is 0. We will use induction on n and k. By the induction
hypothesis, the elements xJ,J ′ with n /∈ J ∪ J ′ generate

(M ′
λk

)n−1 ⊆ Λk−1(Ṽn−1)⊗ Ṽn−1.

Thus, it suffices to consider the images of the elements

(48) xJ,J ′ , n ∈ J

(49) xJ,J ′ , n ∈ J ′

in

(50) Λk−2(Ṽn−1) ∧ {vn} ⊗ Ṽn−1 ⊕ Λk−1(Ṽn−1)⊗ {vn}.
However, the condition that these elements be in Kn determines the
second summand (50) from the first summand, so we may further re-
place (50) by

(51) Λk−2(Ṽn−1) ∧ {vn} ⊗ Ṽn−1
∼= Λk−2(Ṽn−1)⊗ Ṽn−1
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Now for n ∈ J ′, (with appropriate signs), the image of an element

(52) x{j1,j2},J ′ ± x{j1,n},J ′r{n}∪{j2} ± x{j2,n},J ′r{n}∪{j2}
becomes the generator

(53) x{j1,j2},J ′r{n} ∈ (Mλk−1
)n−1.

On the other hand, the image of an element x{i,n},{j′1,...,j′k} in (51) is,
up to sign,

(54)
k∑
s=1

(−1)se{j′1,...,ĵ′s,...,j′k}
⊗ vj′s .

Additionally, in any characteristic p > 0, the elements (53) are lin-
early independent of the elements (54) by the characteristic p Pieri
rule. Thus, if a linear combination of such elements is divisible by p,
the sums of the (53)-summands and (54)-summands would have to be
divisible by p separately. For the (53)-summands, the element is a p-
multiple of a linear combination of the elements (52) by the induction
hypothesis. The (54)-summands actually do not depend on i, but oth-
erwise, for different choices of {j1, . . . , jk}, are linearly independent in
characteristic p. Thus, our result follows.

�

5. Appendix: Comments on the Relationshipe with
Schur–Weyl Correspondence

As mentioned in the Introduction, rationally, Schur–Weyl duality
gives an equivalence between the category of FI-modules and the
category of GL(V )-equivariant graded Sym(V )-modules deegree-wise
polynomial in the Schur functors, where V = Q{x0, x1, . . . }. (To dis-
tinguish the two meanings of xi, we write the basis elements of V as
dxi.) In fact, there is an equivalence between the category of generic
FI-modules (meaning the Serre quotient of FI-modules over torsion
FI-modules) and a certain category of “quasi-coherent sheaves” on
P∞. Further it is easy to show that under this duality, M(1, . . . , 1︸ ︷︷ ︸

k

)

corresponds to the coherent sheaf Ωk of k-forms on P∞Q . In fact, this
statement for M(1, . . . , 1︸ ︷︷ ︸

k

) holds on the level of graded modules, if we

take the saturated model of Ωk.
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Integrally, this correspondence fails. Let us discuss briefly what hap-
pens in the above Theorem for k = 2. Rationally, on the Sym(V )-
modules side, M(2) corresponds to the equivariant graded Sym(V )-
module S(2) defined as Ker(d) in the resolution
(55)

V ⊗2 ⊗OP∞(−2)
d // Λ2V ⊗OP∞(−2)⊕ V ⊗OP∞(−1) // W

where W is torsion equal to V in degree 1 and Λ2V in degree 2 and 0
elsewhere, and we have

xi : dxj 7→ dxi ∧ dxj ∈ W.
The first map (55) is a sum of the projection with theO = Q[x0, x1, . . . ]-
module map given by

dxi ⊗ dxj 7→ xidxj.

Since the first two terms of the resolution have 0 local cohomology, we
see that this matches the result of Theorem 1.

Now integrally, if we still denote W = Coker(d) in (55), then W is
the same in degrees 1 and 2, but is equal to ΛnV/2 in degree ≥ 3. If
we denote by Λ the graded Sym(V )-module where Λn = Λn(V )/2 for
n ∈ N0, considered as a quotient of Sym(V ), then W coincides with Λ
in degrees ≥ 3. We see that this object is spurious in the sense that it
is “Schur–Weyl dual” to the constant Z/2 FI-module, as is Sym(V )/2.

Now one can show that Λ has 0 local cohomology in the category of
graded Sym(V )-modules. (To see this, let, for a finite I ⊆ N0, let NI

be the Sym(V )-module on monomials of the form

(56) xi1 ∧ · · · ∧ xinx−1
j1
. . . x−1

jm

where i1, . . . , in /∈ I, jr 6= is. Multiplication of (56) by a xk-monomial
which results in a monomial not of this form is 0. Then NI is injective,
torsion-free, and Λ has a “cube-like” resolution by NIx

−1
i1
. . . x−1

iN
where

I = {i1 < · · · < iN}).
Plugging in this computation of local cohomology, we actually get

that S(2) has the same local cohomology as M2 integrally. Similarly, for

k > 2 even, R3TSλk will contain the part of the module Λ in degrees
≤ k − 1.
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