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Abstract. The main subject of this paper is the construction of
quantum or “q > 1” counterparts of the Delannoy category con-
structed by Harman, Snowden, and Snyder [8]. We investigate the
remarkable properties of our new categories. As an application, we

find a semisimple pre-Tannakian category of growth ee
c·n2

, which
is the highest known.
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1. Introduction

The main result of this paper is the construction and investigation of
certain surprising new categories. A new direction of category theory
has recently been developing, which can be viewed as an extension of
representation theory. It studies, for the most part, symmetric tensor
(abelian) categories which are linear over some field k, whose Hom-sets
are finitely generated vector spaces, and which are rigid in the sense
that all objects have strong duals [6]. Categories with these properties
are often referred to as pre-Tannakian categories, in reference to the
paper by P. Deligne and J. S. Milne [4], which used the concept of
neutral Tannakian categories, meaning pre-Tannakian categories with
a fiber functor, to construct candidates for categories of motives.

The author was supported by a 2023 National Science Foundation Fellowship,
no. 2023350430.
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Pre-Tannakian categories turned out to be of independent interest.
Specifically semisimple pre-Tannakian categories are mathematical en-
tities which are both difficult to construct and have a rich internal
geometry. P. Deligne called them“isolated diamonds.” New examples
of semisimple pre-Tannakian categories are the main subject of the
present paper.

In particular, we construct “q > 1” counterparts of the Delannoy
category of N. Harman, A. Snowden, and N. Snyder [8]. We call them
quantum Delannoy categories, extending the terminology of [7]. The
quantum Delannoy categories have many striking properties. In partic-
ular, they imply the existence of a semisimple pre-Tannakian category

with an object of growth at least ee
c·n2

, which is currently the highest
known.

To state our results more precisely and place them in context, we in-
troduce some terminology. A natural generalization of a pre-Tannakian
category is an additive category linear over a commutative ring with
associative, commutative, unital (ACU) tensor product, finitely gen-
erated Hom-modules, and strong duality. We call them quasi-pre-
Tannakian (QPT) categories. In a QPT category, one can define the
dimension of an object X as the trace of IdX , and the growth of X as
the sequence

rank(End(X⊗n)).

P. Deligne [2] proved that a semisimple pre-Tannakian category C has
a fiber functor (i.e. a faithful tensor functor) into the category sV ect
of super vector spaces if and only if every object of C has at most
exponential growth.

QPT categories are much easier to construct than pre-Tannakian
ones. For example, the author in [12] constructed a QPT category of
arbitrarily high growth. However, when a QPT category is semisimple,
it is automatically abelian, and therefore, pre-Tannakian. P. Deligne
and J. S. Milne [4] (Subsections 1.26, 1.27) constructed a QPT category
Rep(GLt) in characteristic 0 which is free on an object in dimension
t. After extending scalars to C, it is semisimple when t is not a non-
negative integer. It can be considered as an “interpolation” Rep(GLt)
of algebraic representation categories of general linear groups.

The next important advancement in the study of semisimple pre-
Tannakian categories was the paper of P. Deligne [3], which constructed,
for k a field of characteristic 0, categories Rep(St) for t ∈ k, “inter-
polating” the categories of finite dimensional k-representations of the
symmetric groups Sn. The categories Rep(St) thus constructed are
semisimple for t not a non-negative integer.
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Knop [10, 11], analogously to [3], defined categories Rep(GLt(Fq))
for a finite field Fq with q = pm for a prime p, “interpolating” the
categories of finite-dimensional k-representations of GLn(Fq) for k a
field of characteristic 0. Again, these categories are semisimple for
generic values of t. In some sense, the category Rep(GLt(Fq)) can be
considered a “q > 1” analogue of the category Rep(St). However, while
the categories Rep(St) and Rep(GLt) have objects of growth at most

ec·n·ln(n), the category Rep(GLt(Fq)) has objects of growth at least ec·n
2

for c > 0, which was the highest growth known at the time.
A major development in the subject was the work by N. Harman

and A. Snowden [7], who generalized the interpolation method to a
method of constructing locally finite additive k-linear categories with
an ACU tensor product and strong duality using oligomorphic groups
(see [1]) with “measures.” The above examples can be obtained from
the oligomorphic groups S∞, GL∞(Fq). However, a number of other
examples exist, including the Delannoy category D (N. Harman, A.
Snowden, N. Snyder, [8]), which comes from a suitable measure on
the oligomorphic group Aut(R, <) of order-preserving bijections of R.
This category is semisimple (and hence, semisimple pre-Tannakian)
over a field k of any characteristic and the growth of its objects is
bounded above and below by the growth of objects of Rep(St). Another
interesting class of examples constructed using oligomorphic groups
with measures was recently described in [13].

A. Snowden [14] showed that for a semisimple pre-Tannakian cat-
egory C over a finite field k with an object of growth at least f(n),
applying a non-zero idempotent of C[k, ·] to the free C-linear category
C[C] gives a semisimple pre-Tannakian category with objects of growth
at least ef(n). Using the Delannoy category, he obtained objects of

growth at least ee
c·n·ln(n)

.
The main result of this paper is a construction of “q > 1” or quantum

counterparts of the Delannoy categroy This category combines the ideas
of Rep(GLt(Fq)) and D . I first discovered this construction using the
formalism of T-algebras which I used in [12]. It is a general method for
constructing QPT categories by studying the universal algebra struc-
ture on Hom(X⊗m, X⊗n) with varying m,n for some generating object
X. The data considered are (tensor) product, partial traces, and units
in a particular sense. A T-algebra structure determines a QPT struc-
ture completely (assuming finitely generated Hom-modules).

When one studies the T-algebra of Rep(St), one finds that, denoting
by X the “basic object” interpolating the permutation representations
of the symmetric group Sn on the set {1, . . . , n}, the Hom-modules
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Hom(X⊗m, X⊗n) are the free modules on equivalence relations on

(1.1) {1, . . . ,m} ⨿ {1, . . . , n}.
One has dim(X) := tr(IdX) = t. For the Delannoy category, the
description of Hom(X⊗m, X⊗n) is, in our formalism, again given by
equivalence relations on (1.1), except that the equivalence classes are
(totally) ordered. It turns out that this forces t = −1. It is worth
noting that, as pointed out it [8], the Delannoy category cannot be
obtained by interpolating categories of representations of finite groups.

For Rep(GLt(Fq)), Hom(X⊗m, X⊗n) can be described as the free
module on quotient homomorphisms

(1.2) Fmq ⊕ Fnq → V.

The basic object has dimension dim(X) = qt.
I defined the (Borel) quantum Delannoy category by adding the data

of a choice of a maximal flag on V to (1.2). As it turns out, this, again,
forces t = −1. The resulting category Dq,k is semisimple for a target
field k of characteristic not dividing q(q − 1).

This has an application to growth. Using the method of [14] on the
Borel quantum Delannoy category Bq,k, we obtain the following

Theorem 1.1. There exists a semisimple pre-Tannakian category E
over C with an object X such that dim(End(X⊗n)) has objects of

growth at least ee
c·n2

for some c ∈ R>0.

These are the fastest growing examples of semisimple pre-Tannakian
categories currently known.

It turns out that the category Bq,k can also be constructed by the
method of [7], using the oligomorphic group which is the semidirect
product of Aut(R, <) with an infinite Borel group.

Following a suggestion of P. Deligne [5], we also investigate a variant
by using (in a suitably finitary version), the unipotent subgroup in-
stead. The resulting category Uq,k is semisimple for any field k of char-
acteristic not equal to p and can, in some sense, be considered an even
more “pure” definition of a quantum Delannoy category. We describe
it again using both the T-algebra and oligomorphic group mechanisms.
The construction of Uq,k also has a variant where the “basic object” is
the projective space P(Fq[R]).

We study both categories Bq,k and Uq,k in some detail. In particular,
we give the decomposition of the “basic object” into simple summands.
In fact, over an algebraically closed field of characteristic not p, one can
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classify all the simple objects of Uq,k (referring to the characters of the
p-Sylow subgroup of GLn(Fq)).

There is a natural tensor functor

Bq,k → Uq,k.

Perhaps surprisingly, there also turns out to be a tensor functor

D → Bq,k

(where D is the Delannoy category), due to a certain striking universal
property of the Delannoy category D , which we describe.

The present paper is organized as follows: Section 2 starts by de-
scribing the T-algebra method. We show how the T-algebra mechanism
applies to the categories Rep(St), D , and Rep(GLt(Fq)).

In Subsection 2.7, we then construct the Borel quantum Delannoy
category Bq,k using T-algebras. In Subsection 2.8, we describe the
unipotent analogue for the construction, which gives Uq,k.

Section 3 gives a construction of the Borel and unipotent quantum
Delannoy categories Bq,k and Uq,k using the framework of oligomorphic
groups. We review and verify the technical requirements to apply the
results of A. Snowden and N. Harman to get a proof of the semisimplic-
ity of Bq,k and Uq,k, and give descriptions of orbits of the corresponding
oligomorphic groups using matrices.

An alternative proof of semisimplicity, using the methods of [3] (also
giving a calculation of the dimensions of the “top algebra” in the sense
of [3]), is given in the Appendix.

Section 4 discusses structural properties of the categories, including
the simple decompositions of each category’s basic objects, a classifi-
cation of the simple objects of Uq,k, and a universality property for the
Delannoy category.

Acknowledgment: I am thankful to Professors P. Deligne, A. Kir-
illov, and A. Snowden for discussions and references. I am especially
thankful to Professor P. Deligne for contributing key suggestions and
ideas throughout this project.
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2. T-Algebra Constructions and the Quantum Delannoy
Categories

In this section, we discuss a general mechanism for describing a QPT
category generated by a single object X using the modules of homo-
morphisms between its tensor powers. These modules form a universal
algebra which we call a T-algebra. The initial T-algebra corresponds
to the category Rep(GLt) constructed in [4], [3], Chapter 10. We also
treat several other examples using the formalism of T-algebras, includ-
ing Rep(St) [3], Rep(GLt(Fq)) [10, 11], and the Delannoy category [8].
For general background on tensor categories, we refer the reader to [6].

In Sections 2.7 and 2.8, we construct the two main examples of the
present pape using the T-algebra formalism. The quantum (or q > 1)
Delannoy categories are defined by combining the ideas of D (Subsec-
tion 2.4) and Rep(GLt(Fq)) (Subsection 2.6).

The first version, the Borel quantum Delannoy category, denoted by
Bq,k, is defined in Section 2.7. It is defined for a prime power q over a
field k with

(2.1) char(k) ∤ q(q − 1)

is defined by specifying a maximal flag on the target of (2.22).
The second version, the unipotent quantume Delannoy cateogry, de-

noted by Uq,k, is defined in Subsection 2.8. It is defined for a prime
power q = pm over a field k of characteristic not p, by specifying a basis
of the target of (2.22) modulo the action of the unipotent subgroup of
the Borel subgroup of GL(V ) (where V denotes the target of (2.22))
of linear transformations preserving the flag. For the remainder of this
paper, q = pm will denote the power of a prime p.

2.1. Definition of a T-algebra. A k-linear abelian category C for a
field k with an ACU tensor product and strong duality (generated by
an object X) is, in fact, determined by the structure of the morphism
k-vector spaces

(2.2) CS,T := HomC (X
⊗S, X⊗T )

for all finite sets S, T , which can be axiomatized by a type of a universal
algebra structure which we call a T-algebra, which we define as follows:

Definition 2.2. Fix a field k. A T-algebra consists of the data of
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(1) A system of k-vector spaces TS,T for all finite sets S and T ,
functorial with respect to bijections in the S and T coordinates,

(2) for all subsets S ′ ⊆ S, T ′ ⊆ T and any choice of a bijection

ϕ : S ′
∼= // T ′

a specified SS∖S′ × ST∖T ′-equivariant trace map

τϕ : TS,T → TS∖S′,T∖T ′
(where SU denotes the symmetric group on a set U),

(3) for finite sets S1, S2, T1, T2, product maps

(2.3) π : TS1,T1 ⊗ TS2,T2 → TS1⨿S2,T1⨿T2 ,

(4) an element 1 ∈ T∅,∅ and an element ι ∈ T{1},{1}.

We require that this data satisfy the following axioms, which encode
the functoriality of traces with respect to bijections in the remaining
coordinates, ACU properties of the tensor product maps, compatibility
of tensor product with traces, and “compositon unitality” for ι:

(1) For finite sets S, T with subsets S ′, S ′′ ⊆ S, T ′, T ′′ ⊆ T such
that S ′ ∩ S ′′ = T ′ ∩ T ′′ = ∅, for choices of bijections

ϕ : S ′ → T ′

ϕ′ : S ′′ → T ′′,

we have
τϕ⨿ϕ′ = τϕ ◦ τϕ′ = τϕ′ ◦ τϕ

as maps
TS,T → TS∖(S′⨿S′′),T∖(T ′⨿T ′′).

(2) The product maps π satisfy the clear commutativity and asso-
ciativity axioms, and are unital with respect to 1, which means,
for finite sets S, T ,

TS,T
IdTS,T⊗1//

IdTS,T %%KK
KKK

KKK
KK
TS,T ⊗ T∅,∅

π

��
TS,T
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(3) For finite sets S1, S2, T1, and T2, and subsets S ′ ⊆ S1 ⨿ S2,
T ′ ⊆ T1 ⨿ T2, for a choices of bijection

ϕ : S ′ → T ′

such that ϕ(S ′ ∩ Si) = T ′ ∩ Ti, we have

τϕ ◦ π = π ◦ (τϕ|S1 ⊗ τϕ|S2 )

(both mapping

TS1,T1 ⊗ TS2,T2 → T(S1⨿S2)∖S′,(T1⨿T2)∖T ′).

(4) For any x ∈ T{1},{1}, “composing” with ι gives x, meaning that
if we take the product of ι and x, consider it as an element of
T{1,2},{1,2}, and take the partial trace τ{1}→{2} with respect to the
bijection sending 1 to 2, we recover x (and similarly if we take
the product of x and ι).

It is clear that for a QPT category C , the Hom-spaces CS,T , together
with partial traces and (tensor) products on morphisms, form a T-
algebra.

Conversely, the axioms of a T-algebra T encode the morphisms of a
category CT by taking

HomCT (X
⊗m1 ⊗ (X∨)⊗n1 , X⊗m2 ⊗ (X∨)⊗n2) =

= T{1,...m1+n2},{1,...,m2+n1}

The axioms precisely encode the structure of an additive category with
ACU tensor product and strong duality in this caegory.

In fact, one sees from axiom (1) that the traces are determined by
“elementary traces”

(2.4) τi,j : TS,T → TS∖{i},T∖{j}
for choices of coordinates i ∈ S, j ∈ T .

As in axiom (4), the composition in a category CT for a T-algebra
T is described by taking

TS,T ⊗ TT,R → TS,R
by sending a choice of f ∈ TS,T , g ∈ TT,R to the element obtained by
taking the product π(f, g) ∈ TS⨿T,T⨿R and applying τIdT .
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Comments: 1. T-algebras being a universal algebra means that they
cannot encode local finiteness. However in explicit examples, this prop-
erty is readily verified.

2. When discussing semisimplicity, one usuall needs to create new
objects which are images of idempotents. This step, known as the
pseudo-abelian or Karoubian envelope described in [3], will be involved
automatically without explicit mention.

3. Two complementary cases of the T-algebra formalism stand out.
One is the case of graded T-algebras when TS,T = 0 unless |S| = |T |. An
example is the unital T-algebra constructed in [4], Section 1.26. (For
more examples, see also [12].)

The other extreme is when the basic object is self-dual so we have
an isomorphism

TS,T ∼= T∅,S⨿T
compatible with products and partial traces. This latter case is in fact
the one of interest in all the examples in the present paper, which is
why our definitions will only depend on S ⨿ T .

We will begin by describing some examples of tensor categories which
inform our constructions of the Borel and unipotent quantum Delannoy
categories, from the point of view of T-algebras.

2.3. The interpolated category of representations of the sym-
metric group. Let us first discuss the example of the categoryRep(St)
(see [3]) from the T-algebra point of view.

Let X denote the basic generating object of Rep(St), which can be
thought of as interpolating the action of the symmetric group Sn on
the set [n] = {1, . . . , n}. We may choose bases of the morphism spaces
between its tensor powers as partitions of the disjoint union of the
indexing sets of the source and target:

(2.5)

Rep(St)S,T = HomRep(St)(X
⊗S, X⊗T ) =

= k{{U1, . . . , Uℓ} | ℓ ≤ |S|+ |T |, ∅ ≠ Ui ⊆ S ⨿ T,
Ui ∩ Uj = ∅ for i ̸= j, and

∐ℓ
i=1 Ui = S ⨿ T}.

It is important in (2.5) to note that the set {U1, . . . , Uℓ} is unordered,
i.e. is equivalent to the data of an equivalence relation on S ⨿ T .
For i ∈ S, j ∈ T , the partial trace map τi,j applied to a partition
{U1, . . . , Uℓ} of S ⨿ T is defined by taking it to be 0 if i and j are not
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in the same equivalence class Us, and, if i, j ∈ Us, taking the partition

{U1, . . . , Us ∖ {i, j}, . . . , Uℓ}

when

(2.6) Us ∖ {i, j} ≠ ∅

and

{U1, . . . , Us−1, Us+1, . . . , Uℓ}
when

(2.7) Us = {i, j},

multiplied by a certain constant.
The constant is determined by the number of choices how the given

configuration can arise when t = N is a large integer, where {U1, . . . Uℓ}
corresponds to the orbit

(2.8) SS⨿T/SU1 × · · · × SUℓ .

realized as the idempotent in End(k[1, . . . , N ]S⨿T ) which is identity on
the orbit consisting of tuples whose coordinates belonging to the same
set Us are equal and 0 on other orbits. Therefore, the coefficient is 1
in the case of (2.6) and

(2.9) t− ℓ+ 1

in the case of (2.7).
The products of {U1, . . . , Uℓ} and {V1, . . . , Vℓ′} are described by “glu-

ings,” which are specified by surjections

(2.10) κ : {1, . . . , ℓ} ⨿ {1, . . . , ℓ′}↠ {1, . . . , ℓ+ ℓ′ − h}

which are injective on each of the discrete summands in the source.
The gluing is accomplished by forming a new equivalence relation with
classes whose jth class is the union of Us, resp. Vs′ (whichever apply)
where κ(s) = j, resp. κ(s′) = j. Keep in mind, however, that the
sets of equivalence classes are unordered, so gluing data are considered
equal when they produce the same sets of equivalence classes. Compat-
ibility of traces with product can be checked directly, but (since they
correspond to numerical identities) also follow from considering t = N
a large integer. Since one encounters factorials, the field k must be of
characteristic 0.

Semisimplicity was proved in [3], Sections 3-5, assuming that

(2.11) t(t− 1) . . . (t− n+ 1)
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are invertible for all n ∈ N, i.e. that t is not a non-negative integer. The
proof proceeds by considering the object Un given by the idempotent
in End(X⊗n) corresponding to the partition

(2.12) {{11, 12}, {21, 22}, . . . , {n1, n2}}
(where the subscript indicates which disjoint summand of

{1, . . . , n} ⨿ {1, . . . , n}
we are in; note that projecting to the factor corresponding to this idem-
potent eliminates morphisms where two or more elements of [n]i are in
the same equivalence class for i = 1 or 2). One proves semisimplicity of
the additive subcategory generated by Um, m ≤ n. Using Proposition
3.8 of [3], one splits off Un a direct sum of simple objects occurring for
m < n, and one is left with the group algebra k[Sn], which is semisimple
since k has characteristic 0.

2.4. The Delannoy category. To describe the Delannoy category D ,
for finite sets S, T , take the representations

DS,T = HomD(X
⊗S, X⊗T )

to be the free k-modules on partitions of S ⨿ T , similarly as in the
case of Rep(St), but with a total ordering of the components of the
partition.

As noted in [8], the Delannoy category cannot be considered an in-
terpolation of categories of representations of finite groups. More pre-
cisely, for finite sets S, T , DS,T is

(2.13)
k{(U1, . . . , Uℓ) | ℓ ≤ |S|+ |T |, ∅ ≠ Ui ⊆ S ⨿ T,
Ui ∩ Uj = ∅ for i ̸= j, and

∐ℓ
i=1 Ui = S ⨿ T}.

Thus, the only difference with (2.5) is that the tuple (U1, . . . , Uℓ) is
ordered.

Again, for i ∈ S, j ∈ T , the partial trace map τi,j applied to an
ordered partition (U1, . . . , Uℓ) of S ⨿ T is defined by taking it to be 0
if i and j are not elements of the same Us, and, if i, j ∈ Us, taking
(2.14) (U1, . . . , Us ∖ {i, j}, . . . , Uℓ)
when (2.6) occurs and

(2.15) (U1, . . . , Us−1, Us+1, . . . , Uℓ)

when (2.7) occurs, multiplied by suitable coefficients.
The coefficient is again 1 in the case of (2.6). In the case of (2.7),

the number of equivalence classes becomes ℓ− 1, but we should divide
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by the ℓ choices of the number in {1, . . . , ℓ} we omit. This suggests the
coefficient

(2.16)
t− ℓ+ 1

ℓ
.

However, compatibility with product (which is the only non-trivial ax-
iom to verify) turns out to force (2.16) to be independent of ℓ, which
occurs for t = −1 (when the value of (2.16) is −1).

The product is described by ordered gluings, which are surjections
(2.10) that are strictly increasing on the discrete summands {1, . . . , ℓ},
{1, . . . , ℓ′} in the source. To glue (U1, . . . , Uℓ) to (V1, . . . , Vℓ′), for 1 ≤
j ≤ ℓ+ℓ′−h, take, again, the union of Us and/or Vs′ whenever κ(s) = j
resp. κ(s′) = j (whichever applies).

Proving the compatibility of trace with product is non-trivial only
in the case of (2.7). Assume we take the trace τi,j in the case (2.7),
to produce the ordered set of equivalence classes (2.15). When taking
product of (2.15) with

(2.17) (V1, . . . , Vℓ),

consider separately each case of κ|{1,...,ℓ−1}. Let r = κ(j − 1), r′ =
κ(j). In the case when we take the product with (2.17) first, there are
2(r′− r)− 1 choices of κ(j) (note that j becomes j+1 and r may stay
the same or increase by one depending on whether κ(j) is equal to κ(s)
for s ∈ {1, . . . , ℓ′} or not). There are r′ − r − 1 of the former cases
(“clashes”) and r′ − r of the latter cases (“non-clashes”). Thus, when
taking the product first and then the trace, we obtain a coefficient of

(r′ − r) · (−1) + (r′ − r + 1) = −1,

i.e. same as taking the trace first and then the product, as required.
Since the ordering eliminates products of the form (2.11), the Delan-

noy category exists in any characteristic.
To prove semisimplicity, the analogue of (2.12) becomes the sum of

its copies over all orderings i.e.

(2.18)
∑
σ∈Sn

({(σ(1))1, (σ(1))2}, . . . , {(σ(n))1, (σ(n))2}).

Call the image of this idempotent, again, Un. The analogue of Propo-
sition 4.2 of [3] is describing the trace pairing matrix

(2.19) Hom(U0, Un)⊗Hom(Un, U0)→ k.
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One has dim(Hom(U0, Un)) = n! (corresponding to permutations on
[n] = {1, . . . , n}) and the matrix is diagonal with diagonal entries
(−1)n, so it is non-singular.

The analogue of Lemma 5.2 of [3] can be stated as the following

Lemma 2.5. The “top part” of EndD(Un) (i.e. the part which has 0
morphisms to the simple summands of X⊗r for r < n, see [3], 3.7-3.9)
is freely generated by elements of Sn composed with elements ϕR, for
all choices of subsets

R = {r1 < · · · < rm} ⊆ {1, . . . , n},

given by
(2.20)

ϕR = ({11, 12}, . . .

. . . {(r1 − 1)1, (r1 − 1)2}, {(r1)1}, {(r1)2}, {(r1 + 1)1, (r1 + 1)2}, . . .
. . .

. . . {(rm − 1)1, (rm − 1)2}, {(rm)1}, {(rm)2}, {(rm + 1)1, (rm + 1)2}, . . .

. . . , {n1, n2}).

Proof. One notes that (2.18) splits as a sum of disjoint idempotents
corresponding to its summands for each individual σ ∈ Sn. Let us
consider the idempotent summand ι corresponding to σ = Id[n]. De-
note its image by Un,1. Then EndD(Un,1) is a free k-vector space on
generators of the form

[n]⨿ [n]

ϕ⨿ψ
��

[m]

where ϕ and ψ are injective, order-preserving and ϕ⨿ψ is onto, and, for
each i ∈ [n], the classes of each i1 and i2 (where, again, the subscript
refers to which copy of [n] in [n] ⨿ [n] the element i is considered to
be in) must be either equal or next to each other in the ordering. (In
particular,

dim(EndD(Un,1)) = 3n.)

Now let In,1 be the ideal generated by D-morphism of the form

Un,1 → X⊗r → Un,1



14 SOPHIE KRIZ

for r < n. Such morphisms are compositions of morphisms correspond-
ing to

[n]⨿ [r]

ϕ1⨿ψ1

��
[m1]

and

[r]⨿ [n]

ϕ2⨿ψ2

��
[m2]

where [m1] and [m2] are glued via the images of [r], and that image is
then removed, thus giving the map

(2.21)

[n]⨿ [n]

��
[m1 +m2 − r],

summed over all compatible orderings on [m1 +m2 − r]. Since r < n
and m1,m2 ≥ n, we have m1+m2−r > n. Thus, interpreting (2.21) as
an equivalence relation on [n]⨿ [n] with ordered equivalence classes, at
least one i1 ∈ [n]1 and one i′2 ∈ [n]2 (subscript indicating, again, which
copy of [n] in [n]⨿ [n] we are considering) must be in a class by itself.
After completing the ordering, for a generator x where ι ◦ x ◦ ι ̸= 0,
one must have i = i′, and the classes of i1 ∈ [n]1 and i2 ∈ [n]2 must
be either equal or adjacent in the order. So, there are three choices of
the ordering between the classes of i1, i2 (we shall denote by <, =, and
>). Thus, the image of ι is generated by sums of ordered equivalence
classes where for some i ∈ [n], i1 and i2 are in these possible relations,
i.e. they are equal, the equivalence class containing i1 is less than
and adjacent to the equivalence class containing i2, or the equivalence
class contianing i1 is more than and adjacent to the equivalence class
containing i2, respectively.

Now we may write

EndD(Un,1) =
⊕
S⊆[n]

⊗
i∈[n]∖S

k{<i,=i, >i}

the symbols <i, =i, and >i denote the three possible relationships
between the equivalence class containing i1 and the equivalence class
containing i2. We proved that the generators of In,1 always contained
a sum (<i) + (=i) + (>i) tensored with the same factors. This implies
that we can eliminate >i and in fact write

EndD(Un,1) =
⊕
S⊆[n]

⊗
i∈[n]∖S

k{<i,=i},

which corresponds to (2.20).
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□

For a finite group G, consider the groupoid Γ of G acting on it-
self by translation. The “Drinfeld double” of G (note: terminology
may vary) is k[Mor(Γ)] where composition of morphisms is defined
as composition when morphisms are composable and as 0 otherwise.
Then the Drinfeld double is isomorphic to the matrix algebra M|G|(k)
of |G| × |G| matrices with entries in k. Using this fact, the “top part”
of EndD(Un) is isomorphic to the tensor product of Mn!(k) with the
algebra of endomorphisms of Un generated by elements (2.20), which
is ∏

n

k[Z/2, ·] =
∏
2n

k.

Thus, the top part of EndD(Un) is isomorphic to∏
2n

Mn!(k).

The formulas (2.20) are simpler than the formulas in Subsection 5.1
of [8]. This is due to the fact that we are suppressing terms going
through Um for m < n.

2.6. The interpolated category of representations of the gen-
eral linear group of a finite field. We now describe the category
Rep(GLt(Fq)) for q = pm for a prime p and any t not a non-negative in-
teger (not all non-negative integers need to be excluded, see [7, 10, 11])
using T-algebras. Here the basic object can be thought of as interpo-
lating the permutation representation of GLn(Fq) on its vector repre-
sentation (Fq)n.

For finite sets S, T , take the representation

Rep(GLt(Fq))S,T = HomRep(GLt(Fq))(X
⊗S, X⊗T )

to be the free k-module (where k is a field of characteristic 0) on the
set of equivalence classes of vector space surjections

(2.22) f : FS⨿Tq = FSq × FTq = Fq{xi | i ∈ S} × Fq{yj | j ∈ T} → V

where the equivalence relation is

f ∼ g ◦ f

for g ∈ GL(V ).
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For i ∈ S, j ∈ T , the partial trace τi,j(f) is defined to be 0 if

(2.23) f(xi) ̸= f(yj).

If

(2.24) f(xi) = f(yj),

to define the partial trace, let fi,j be the restriction of f to FS∖{i}q ×
FT∖{j}q , considered as a map onto its image. Then in the case (2.24),
the trace τi,j(f) is a multiple of fi,j. The coefficient is 1 if

(2.25) Vi,j = V.

If
dim(Vi,j) < dim(V ),

then necessarily

(2.26) dim(Vi,j) = dim(V )− 1.

In the case (2.26), if t = N were a large integer (so we are working
with Rep(GLN(Fq))), the coefficient would be the number of choices
how fi,j can arise in this fashion. Thus, the coefficient is

(2.27) qt − qn−1.
The product of (2.22) with

f ′ : FS′⨿T ′q → V ′

is again given by the sum of maps obtained by composing f ⊕ f ′ with
a surjection

(2.28) µ : V ⊕ V ′ → W

which is injective on each of the summands in the source. Again, two
choices of µ are considered equal if they are in the same orbit of the
left action of GL(W ).

Verification of compatibility of partial traces with product in the
case of (2.26) (which is the only non-trivial case of the axioms) again
comes down to a polynomial identity in qt which, in each degree, can
be deduced from the case t = N for a large integer N , where it follows
from the fact that we just described the structure arising in the case
of Rep(GLN(Fq)).

To prove semisimplicity, we again use the method of [3], Sections
3-5. The object Un is defined to be the image of the idempotent on
EndRep(GLt(Fq))(X

⊗n) given by the codiagonal

(2.29)
Fnq × Fnq

∇ // Fnq
(x, y) 7→ x+ y
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The analogue of Lemma 5.2 says that the top part is k[GLn(Fq)], so
EndRep(GLt(Fq))(Un) is semisimple because k is of characteristic 0.

2.7. The Borel quantum Delannoy category Bq,k. We shall now
define the first main new example of the presen paper, the Borel quan-
tum Delannoy category Bq,k by combining, in a sense, the above con-
structions of Rep(GLt(Fq)) and the Delannoy category.

We shall define Bq,k by taking the spaces BS,T to be the free k-
modules on vector space surjections

(2.30) f : FS⨿Tq → V

and choices of a maximal flag

(2.31) 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vdim(V ) = V

(i.e. where for each k = 1, . . . , dim(V ),

dim(Vk)− dim(Vk−1) = 1).

We identify the quotient maps (2.30) under the action of the Borel
subgroup on the target.

We define τi,j(f) again to be 0 in the case of (2.23). In the case of
(2.24), we define τi,j(f) to be a multiple of fi,j (with the induced flag
on the image in the case of (2.26)). The coefficient is 1 in the case of
(2.25). In the case of (2.26), the coefficient should be (2.27) divided by
the number of ways the restricted flag could arise, which is

(2.32)
qt − qn−1

1 + q + · · ·+ qn−1
.

However, again, we will only get compatibility with products when
(2.32) is independent of n, which occurs for

t = −1,
in which case the coefficient (2.32) becomes

(2.33) q−1 − 1.

The product of (2.30) with

(2.34) f ′ : FS′⨿T ′q → V ′

with a maximal flag

(2.35) 0 = V ′0 ⊂ V ′1 ⊂ · · · ⊂ V ′dim(V ′) = V ′

is obtained by choosing an ordered surjection (2.10) (taking ℓ = dim(V ),
ℓ′ = dim(V ′)) and a surjection (2.28) which sends the Vi to Wκ(i) and
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V ′j to Wκ(j). The product is then defined as a sum over all such choices
together with a choice of a maximal flag on W compatible with the
flags (2.31), (2.35).

To verify the compatibility of trace and product, the non-trivial case
again is (2.26). Consider a case of (2.30) where (2.26) arises for a partial
trace τi,j, and consider a product with (2.34). Performing τi,j on (2.30)
first and then taking the product with (2.34), consider again separately
each case of κ|{1,...,ℓ−1}. Let r = κ(s−1), r′ = κ(s). Then, again, in the
case where we take the product first, there are 2(r′ − r)− 1 choices of
κ(s). Note that s becomes s + 1 and r may stay the same or increase
by one depending on whether κ(s) is equal to κ(u) for u ∈ {1, . . . , ℓ′}
or not. There are still r′ − r − 1 of the former cases (“clashes”) and
r′ − r of the latter cases (“non-clashes”).

In the clashing choice preceding a non-clashing choice, the number
of choices of flags will be multiplied by

q − 1

q
.

Thus, the coefficient of the two choices (a clashing one preceding a
non-clashing one) will be equal with opposite signs (see (2.33)). Hence,
after tracing out the pair corresponding to the original (i, j)-pair after
performing the product, all of the choices of κ(s) will again cancel
out except the lowest choice, which is non-clashing and corresponds to
what we get if we do τi,j first, followed by the product. Another proof
of this fact will folow from the description of Bq,k in terms of measures
on oligomorphic groups [7], which we shall discuss in Section 3, and
which will include a proof of the semisimplity of the category Bq,k. A
different proof of semisimplicity, following the methods of [3], will be
given in the Appendix.

2.8. The unipotent quantum Delannoy category Uq,k. We now
define our second main example, which is a variant of the above cat-
egory Bq,k, replacing, in a sense, the maximal Borel subgroup of the
general linear group by a maximal unipotent subgroup.

We denote this category by Uq,k (again, we omit the q, k subscript if
q and k are fixed). Its T-algebra is defined as follows:

For finite sets S, T , we take the space US,T to be the free k-vector
space on equivalence classes of the data of a quotient map

f : FS⨿Tq ↠ V
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and a choice of ordered basis

(v1, v2, . . . vdim(V ))

generating V , over the equivalence relation that

(f, (v1, . . . , vdim(V ))) ∼ (g ◦ f, (g(v1), . . . , g(vdim(V ))))

for any isomorphism
g : V → V

which is “unipotent” in GL(V ), i.e. such that we can express

g(vi) = vi + ai,i−1 · vi−1 + · · ·+ ai,1 · vi
for some coefficients ai,j ∈ Fq.

The partial trace is defined by taking

τi,j(f, (v1, . . . , vdim(V )))

for i ∈ S, j ∈ T to be

(1) 0 if f(xi) ̸= f(yj) (denoting the free generators of FS⨿Tq corre-
sponding to the elements of S and T by xs and yt, respectively,
for s ∈ S, t ∈ T ).

(2)

fi,j := f |FS∖{i}q ×FT∖{j}
q

: FS∖{i}q × FT∖{j}q ↠ Im(fi,j)

if dim(Vi,j) = dim(V ), with the same basis as V .

(3) an −q−1 · fi,j is dim(Vi,j) < dim(Vi,j), with the induced basis
on Vi,j.

Product is defined analogously as for B, and the compatibility of trace
and product and semisimplicity in U proceed similarly as above.

In the unipotent case, analogously to formula (5.4) of the Appendix,
if we denote by Θ0

n the algebra of endomorphisms of the image of the
idempotent

(∇ : Fnq × Fnq ↠ Fnq , (e1, . . . , en))
(for (e1, . . . , en) denoting the standard basis of Fnq ), we obtain

(2.36) dim(Θ0
n) = q(

n
2) (q + 1)n.

In particular, we have

Theorem 2.9. Let q = pm for a prime p and k be a field of character-
istic not p. Then the category Uq,k is semisimple.

□
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3. Quantum Delannoy Categories via Oligomorphic
Groups

In this section, we give alternate descriptions of Bq,k and Uq,k using
the theory of oligomorphic groups developed by N. Harman and A.
Snowden in [7]. Recall that a permutation Γ acting on a set A is called
oligomorphic where each Cartesian power An (with the diagonal action)
is a union of finitely many Γ-orbits.

3.1. The oligomorphic group for Bq,k. Let us consider the free Fq-
vector space V = Fq[R] (i.e. a sum of copies of Fq, indexed by s ∈ R),
and let us put

V ∗ = V ∖ {0}.
The vector space V has a natural R-indexed filtration given by

(3.1) Fr(V ) = Fq{(s) | s ≤ r ∈ R}.
We may consider the group

Γ = B ⋊ Aut(R, <)
where Aut(R, <) denotes the group of order-preserving bijections of R
and B ⊂ GL(V ) denotes the subgroup of all linear isomorphisms from
V to itself preserving the filtration (i.e. Γ is the group of automor-
phisms of V which preserve Fs(V ) for all s ∈ R). Aut(R, <) acts on B
by ordered permutation of the basis elements, which preserves the flag.
One then sees that Γ acts on V ∗, and in fact, forms an oligomorphic
group. To obtain a semisimple pre-Tannakian category, we construct
a measure in the sense of [7]. Specifically, we define the measure of an
orbit of Γ consisting of tuples of vectors generating an n-dimensional
vector subspace of V to be

(3.2) (q−1 − 1)n.

Write µ(Γ/H) for the measure of such an orbit Γ/H. An attractive fea-
ture of this approach is that N. Harman and A. Snowden [7], Theorem
13.2, prove that the condition that

µ(Γ/H) ̸= 0 ∈ k
for all open subgroups H ⊆ Γ implies semisimplicity of Bq,k under the
condition (2.1).

Now recall that an open subgroup (in the sense of [7]) of Γ is one
which contains the stabilizer of some finite sequence of elements of V ∗.
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However, we only specified measures of orbits Γ/H when there exists
a finite-dimensional subspaces W ⊂ V such that

(3.3) H = HW = {g ∈ Γ | ∀w ∈ W, g(w) = w}.
Denote the class of such subgroup E . Now the difficulty is that for an
open subgroup K ⊆ Γ, there may not exist an H ∈ E with

[K : H] <∞.
For example, consider the subgroup

K = {g ∈ Γ | g(F0(V )) = F0(V )}.
This subgroup is open since K ⊃ H⟨(0)⟩, but has no subgroup HW of
finite index.

N. Harman and A. Snowden give a method for dealing with this
situation by working relative to a class of open subgroups of Γ. The
difficulty of working with the class E directly is that in the relative case,
the analogue of Theorem 13.2, guaranteeing semisimplicity, requires a
technical condition on the class E (Condition (∗) of Remark 5.5 of [7]),
which asserts that the stabilizers of finite subsets of an orbit Γ/H with
H ∈ E be in E . This is false for the class E defined by (3.3). We can
solve this issue by passing to the class E consisting of subgroups of Γ of
the form HW,K where for W ⊂ V , K ⊆ B(W ) (where B(W ) ⊆ GL(W )
is the set of elements preserving the induced flag on W ), we set

HW,K = {γ ∈ Γ | γ|W ∈ K}.
By assumption (2.1), for all choices ofW,K, the index [HW,K : HW ] ∈

k×, so we can put

µ(Γ/HW,K) =
µ(Γ/HW )

[HW,K : HW ]
.

The axioms of [7] in the case of field-valued measures which are non-
zero on orbits require that for every pullback diagram

(3.4)

X ×Z Y

��

// Y

��
X // Z,

where X and Y are finite disjoint unions of Γ-orbits with stabilizers in
E , the maps (3.4) preserve Γ-action, and Z is a single Γ-orbit, that

(3.5) µ(X ×Z Y ) =
µ(X)µ(Y )

µ(Z)
.
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3.2. A key Lemma. To prove (3.5), one notes that there is an equiv-
alence from the category whose objects are pairs of finite dimensional
vector spaces A with a choice of a complete flag FA and where a mor-
phism

(A,FA)→ (B,FB)

is a pair of an inclusion f : A ↪→ B such that intersecting the flag FB
with A gives FA to the opposite category of Γ-orbits where all stabilizers
are in E . This equivalence of categories is the functor defined by taking
an object (A,FA) to the Γ-orbit O(A) of inclusions

ι : A→ V

where the flag FA is induced by the filtration (3.1), with Γ acting by
composition (for any element ι, the stabilizer is then the subgroup of
Γ fixing ι(A), forming an element of the class E). This functor takes a
morphism

f : (A,FA)→ (B,FB)

to a map of Γ-sets

O(B)→ O(A)

given by precomposing an element of O(B) with f .
Given this equivalence, a fiber product O(B)×O(A)O(B

′) (as in (3.4))
can be expressed as the Γ-set given as the disjoint union of O(C) for
all choices of (C,FC) which form a gluing, meaning a diagram

(3.6)

A //

��

B

��
B′ // C

where each arrow is an injection and the flag on the target induces the
flag on the source, and the maps from B,B′ to C are jointly surjective.

Thus, to show (3.5), it suffices to show the following

Lemma 3.3. For finite dimensional vector spaces A, B, and B′ with
flags

FA : 0 = A0 ⊂ A1 ⊂ · · · ⊂ Aℓ−1 ⊂ Aℓ = A

FB : 0 = B0 ⊂ B1 ⊂ · · · ⊂ Bn−1 ⊂ Bn = B

FB′ : 0 = B′0 ⊂ B′1 ⊂ · · · ⊂ B′m−1 ⊂ B′m = B′

and flag-preserving inclusions

(3.7) B ←↩ A ↪→ B′,
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letting GB←↩A↪→B′ denote the set of (C,FC) which form a gluing of (3.7)
as in (3.6), the following formula holds:

(3.8) (q−1 − 1)dim(B)+dim(B′)−dim(A) =
∑

(C,FC)∈GB←↩A↪→B′

(q−1 − 1)dim(C)

([5]).

We may rewrite the formula (3.8) as

(3.9)
∑

(C,FC)∈GB←↩A↪→B′

(
q

1− q
)dim(B)+dim(B′)−dim(A)−dim(C) = 1.

Proof. (following P. Deligne [5]) By induction on the numbers n, m, it
suffices to prove Lemma 3.3 when

dim(B) = dim(B′) = dim(A) + 1.

It is beneficial to rewrite the statement in basis notation. Note that
a finite totally ordered set (S,≤) corresponds to the finite dimensional
vector space FSq , with the S-indexed filtration given by, for s ∈ S,

Fs(FSq ) = F{t∈S|t≤s}q .

An order-preserving injection

(S,≤)→ (T,≤)
induces a morphism

(3.10) FSq ↪→ FTq
preserving these filtrations. In fact, for every finite dimensional vector
spaces A and B with complete flags FA and FB (resp.), every flag-
preserving inclusion

(3.11) A ↪→ B

will be the same, up to isomorphism, as an order-preserving map (3.10).
Since any flag-preserving automorphism on A in (3.11) will extend to
a flag-preserving morphism on B, any diagram (3.7) is isomorphic to
one coming from a diagram of order-preserving injections

(3.12)

(T,≤)

(S,≤)

OO

// (T ′,≤).

It suffices, then, to prove (3.8) for a diagram (3.7) arising from a dia-
gram (3.12) for sets S, T , T ′ with

|T | = |T ′| = |S|+ 1.
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Without loss of generality, S = {1, . . . , n} for some n ∈ N, with the
standard ordering. Note that we may then write

T = S ⨿ {t}

T ′ = S ⨿ {t′}
where t is inserted in the ith place, i.e. i − 1 < t < i in the total
ordering of T , and t′ is inserted in the jth place, i.e. j − 1 < t′ < j in
the total ordering of T ′.

Case 1: i ̸= j. It suffices to prove that there is only a single gluing
which is

(T,≤) // (R,≤)

(S,≤)

OO

// (T ′,≤)

OO

of (3.12), with

(3.13) R = S ⨿ {t} ⨿ {t′}
inserting t and t′ so that i− 1 < t < i, j − 1 < t < j, since then

|R| = |T |+ |T ′| − |S|.
For a gluing diagram

(3.14)

B // C

A //

OO

B′

OO

of flag-preserving inclusions of (3.7), we must have C = B⊕AB′ (since,
otherwise, C ∼= B ∼= B′, and the flag-preserving inclusions

A ↪→ B

A ↪→ B′

would be isomorphic, which contradicts the assumption of this case).
Without loss of generality, let us assume that i < j. We can choose

an ordered basis

(3.15) e1, . . . , ei, . . . , ej+1, . . . , en+2

of B ⊕A B′ such that for 0 ≤ k ≤ n+ 2, the first k elements

A = ⟨e1, . . . , êi, . . . , êj+1, . . . , en+2⟩

B = ⟨e1, . . . , êj+1, . . . , en+2⟩
B′ = ⟨e1, . . . , êi, . . . , en+2⟩
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To prove that the only case we need to consider is (3.13), it suffices to
show that the only complete flag

(3.16) 0 = F0(B ⊕A B′) ⊂ · · · ⊂ Fn+2(B ⊕A B′) = B ⊕A B′

inducing the given flags on B and B′ is the one given by the ordered
basis (3.15). For a flag (3.16), we must have

(3.17) F1(B ⊕A B′) ⊈ B or F1(B ⊕A B′) ⊈ B′

(both are not possible, by dimension). Without loss of generality, i = 1.
The possibilities (3.17) then imply that

(3.18) Fk(B ⊕A B′) = F1(B ⊕A B′)⊕ Fk−1(B)

or

(3.19) Fk(B ⊕A B′) = F1(B ⊕A B′)⊕ Fk−1(B′),

respectively. We have

B = ⟨e1, . . . , êj, . . . , en+2⟩

B′ = ⟨e2, . . . , en+2⟩.
If F1(B ⊕A B′) ⊆ B, then F1 = ⟨e1⟩ and F1(B ⊕A B′) ⊈ B′, so

Fk(B ⊕A B′) = F1(B ⊕A B′)⊕ Fk−1(B′) = ⟨e1⟩ ⊕ ⟨e2, . . . , ek⟩,

giving the claim. If F1(B ⊕A B′) ⊈ B, then F1(B ⊕A B′) ⊆ B′, so

F1(B ⊕A B′) = ⟨e2⟩,

which is impossible since then it can not induce the given filtration on
B.

Case 2: i = j. Let us choose an ordered basis for B

e1, . . . , en+1

such that

Fk(B) = ⟨e1, . . . , ek⟩
and

A = ⟨e1, . . . , êi, . . . , en+1⟩
Gluings of B and B′ along A will be of dimension n + 1 or n + 2.
For a gluing of dimension n + 1, the exponent of q

1−q in the corre-

sponding summand of (3.9) is 1. Each such gluing corresponds to a
flag-preserving automorphism

B → B
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which is identity when restricted to A, and must therefore send ek to
itself for all k ̸= i and send ei to a linear combination

a1 · e1 + · · ·+ ai · ei
for coefficients a1, . . . , ai−1 ∈ Fq, ai ∈ F×q . Thus, there are qi−1(q − 1)
choices of gluings of dimension n+ 1, contributing

(3.20)
q

1− q
· (qi−1(q − 1)) = −qi.

For the gluings of dimension n + 2, again a gluing diagram (3.14)
will have C = B ⊕A B′, and we can choose ordered bases

B = ⟨e1, . . . , ei−1, ei, ei+1, . . . , en+1⟩

B′ = ⟨e1, . . . , ei−1, e′i, ei+1, . . . , en+1⟩
A = ⟨e1, . . . , êi, . . . , en+1⟩,

(inducing the given flags on A, B, B′). Gluings C then are given by a
choice of complete flag inducing the given flags on B and B′, each of

which will contribute a term of (
q

1− q
)0 = 1 in (3.9).

First note that the number of choices of such flags

(3.21) 0 = F0(B ⊕A B′) ⊂ · · · ⊂ Fn+2(B ⊕A B′) = B ⊕A B′

depends only on i. There must be exactly one 0 ≤ k0 ≤ n + 1 such
that

(3.22) Fk0(B ⊕A B′) ∩B = Fk0+1(B ⊕A B′) ∩B
(and similarly, there exists exactly one 0 ≤ k′0 ≤ n + 1 for which this
holds with B replaced by B′). Thus, for all k > i, by (3.22),

e1, . . . , ei−1, ei, ei+1, . . . , ek−1 ∈ Fk(B ⊕A B′)
and, by the analogue for B′,

e1, . . . , ei−1, e
′
i, ei+1, . . . , ek−1 ∈ Fk(B ⊕A B′).

Thus, by dimension,

⟨e1, . . . , ei−1, ei, e′i, ei+1, . . . , ej−1⟩ = Fj(B ⊕A B′).
For k ≤ i,

Fk(B ⊕A B′) ⊆ Fi(B ⊕A B′),
and hence the data of the flag (3.21) is in bijective correspondence with
a flag on

(3.23) ⟨e1, . . . , ei−1, ei, ei′⟩
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giving the induced flags on

(3.24) ⟨e1, . . . , ei−1, ei⟩

(3.25) ⟨e1, . . . , ei−1, e′i⟩
from the flags on B and B′.

In fact, the number of such flags on (3.23) is

(3.26) qi−1(q − 1) + qi−2(q − 1) + · · ·+ q(q − 1) + (q + 1)

(interpreted to be q + 1 if i = 1), which we prove by induction on i:
Without loss of generality, by the above argument, let us suppose

A = ⟨e1, . . . , ei−1⟩
and B and B′ are (3.24) and (3.25), respectively. For i = 1, dim(A) = 0
and dim(B) = dim(B′) = 1, so any complete flag on B ⊕B′, of which
there are q + 1, will work.

For i > 1, if F1(B⊕AB′) ⊈ B,B′, then there exists a vector v of the
form

(3.27) a1 · e1 + · · ·+ ai · ei + e′i

with a1, . . . , ai−1 ∈ Fq, ai ∈ F×q , with

F1(B ⊕A B′) = ⟨v⟩
and for k ≥ 1

Fk(B ⊕A B′) = ⟨v, e1, . . . , ek−1⟩.
There are qi−1(q − 1) choices of (3.27).

If F1(B ⊕A B′) is in B or B′, then

F1(B ⊕A B′) = ⟨e1⟩ ⊆ B,B′.

Quotienting out F1(B ⊕A B′) then gives a flag on

⟨e2, . . . , ei−1, ei, ei′⟩
of which the number of choices is

qi−2(q − 1) + qi−3(q − 1) + · · ·+ q(q − 1) + (q + 1)

by the induction hypothesis. Summing these two cases together, we
get (3.26).

Summing (3.20) with (3.26) gives that the left hand side of (3.9) is

−qi + qi−1(q − 1) + qi−2(q − 1) + · · ·+ q(q − 1) + (q + 1) = 1.

□
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3.4. A Matrix Description of Orbits of Γ and the Unipotent
Analogue. The orbits of (V ∗)n with respect to the action of Γ can be
described as equivalence classes of matrices with n non-zero columns
with entries in Fq under the equivalence relation ∼b generated by op-
erations

(1) Addition of an Fq-multiple of the ith row to the jth row for
i < j

(2) Omission of zero rows

(3) Multiplication of a row by an element of F×q

Equivalence classes have unique representatives in semi-echelon form
which means that the matrix contains no zero rows and if we call the
left-most non-zero entry of each row a pivot, then we require that

(1) All entries below a pivot are 0

(2) Every pivot is equal to 1

The measure of an orbit corresponding to a matrix in semi-echelon
form is (q−1 − 1)ℓ where ℓ is the number of pivots.

A variant of the construction where we use V instead of V ∗ for the
oligomorphic group action gives the same characterization of orbits by
matrices except that we allow matrices with 0 columns.

Symmetric group action on orbits is given by permuting the columns
of a matrix and putting the resulting matrix in semi-echelon form.
Product of a matrix with rows {1, . . . , i} and a matrix with rows
{1, . . . , j} is a sum indexed by “ordered gluings of rows,” i.e. sur-
jections

ϕ : {1, . . . , i} ⨿ {1, . . . , j} → {1, . . . i+ j − h}
which are order-preserving injections on each disjoint summand. We
arrange the matrices side by side while moving their rows according to
ϕ. If follows that the resulting matrix is in semi-echelon form.

Partial trace of a matrix M with respect to the ith and jth columns
(without loss of generality, assume i < j) is defined by summing over
all matricesM ′ that are equivalent toM where the ith and jth columns
coincide (this does not depend on the representative) such that after
deleting the jth column,M ′ is in semi-echelon form. The corresponding
summand to M ′ is the matrix in semi-echelon form which is equivalent
to M ′ after deleting the ith and jth columns, with coefficient equal to
the sum of measures of the orbits of the omitted columns.
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To construct the category Uq,k, let us first note that B ⊂ GL(V )
also can be replaced by a “finitary” variant

Bfin =
⋃

S⊂R, |S|<∞

BS

where BS ⊆ GL(Fq[S]) is the Borel subgroup of lower triangular ma-
trices. The resulting group

Γfin = Bfin ⋊ Aut(R, <)

is also oligomorphic and in fact the Γfin-orbits of (V
∗)n (or V n) are the

same as the orbits of Γ.
The advantage of the “finitary” approach is that it also has a unipo-

tent version

Ufin =
⋃

S⊂R, |S|<∞

US

where US ⊆ GL(Fq[S]) is the maximal unipotent subgroup of the Borel
subgroup BS. One can then from the group

Γu = Ufin ⋊ Aut(R, <),

which also acts oligomorphically on V and V ∗.

Let us now describe the orbits of (V ∗)n with respect to Γu and a
non-zero measure, which gives the semisimple pre-Tannakian category
Uq,k.

The description of the orbits is by an equivalence of matrices, which
we denote by ∼u, analogous to that for Γ except that we drop the
operation (3). Accordingly, the representatives of equivalence classes
are described by matrices in weak semi-echelon form, which satisfy the
conditions (1), (2) (dropping condition (3)).

The symmetric group action on orbits and product can be described
directly analogously as for Bq,k. Again, we take the partial trace of
a matrix M with respect to the ith and jth columns (without loss of
generality, assume i < j) to be the sum over all matricesM ′ equivalent
(now only using operations (1) and (2)) to M where the ith and jth
columns coincide (this does not depend on the representative) such that
after deleting the jth column, the matrix is in weak semi-echelon form.
The corresponding summand in the partial trace of M is the matrix in
weak semi-echelon form which is equivalent to M ′ with the ith and jth
columns deleted, with coefficient equal to the sum of measures of the
orbits of the omitted columns.



30 SOPHIE KRIZ

The measure of an orbit corresponding to a matrix in weak semi-
echelon form with ℓ pivots is defined to be (−q)−ℓ. This is a measure
in the sense of [7] relative to the class of subgroups Eu consisting, for
finite subsets S ⊂ R, of subgroups G ⊂ Γn which send

Fq[S]→ Fq[S]
by a transformation in US.

It then suffices to prove multiplicativity of the measure on orbits
given by stabilizers of finite sequences. The proof is analogous as for Γ,
with the product summand given by a term containing a clash canceling
with the summand obtained by shifting the lowest clashing term of the
first factor to a neighboring non-clashing term to the right. This again
leaves only one summand whose measure is the required product by
definition.

Since the measures of Γu/H with H ∈ Eu have denominators given
by powers of q, the category Uq,k is defined and semisimple over any
field k of characteristic ̸= p.

4. Structural Results

In this section, we will investigate the structure of the categories
Bq,k, Uq,k. First, we study the decompositions of the “basic objects”
into simple summands, which is surprisingly subtle. Also, it is helpful
to consider further variants of the basic object. Eventually, it is possible
to use the same method to actually characterize all the isomorphism
classes of the simple objects of Uq,k.

In Subsection 4.8, we discuss comparison functors between the vari-
ous categories considered. In particular, we construct a functor

D → Bq,k

from a remarkable universal property of the Delannoy category, which
we prove.

4.1. The Decomposition of the Basic Object of Bq,k into Simple
Objects. Let k be a field satisfying (2.1) and containing (q−1)th roots
of unity. In this section, we shall give the semisimple decompositions
of the basic objects of Bq,k (Proposition 4.2 below).

We have q − 1 multiplicative characters

ψ : F×q → k×.
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Let Ω = [V ∗] ∈ Obj(Bq,k) in the notation of [7]. Then the action of
F×q on V ∗ by multiplication induces a decomposition

Ω =
⊕
ψ

Ωψ

into pieces on which F×q acts by ψ. The corresponding idempotent on
Ω is

(4.1) ιψ =
1

q − 1

∑
ψ∈F×q

ψ(a) · (a),

where (a) denotes the action of a ∈ F×q by multiplication. The action
of a ̸= 1 ∈ F×q has trace 0, and the trace of 1 is

dim(Ω) = (q − 1)

(
−1

q

)
.

Hence,

tr(ιψ) = −
1

q
,

The orbits of (V ∗)2 have the following representatives in semi-echelon
form:

(4.2)

(>) :=

(
1 0
0 1

)
(<) :=

(
0 1
1 0

)
(a) :=

(
1 a

)
(a)∼ :=

(
1 a
0 1

)
where a ∈ F×q . One has

(<)(a) = (a)(<) = (<)

(>)(a) = (a)(>) = (>).

It follows that (>), (>) map Ω1 to itself and acts by 0 on Ωψ, for all
non-trivial characters ψ ̸= 1. We have

(4.3) (a)∼(b) = (b)(a)∼ = (a · b)∼.

It follows that (a)∼ maps Ωψ to itself and in Ωψ,

(a)∼ = ψ(a) · (1)∼.
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One concludes that

(4.4)

Hom(Ωψ,Ωϕ) = 0 for ψ ̸= ϕ

Hom(Ωψ,Ωψ) =

{
⟨IdΩψ , (1)∼|Ωψ⟩ if ψ ̸= 1
⟨IdΩψ , (<), (>), (1)∼|Ω1⟩ if ψ = 1.

We next calculate the coefficients s, t ∈ k such that

((1)∼)2 = s · (1)∼ + t · Id.
To calculate t, we note that

(4.5)

(
1 1
0 1

)
∼b
(
1 1
1 0

)
,

so the fiber above (v, v) ∈ V ∗ × V ∗ in (V ∗)3 is isomorphic to V ∗ and
hence has measure q−1 − 1, so

t = q−1 − 1.

To calculate s, one notes that(
1 1
0 1

)
∼b

1 1
1 x
0 1

 , for x ∈ Fq

which gives q orbits of measure q−1− 1 in (V ∗)3 above a representative

with semi-echelon form

(
1 1
0 1

)
and also

(
1 1
0 1

)
∼b

1 1
0 0
0 1

 ∼b
1 1
0 1
1 0


which gives 1 additional orbit of measure q−1 − 1 in (V ∗)3 over a rep-

resentative with semi-echelon form

(
1 1
0 1

)
. Also, using(

1 1
0 1

)
∼b
(
1 1
1 x

)
for x ̸= 1, 0

(we exclude 0 to avoid the case (4.5)) gives additional q − 2 orbits
of measure 1 in (V ∗)3 over a representative with semi-echelon form(
1 1
0 1

)
. Thus,

s = (q + 1)(q−1 − 1) + (q − 2) = q−1 − 2,

and hence,

(4.6) ((1)∼)2 = (q−1 − 2) · (1)∼ + (q−1 − 1) · Id.
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Now solving the equation (4.6), we get roots (1)∼ = −1, q−1 − 1.
Thus, 1 decomposes into idempotent multiples of

(1)∼ + 1, (1)∼ + 1− q−1.
Noting that

1 = q · ((1)∼ + 1)− q · ((1)∼ + 1− q−1),
we get that the idempotents are

(4.7) ι+ := q((1)∼ + 1), ι− := −q((1)∼ + 1− q−1),
giving a decomposition

Ω+
ψ ⊕ Ω−ψ = Ωψ

for objects Ω+
ψ , Ω

−
ψ , of dimensions −1, 1−q−1, respectively, correspond-

ing to the idempotents

ι+ψ := ιψ ◦ ι+ = ι+ ◦ ιψ
ι−ψ := ιψ ◦ ι− = ι− ◦ ιψ

(recalling that ι+ and ι− commute with ιψ since (1)∼ does, by (4.3)).
It follows from (4.4) that Ω+

ψ , Ω
−
ψ are simple for ψ ̸= 1. For ψ = 1,

we additionally have the idempotents

e0 =
(<)

q−1 − 1
, e∞ =

(>)

q−1 − 1

of trace 0. One notes that e0, e∞ commute, have trace 0, and

tr(e0 e∞) = 1.

Thus, the idempotents

e0 := e0 − e0 e∞, e∞ := e∞ − e0 e∞, and e0 e∞

are disjoint and give a decomposition

Ω+
1
∼= Ω+

1,0 ⊕ Ω+
1,∞ ⊕ 1

where the summands correspond to the idempotents respectively and
are of dimensions −1, −1, and 1.

By the description (4.2) of the orbits of (V ∗)2, we have

dim(EndBq,k
(Ω) = 2q,

and thus Ω+
ψ , Ω

−
ψ , Ω

−
1 , Ω

+
1,0, Ω

+
1,∞ and 1 are all simple and non-isomorphic

objects.
In fact, we have

[V ] = Ω⊕ (0)

and we know that

dim(EndBq,k
([V ]) = 2q + 3.
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By counting dimensions of the simple summands, one can therefore
deduce

1 ∼= (0)

(which can also be checked directly by noting that

(0, 0), (1, 0), (0, 1), (1, 0)(0, 1)

form a two-by-two matrix algebra).
Thus, we have proved the following

Proposition 4.2. The decomposition of Ω into simple objects is

Ω =

(⊕
ψ ̸=1

(Ω−ψ ⊕ Ω+
ψ )

)
⊕ Ω−1 ⊕ Ω+

1,0 ⊕ Ω+
1,∞ ⊕ 1

[V ] =

(⊕
ψ ̸=1

(Ω−ψ ⊕ Ω+
ψ )

)
⊕ Ω−1 ⊕ Ω+

1,0 ⊕ Ω+
1,∞ ⊕ 2 · 1

where all the summands are non-isomorphic and

dim(Ω−ψ ) = 1− q−1

dim(Ω+
ψ ) = dim(Ω+

1,0) = dim(Ω+
1,∞) = −1

dim(1) = 1.

□

4.3. The Simple Objects of Uq,k. To investigate the case of Uq,k,
we begin by noting that we have a Γu-invariant map

θ : V ∗ → F×q ,
given by sending a vector to the coefficient of its coordinate which has
the highest index in R, i.e. sending

a1 · (r1) + · · ·+ an · (rn) ∈ Fq[R]∖ {0}
for a1, . . . , an ∈ F×q , r1 > · · · > rn ∈ R, to a1 ∈ F×q . Each fiber θ−1(i)
gives a suborbit of Ω, which is isomorphic to the projective space

P := P(Fq[R]∖ {0}) = (Fq[R]∖ {0})/F×q .
The basic objects Ω, [V ] then splits as

Ω ∼= (q − 1)[P ],

[V ] ∼= (q − 1)[P ]⊕ (0).

Similarly to Ω, we can use [P ] as the basic object for Uq,k, since it
generates [V ] (and Ω) and therefore generates an equivalent category.



35

Proposition 4.4. For a field k of characteristic not equal to p con-
taining pth roots of unity, we have decompositions

[P ] ∼= 1⊕ Ω+
1,0 ⊕ Ω1,∞ ⊕

⊕
α ̸=1:Fq→k×

Ω̃α

Ω ∼= (q − 1) ·

1⊕ Ω+
1,0 ⊕ Ω+

1,∞ ⊕
⊕

α ̸=1:Fq→k×
Ω̃α

 ,

[V ] ∼= q · 1⊕ (q − 1) ·

Ω+
1,0 ⊕ Ω+

1,∞ ⊕
⊕

α ̸=1:Fq→k×
Ω̃α


where the direct sum runs over non-trivial additive characters

α : Fq → k×

for simple non-isomorphic objects Ω̃α, with

dim(Ω̃α) = q−1

dim(Ω+
1,0) = dim(Ω+

1,∞) = −1
dim(1) = 1.

Proof. First note that the orbits of P 2 have the following representa-
tives in (weak) semi-echelon form:

(4.8)

(>) :=

(
1 0
0 1

)
(<) :=

(
0 1
1 0

)
(1) :=

(
1 1

)
[a] :=

(
1 1
0 a

)
for a ∈ F×q (note that, for every a ∈ F×q , we have [a] ∼b (1)∼).

First, let us compute [a][b] for a, b ∈ F×q . Note that for any choice of
a, b ∈ F×q , we have (

1 1
0 a

)
∼u

1 1
0 a
0 0


and (

1 1
0 b

)
∼u

1 1
a a
0 b

 ,
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giving −q−1[a] as a summand of [a][b] (since the partial trace of the
product with respect to the middle columns is(

1 1
0 a

)
∼u

1 1
0 a
0 b


with coefficient −q−1 because the dimension of the corresponding fiber
is 1, i.e. we delete one row to put it into weak semi-echelon form).
Similarly, the fact that (

1 1
0 a

)
∼u

1 1
0 0
0 a


and (

1 1
0 b

)
∼u

1 1
0 b
a 0


gives a multiple of [b], since(

1 1
0 b

)
∼u

1 1
0 b
0 0

 ,

as a summand of [a][b]. Again, the coefficient of [b] will be −q−1 since
the dimension of the corresponding fiber is 1 (again, we delete one row
to put the product matrix into weak semi-echelon form after deleting
the traced columns). So, for any choice of a, b ∈ F×q , the composition

[a][b] will have summands −q−1[a] and −q−1[b].

If b ̸= −a, then the only other possible summand is a multiple of
[a+ b]. The term [a+ b] can arise from considering(

1 1
0 b

)
∼u
(
1 1
a a+ b

)
,

giving a copy of [a + b] with coefficient 1 since the dimension of a
corresponding fiber will be 0 (the product matrix is already in weak
semi-echelon form after deleting the traced columns). We also get an
additional q − 1 copies of [a+ b] with coefficient −q−1 arising from(

1 1
0 a

)
∼u

1 1
0 a
0 0





37

and (
1 1
0 b

)
∼u

1 1
a a+ b
0 d


for any choice of d ∈ F×q . Thus, if a ̸= −b,

(4.9) [a][b] = q−1[a+ b]− q−1[a]− q−1[b].

If b = −a, then the only possible summands of [a][b] other than the
terms −q−1[a] and −q−1[−a] which we described above, are (1) and [d]
for d ∈ F×q . By considering(

1 1
0 −a

)
∼u
(
1 1
a 0

)
,

we obtain the term (1) with coefficient −q−1 since the dimension of the
corresponding is 1 (we delete one row when putting the product matrix
into weak semi-echelon form after deleting the traced columns). For
d ∈ F×q , we also obtain a copy of [d] with coefficient −q−1 by considering(

1 1
0 a

)
∼u

1 1
0 a
0 0


and (

1 1
0 b

)
∼u

1 1
a 0
0 d


(the coefficient again arises since we lose one row when putting the
combined matrix into weak semi-echelon form). Thus,

(4.10) [a][−a] = −q−1(1)− q−1[a]− q−1[−a]− q−1
∑
d∈F×q

[d].

These multiplication formulas give that, if we write, for a ∈ F×q ,

[a]′ := q · [a] + (1),

then we have, for a, b ∈ F×q with b ̸= −a,
(4.11) [a]′[b]′ = [a+ b]′

and

(4.12) [a]′[−a]′ = −

∑
d∈F×q

[d]′

 .
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Let us write

[0]′ := −

∑
d∈F×q

[d]′

 .

Note that for every a ∈ F×q ,

tr([a]′) = −q−1

and
tr([0]′) = −(q − 1) · (−q−1) = 1− q−1.

In fact, the formulas (4.11) and (4.12) imply that [0]′ is an idempo-
tent, and moreover, for every a ∈ F×q ,

[a]′[0]′ = [0]′[a]′ = [a]′.

For a non-trivial additive character

α : Fq → k×

(of which there are q − 1), we may then write

zα :=
∑
a∈F×q

α(a) · [a]′,

and get that composing zα with itself gives

z2α = (q − 2) · zα + (q − 1) · [0]′.
Solving this equation for idempotents gives an idempotent

eα := q−1 · zα + q−1 · [0]′ = q−1 ·
∑
a∈Fq

α(a) · [a]′,

and its complement [0]′ − eα, for every choice of α. It follows elemen-
tarily from the independence of characters that for two distinct choices
α ̸= β,

eαeβ = 0.

Take
Ω̃α = Im(eα),

which then has dimension equal to the trace of eα, which is q−1.

Similarly as in the proof of Proposition 4.2, we may also consider
idempotents

e0 = −
(<)

q−1
, e∞ = −(>)

q−1

of trace 0, which, again, commute and satisfy

tr(e0 e∞) = 1.
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Thus we have disjoint idempotents

e0 := e0 − e0e∞, e∞ := e∞ − e0e∞, and e0e∞

which therefore give summands

Ω+
1,0 ⊕ Ω+

1,∞ ⊕ 1 ⊆ [P ],

of dimensions −1, −1, and 1, respectively. Since these summands and

the Ω̃α are all disjoint, and (4.8) implies that

dim(EndUq,k([P ])) = q + 2,

they must be simple, giving the stated simple decomposition of [P ],
and thus, also, the simple decomposition of Ω.

The number of orbits of V × V with respect to the Γu-action is

q3 − q + 1

(the orbits being

(0, 0), (a, 0), (0, b), (a, b),

(
0 b
a 0

)
,

(
a x
0 b

)
with a, b ∈ F×q , x ∈ Fq, giving

1 + 2(q − 1) + 2(q − 1)2 + (q − 1)2q = q3 − q + 1

orbits). Hence,

dim(EndUq,k([V ])) = q3 − q + 1 =

(q − 1)2(q + 2) + 2q − 1 =

dim(EndUq,k(Ω)) + q2 − (q − 1)2,

and thus, by counting dimensions, we must have

1 ∼= (0).

(Again, this can also be reasoned directly since the elements

(0, 0), (a, 0), (0, b), (a, 0)(0, b), for a, b ∈ F×q

form a q-by-q matrix algebra).

□
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4.5. The Simple Objects of Uq,k. Let us now assume that k is an
algebraically closed field of characteristic not p. Let us also write Qn

for the object of Uq,k corresponding to the Γu-orbit in P
n generated by

elements

(1 · (r1), . . . , 1 · (rn)) ∈ (Fq[R])n

for r1 > · · · > rn.
There are (q+1)n disjoint idempotents in EndUq,k(Qn) corresponding

to a linear combination of orbits of

(1 · (r1), . . . , 1 · (rn), 1 · (s1), . . . , 1 · (sn))

such that

r1, s1 > r2, s2 > · · · > rn, sn,

which are described as follows:

The idempotents e(α1,...,αn) are indexed by choosing

(4.13) αi ∈ {0,∞} ∪ (Hom(Fq, k×)∖ {1})

(where, as above, 1 denotes the trivial additive character). By extend-
ing linearly direct sums of the matrices (4.8), we may write direct sums
of idempotents. We then put

(4.14) e(α1,...,αn) = eα1 ⊕ · · · ⊕ eαn
where the columns of the matrices correspond to

r1, s1, . . . , rn, sn.

The simple central idempotents of the group algebra k[Un] (where Un
denotes the unipotent subgroup of the Borel subgroup Bn ⊆ GLn(Fq))
commute with (4.14). Therefore, by (2.36), these idempotents corre-
spond to all the non-isomorphic simple summands of Θ0

n.
They are non-trivial because they have non-zero trace. The trace of

an element
∑
ag · g of the group algebra is

a1 · tr(1).

In the present setting,

tr(1) = tr(e(α1,...,αn)) = (−1)|{i|αi∈{0,∞}}| · q−|{j|αj /∈{0,∞}}|.

Using the results of I. M. Isaacs [9], we know that the dimensions of
the simple representation of Un are powers of q. Thus, we have proved
the following
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Theorem 4.6. Let q = pm and let k be an algebraically closed field
of characteristic not equal to p. The non-isomorphic simple objects of
Uq,k are obtained by taking a simple Un-summand of e(α1,...,αn) with αi
as in (4.13). The dimensions of these objects are all of the form ±q−ℓ
for ℓ ∈ N0.

□

4.7. Comparison of the simple objects of Bq,k and Uq,k. Note
that, despite the similarity of the statements, Proposition 4.2 assumes
the target field k has (q − 1)th roots of unity, while Proposition 4.4
assumes it has pth roots of unity. If we assume that the field k has
charateristic not dividing q(q − 1), then there is a canonical tensor
functor

Bq,k → Uq,k

(given by morphisms of T-algebras). If, in addition, both (q−1)th and
pth roots of unity are present in k, we can compare the summands in
Proposition 4.2 and Proposition 4.4.

Since the elements

(0, 0), (a, 0), (0, b), (a, 0)(0, b), for a, b ∈ F×q
form a matrix algebra Mq(k), corresponding to the q copies of 1 in [V ],
some of the summands in Proposition 4.2 must have a summand of 1
in Uq,k. We have that

(0, 1)ι+ ̸= 0

(0, 1)ι− = 0,

so we can conclude that each of the summands Ω+
ψ , for a multiplicative

character
ψ : F×q → k×,

has a summand of 1 in Uq,k. In fact, since [V ] has a commutative
algebra structure as in [3], Section 8, we have

Ω+
ψ
∼= 1⊕ Ω+

1,0 ⊕ Ω+
1,∞

for every multiplicative character

ψ : F×q → k×.

The remaining summands described in Proposition 4.4 give a decom-
position

Ω−ψ
∼=

⊕
α ̸=1:Fq→k×

Ω̃α,
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where the direct sum is over non-trivial additive characters

α : Fq → k×.

In particular, for all multiplicaive characters ψ, ϕ : F×q → k×, as objects
of Uq,k,

Ω−ψ
∼= Ω−ϕ .

4.8. Comparison Functors and the Universality of the Delan-
noy Category. One has a commutative diagram of tensor functors of
the following form, where all categories are over a field k of character-
istic 0:

Rep(S−1)
α // D

��
Rep(Sq−1)

ϵ // Rep(GL−1(Fq))
γ // Bq,k

δ // Uq,k.

The functors α and ϵ send the basic objects of their sources to the basic
objects of their targets, and their existence follows from Proposition 8.3
of [3]. The functors γ, δ follow directly from the construction of the T-
algebra, and also from the oligomorphic group method. The existence
of the functor β follows from the universality of the Delannoy category
of [8], which we state and prove in this section.

Suppose C is a pseudo-abelian category with ACU tensor product
and strong duality with an object X such that there are multiplication
and unit morphisms

(4.15) µ : X ⊗X → X, η : 1→ X

in C giving X the structure of an associative, commutative, unital
(ACU) algebra. Recall that, following Section 8.1 of [3], we may con-
struct a morphism Tr : X → 1 as the composition

X
IdX⊗coevX // X ⊗X ⊗X∗

µ⊗IdX∗ // X ⊗X∗ ∼= X∗ ⊗X evX // 1

Theorem 4.9. For a pseudo-abelian category C over a commutative
ring R with ACU tensor product and strong duality, tensor functors

(4.16) D → C

are in bijective correspondence with the following data:
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(1) An object X ∈ Obj(C ) which is an ACU algebra via morphisms
(4.15) such that

(4.17) X ⊗X µ // X
Tr // 1

makes X its own dual.

(2) A splitting

(4.18) X = X+ ⊕ 1⊕X−
where
(a) dim(X+) = dim(X−) = −1

(b) X+ ⊕ 1, X− ⊕ 1 are subalgebras of X with ideals X+, X−,
respectively.

(c) The self-duality of X switches X+ and X− in the composi-
tion (4.18)

If 2 is not invertible in R, we also assume

(d) Let π+ : X → X+ ⊕ 1 be the morphism of C which is
identity on X+ ⊕ 1 and 0 on X−. Then the composition

(4.19)

X // X ⊗X ⊗X∨ µ // X ⊗X∨

π+⊗IdX∨
��

(X+ ⊕ 1)⊗X∨

⊆
��

X ⊗X∨

��
1

is 0 (see Figure 1 below).

Comment: Let also π− : X → X− ⊕ 1 denote the morphism which
is identity on X− ⊕ 1 and 0 on X+, and let π0 : X → X denote the
morphism which is identity on 1 and 0 on X+ ⊕ X−. One can check
that the assumption about X= and X− being ideals implies that π+ is
dual to the inclusion X−⊕1 ⊆ X and similarly with + and − reversed.

This actually implies that the composition (4.19) is equal to its ana-
logue where we replace π+ by π−. We also know that if we replace π+
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= 0µπ+

Figure 1. Condition (d)

(or π−) by π1, we get the same as when we replace it by IdX , i.e. the
composition (4.19) is Tr. This implies that (4.19) multiplied by 2 is 0.

P. Deligne [5] found a counterexample to Theorem 4.9 if we do not
make the additional assumption (d) in characteristic 2. Let C be the
category of finite dimensional vector spaces over a field k of character-
istic 2 with the usual tensor product. Take X = k3 with the product
ring structure. Then X+⊕ 1, resp. X−⊕ 1, is the subring given by the
equation x1 = x2, resp. x2 = x3. As ideals, X+, resp. X−, is given by
the equation x3 = 0, resp. x1 = 0. Then the composition (4.19) is not
0, so there exists no tensor functor

D → C

sending the basic object of D to X, while C satsifies every assumption
of Theorem 4.9 but (d).

Proof of Theorem 4.9. Recalling the description of the T-algebra cor-
responding to the Delannoy category described in Subsection 2.4, we
must first construct elements of HomC (X

⊗S, X⊗T ) that correspond to
the ordered partitions

(4.20) (U1, . . . , Uℓ)

of S⨿T generating (2.13). We will begin by constructing an idempotent
of EndC (X

⊗n) corresponding to the ordered partition

(4.21) ({11, 12}, {21, 22}, . . . , {n1, n2})

of {1, . . . , n} ⨿ {1, . . . , n} (where, again, the subscripts indicate which
disjoint summand we are considering the element to be in).
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First, we identify the ordered partition

(4.22) ({11}, {12}) ∈ D{1},{1}

of {1} ⨿ {1} with −π+ ∈ EndC (X), and, similarly, we identify

(4.23) ({12}, {11})
with −π−.

Now the assumptions on X in particular imply those required in the
universality property of Rep(S−1) (see Section 8.2, [3]), so we have a
tensor functor

Rep(S−1)→ C

(sending the basic object of Rep(S−1) to X). In particular, we can
construct elements

µ ∈ HomC (X
⊗2, X)

ν ∈ HomC (X,X
⊗2)

κ ∈ HomC (X
⊗2, X⊗2)

corresponding to (unordered) partitions

{{11, 21, 12}} ∈ Rep(S−1){1,2},{1}
{{11, 12, 22}} ∈ Rep(S−1){1},{1,2}

{{11, 21, 12, 22}} ∈ Rep(S−1){1,2},{1,2},
respectively (recalling the description (2.5)). (Note that µ, ν corre-
spond to the multiplication map and its dual, respectively.) We may
consider the product

(4.24) ν ⊗ κ⊗ · · · ⊗ κ⊗ µ︸ ︷︷ ︸
n

∈ EndC (X
⊗(2n−1)),

and trace it with

(4.25) (−1)n−1 · (π+ ⊗ · · · ⊗ π+)︸ ︷︷ ︸
n−1

∈ EndC (X
⊗(n−1))

where the source of each π+ is plugged in to the target of a tensor
factor of (4.24) and its target is plugged into the source of the next
term in (4.25). This trace we take to be the idempotent of EndC (X

⊗n)
corresponding to (4.21). Given (4.21), we may compose with multipli-
cation, the dual of multiplication, the unit, and the augmentation to
get morphisms in C corresponding to all ordered partitions (4.20).

To verify the arising functor definition, write

A = IdX − π+ + π1 = −π−
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B = IdX − π− + π1 = −π+
(the elements corresponding to (4.23) and (4.22), respectively). We
then have

A2 = −A, B2 = −B, A ◦B = −A−B − IdX = π1.

Note that the categorical traces of A and B are 0.
By taking partial traces of morphisms in Rep(S−1) (see Subsection

2.3) with product of A or B repeatedly, we can order the equivalence
classes defining a generating morphism of the T-algebra of Rep(S−1).
Multiple sequences of partial traces with A resp. B can imply the same
ordering, and we need to prove that the answers are indeed equal using
our axioms. Similarly, some ordering definitions can be inconsistent,
and we need to prove that the respective partial traces are 0.

This can be reduced to two specific statements which we will now
describe. Denote for f, g : X → X the composition

X
ν // X ⊗X f⊗g // X ⊗X µ // X

by f ⊙ g. The we need to show

(4.26) A⊙ A = A

and

(4.27) A⊙B = 0 ∈ EndC (X).

In fact, it turns our that (4.27) implies (4.26).

To this end, note that we may express π1 as the composition

X
Tr // 1

η // X

(where, again, η : 1 → X denotes the unit of the algebra structure of
X, which is dual to Tr). This, since X has dimension −1,

A⊙ π1 = −A.

On the other hand, since A has trace 0,

A⊙ IdX = 0.

Now, to prove (4.27), it suffices to show

(A⊙B) ◦ A = 0,



47

since, by symmetry (and the commutativity of the algebra structure
on X), then (A⊙B) ◦B = 0, and (A⊙B) ◦π1 automatically. We may
express (A⊙B) ◦ A as a partial trace of the composition

X ⊗X A⊗A // X ⊗X µ // X
A // X

ν // X ⊗X
which is the same as the partial trace of

(4.28) X ⊗X A⊗A // X ⊗X µ // X
ν // X ⊗X.

We may replace ν ◦ µ by the composition

X ⊗X IdX⊗ν // X ⊗X ⊗X µ⊗IdX // X ⊗X,

the partial trace of which, after composing with A⊗ A as in (4.28), is

X = 1⊗X Ψ⊗IdX // X ⊗X µ // X,

where Ψ ∈ HomC (1, X) is the partial trace of

X
ν // X ⊗X IdX⊗A// X ⊗X,

(in the second coordinate of the target) which is 0.
□

5. Appendix: The Top Algebra

In this Appendix, we give an alternative proof of the semisimplicity
of the category Bq,k, following the method of [3]. This involves studying
the endomorphism algebra of the object Un which is the image of the
idempotent given by the sum of copies of (2.29) over all flags, modulo
the ideal of morphisms which factor through Um for some m < n.

5.1. The basis of the top algebra. Our construction of Bq,k makes
sense in any characteristic not dividing

q(q − 1).

The object Un is defined as the image of the idempotent given by
a sum of copies of (2.29) over all possible choices of maximal flags,
which are indexed by GLn(Fq)/Bn, where Bn ⊆ GLn(Fq) is the Borel
subgroup.

First note that we can again decompose the object Un as

Un =
⊕
V

Un,V
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where the sum runs over maximal flags V on Fnq , where Un,V is the image
of the idempotent ιn,V is the morphism corresponding (2.29) with the
flag V on the target. It suffices to describe

(5.1) EndBq,k
(Un,V),

since to get EndBn,k
(Un), we can take the semidirect product of (5.1)

with the groupoid whose objects are GLn(Fq)/Bn and morphisms be-
tween two cosets are all elements of GLn(Fq) going between them.

Without loss of generality, we may further assume that V is the
standard flag.

Lemma 5.2. The endomorphism algebra EndBq,k
(Un,V) is a free C-

vector space on the following data: Fq-vector space homomorphisms

Fnq ⊕ Fnq
ϕ⊕ψ
��

Fmq
where the flag on Fmq is the standard one, ϕ ⊕ ψ is onto, and each ϕ,
ψ are injective, and further we have sequences

(5.2) 1 ≤ j1 < · · · < jn ≤ m

(5.3) 1 ≤ ℓ1 < · · · < ℓn ≤ m

where for each i, we have ji−1 < ℓi < ji+1 when applicable, and one of
the following cases occurs:

• Case 1: ℓi = ji and ϕ(ei) =
∑

s≤i ai,sejs with ai,s ∈ Fq, and
ai,i ̸= 0.

• Case 2: ℓi = ji − 1 and ϕ(ei) = eℓi +
∑

s<i ai,sejs for ai,s ∈ Fq
• Case 3: ℓi = ji + 1 and ϕ(ei) = eℓi +

∑
s≤i ai,sejs for ai,s ∈ Fq.

In particular,

(5.4) dim(EndBq,k
(Un,V)) = 2nq(

n+1
2 ).

Proof. Analogous to the proof of Lemma 2.5 with the exception of
the ai,sejs summands. One notes that all the terms listed are non-
equivalent.

Additionally, when ℓs ̸= js, s < i, adding a multiple of eℓs produced
equivalent elements. One cannot add other ϕ(es) terms, since similarly
as in the proof of Lemma 2.5, such a generator x would have

ιn,V ◦ x ◦ ιn,V = 0.
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□

Lemma 5.3. The ideal In,V of EndBq,k
(Un,V) generated by morphisms

Un,V → X⊗r → Un,V

for r < n is generated by linear combinations of the form

(5.5) D +
∑
a∈Fq

D′a

where D is a data as in Lemma 5.2 where Case 2 occurs for a given i
and in the data D′a, renaming the sequences (5.2), (5.3) as j′s, ℓ

′
s, we

have

j′s = js, and ℓ′s = ℓs for s ̸= i

j′i = ℓi, and ℓ′i = ji

(i.e. Case 3 occurs for D′a), and writing the constants ai,s for D′a as
a′i,s, we have

a′s,t = as,t for (s, t) ̸= (i, i)

a′i,i = a

(note that ai,i is not defined).

Proof. Consider a composition of two generator morphisms of the form

(5.6)

Fnq ⊕ Frq
ϕ1⊕ψ1

��
Fm1
q

and

Frq ⊕ Fnq
ϕ2⊕ψ2

��
Fm2
q

with the standard flags on Fm1
q , Fm2

q . The composition y is the sum of

Fnq ⊕ Fnq

��
V

where V is the quotient of the pushout of the diagram

Frq
ϕ2 //

ψ1

��

Fm2
q

Fm1
q
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over Frq with all compatible flags. Since m1,m2 ≥ n, we have

dim(V ) > n.

Therefore, in generator summands x of y (i.e. summands satisfying
ιn,V ◦ x ◦ ιn,V ̸= 0), Cases 2 or 3 of Lemma 5.2 must occur for at least
one choice of i, and different choices of flags always product sums of
the form (5.5).

On the other hand, one also sees that all the generators listed in the
statement occur for r = n− 1.

□

Lemma 5.4. The quotient EndBq,k
(Un,V)/In,V is a free C-vector space

on the same generators as in Lemma 5.2, where only Cases 1 and 3
are allowed. In fact,

dim(EndBq,k
(Un,V)/In,V) = (2q − 1)nq(

n
2).

Proof. One can write the vector space EndBq,k
(Un,V), by Lemma 5.2,

as

(5.7)
⊕
S⊆[n]

⊗
i∈S

k(F×q {ai,i})⊗
⊗

i∈[n]∖S

k({∞} ⨿ Fq)


where each ∞ corresponds to Case 2 and each Fq summand in the last
factor corresponds to Case 3.

Now, by Lemma 5.3, each generator of In,V is of the form

z ⊗ ((∞) +
∑
a∈Fq

(a))

for some i-factor in the last tensor factor of (5.7), while z is some
element of the tensor product of the other factors. This concludes our
proof.

□

5.5. The multiplicative structure. For an arbitrary subset S ⊆ [n],
consider a groupoid BS defined as follows:
Consider the set

ΦS = {f : [n]∖ S → Fq}
and the subgroups of the Borel subgroup

BS = {b ∈ Bn | bi,i = 1 for i ∈ [n]∖ S}
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BS,0 = {b ∈ BS | bi,j = bj,i = 0 for i ∈ [n]∖ S, i ̸= j}.
Then BS is the groupoid of the left action of BS × ΦS on the set of
left cosets BS/BS,0, where ΦS acts trivially, and upon composition,
elements of ΦS are multiplied coordinate-wise.

In fact, the subalgebra Ξ0
n ⊂ Ξn generated by the morphisms not

changing the flag on Fnq can be described as

k

∐
S⊆[n]

Mor(BS)

 .

Even for Ξ0
n, the composition formula can be complicated in general.

However, we have a decreasing filtration F on Ξ0
n where

F kΞ0
n = k

 ∐
S⊆[n], |S|≤n−k

Mor(BS)

 .

The composition then has the form

(5.8) F kΞ0
n ⊗ F ℓΞ0

n → FmΞ0
n

where m ≥ max(k, ℓ). If the associated graded algebra is semisimple,
then so is Ξ0

n (since it has 0 Jacobson radical). We can describe the
part of (5.8) where k = ℓ = m, which we will denote by Ξ0,k

n .
We have

Ξ0,k
n = k

 ∐
S⊆[n],|S|=n−k

Mor(BS)

 ,

where multiplication of two morphisms is given by composition when
they are composable and is 0 otherwise. This algebra Ξ0,k

n is thus
semisimple, the endomorphism algebra being k[BS,0].

To describe the full algebra Ξn, note that Bn acts on Ξ0
n by con-

jugation. The algebra Ξn then is the left Kan extension of Ξ0
n from

the group Bn to the groupoid GLn(Fq) acting on GLn(Fq)/Bn (where
product of non-composable morphisms is again declared to be 0). The
algebra Ξn is semisimple because the endomorphism algebras Ξ0

n are
semisimple. We see that

dim(Ξ0
n) = q(

n
2) (2q − 1)n,

dim(Ξn) = q(
n
2) ([n]q!)

2 (2q − 1)n,
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using the notation

[n]q! =
qn − 1

q − 1
· · · · · q − 1

q − 1
= |GLn(Fq)/Bn|.

Thus, we have proved

Theorem 5.6. Let q be a prime power and k be a field of characteristic
not dividing q(q − 1). Then the category Bq,k is semisimple.

□
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