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The purpose of this note is to describe a class of symmetric, rigid,
locally finite tensor categories whose growth is aribtarily large. The
categories we construct do not have a tensor abelian envelope. Write
[[n]] = {1, . . . , n} × {0, 1}, [n]ε = {1, . . . , n} × {ε}, for ε = 0, 1.

1. T-Algebras

A graded symmetric, rigid, locally finite tensor category generated
by an object X is determined by the strucutre on End(X⊗n) such that
End(1) = C (graded means that for all n,m, k, ` such thatm+` 6= n+k,

Hom(X⊗m ⊗ (X∨)⊗k, X⊗n ⊗ (X∨)⊗`) = 0).

The structure which determines such a category consists of describing
the properties of the traces and products.

Definition 1. Define a T-algebra over C as a collection of the following
data:

(1) A sequence of complex Σn × Σn-representations Vn indexed by
n ∈ N0

(2) For every n ∈ N, k ≤ n, a Σk × (Σn−k)
2-equivariant map

σk : Vn → Vn−k

(where we interpret Σk× (Σn−k)
2 ⊂ (Σk×Σn−k)

2 by embedding
Σk diagonally) satisfying

σk+` = σk ◦ σ`,

as maps over Σk ×Σ` × (Σn−k ×Σn−k−`)
2 ⊂ Σk+` × (Σn−k−`)

2.

(3) A product map

π : Vm ⊗ Vn → Vn+m
1
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which is equivariant with respect to

(Σm × Σm)× (Σn × Σn) ⊂ Σm+n × Σm+n

that is compatible with all σk, σ` for k ≤ m, ` ≤ n. More
specifically, the diagram

Vm ⊗ Vn
π //

σk⊗σ`
��

Vm+n

τ−1σk+`τ
��

Vm−k ⊗ Vn−`
π // Vm+n−k−`

where τ denotes the permutation given by, for i ∈ {1, . . . ,m+n}

τ(i) =


i if i ≤ k
i+ ` if k < i ≤ m
i− n+ k if m < i ≤ m+ `
i if m+ ` < i ≤ m+ n

(4) π is commutative, associative, unital in the obvious sense. For
example, commutativity means commutativity of the diagram

Vm ⊗ Vn
π //

T
��

Vm+n

(σ,σ)

��
Vn ⊗ Vm

π // Vm+n

where T denotes the switch of tensor factors, and σ ∈ Σm+n

denotes the permutation sending {1, . . . ,m} to {n+ 1, . . . ,m+
n} and {m+1, . . . ,m+n} to {1, . . . , n} in the order-preserving
way.

(5) An element ι ∈ V1 such that

σ1((12)× Id(ιπx)) = x

It is also useful to consider the operations

σi,j = (τ × τ ′)−1σ1(τ × τ ′)
where we take permutations τ = (12 . . . i), τ ′ = (12 . . . j).

Proposition 2. Given a T-algebra V = (Vn), there exists a C-linear
pre-additive category C(V ) with an ACU tensor product and strong du-
ality such that for a certain X ∈ Obj(V ),

Obj(C(V )) = {X⊗m ⊗ (X∨)⊗n|m,n ∈ N0}
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Mor(X⊗m1 ⊗ (X∨)⊗n1 , X⊗m2 ⊗ (X∨)⊗n2) =

=

{
Vm1+n2 if m1 + n2 = m2 + n1

0 else

Proof. The defining axioms of a T-algebra are translations of the cor-
responding categorical ones.

�

In the remaining sections, we shall construct a T -algebra T such that
T0 = C and dim(Tn) is finite but grows faster than any given function
in n. This gives a symmetric, rigid, locally finite category of arbitrarily
high growth.

2. Representation Structure

Definition 3. Fix a sequence of natural numbers (nk)k∈N. Define Tn
as the free C-vector space on the set Sn of choices of the following data:

(1) For 1 ≤ k ≤ n, a subset

T (k) ⊆P([[n]]),

letting P denote the power set.
(2) A function

χ : T (k)→ {1, . . . , nk}.
(3) Subsets W0 ⊆ [n]0 and W1 ⊆ [n]1 with

|W0| = |W1|,
and a bijection

β : W0 → W1

(4) A bijection b : Z0 → Z1 where

Zε := [n]ε r

Wε ∪
n⋃
k=1

⋃
T∈T (k)

T


satisfying the following conditions:

(1) For each T ∈ T (k), for both ε = 0, 1,

|T ∩ [n]ε| = k.

(2) For all distinct T ∈ T (k), T ′ ∈ T (`),

T ∩ T ′ = ∅
and for ε = 0, 1,

T ∩Wε = ∅.
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(Note that conditions (1), (2) imply

|Z0| = |Z1|.)

For example, the following diagram is a visulaization of an element
of S8 corresponding to taking T = {(1, 0), (2, 0), (1, 1), (2, 1)}},

T (2) = {T}, χ(T ) = 2,

T (k) = ∅ for all k 6= 2, and Wε = {3, 4, 5, 6} × {ε}:

T 7→ 2

W1

W0

β b

The C-vector space Tn also has a Σn × Σn-action induced by the
Σn×Σn-action on [[n]] given by letting the first and second factors act
on [n]0 and [n]1, respectively.

3. Product Structure

For all n, m, we further give a homomorphism over (Σn)2× (Σm)2 ⊆
(Σn+m)2 mapping

πn,m : Tn × Tm → Tn+m.
In diagrams, we will take this operation to be placing diagram side by
side, i.e. using disjoint union. More precisely, let us fix elements

Φ = (T (1), . . . ,T (n), χ, β,W0,W1, b) ∈ Tn
Φ′ = (T ′(1), . . . ,T ′(m), χ′, β′,W ′

0,W
′
1, b
′) ∈ Tm

Take, then,

T̃ (k) = T (k)qT ′(k)

(taking undefined sets to be empty and identifying {1, . . . , n}q{1, . . . ,m} ∼=
{1, . . . , n+m} by sending j 7→ j + n for j ∈ {1, . . . ,m}),

χ̃ = χq χ′ : T̃ (k)→ {1, . . . , nk},
for ε = 0, 1

W̃ε = Wε qW ′
ε ,
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β̃ = β q β′ and b̃ = bq b′. Then we put

πn,m((Φ,Φ′)) = (T̃ (1), . . . , T̃ (n), χ̃, β̃, W̃0, W̃1, b̃),

inducing such a product map πn,m.

4. Trace Structure

To give the sequence of Σn×Σn-representations (Tn) the structure of
a T -algebra, we must also describe trace. We define Σn−i ×Σn−i ×Σi-
equivariant maps

trσ : Tn → Tn−i
(embedding Σn−i × Σn−i × Σi diagonally into

Σn−i × Σn−i × Σi × Σi ⊆ Σn × Σn

for the left hand side) after being given a bijection σ between two
i-element subsets of [n]0 and [n]1.

Suppose we are given two such subsets R0 ⊆ [n]0, R1 ⊆ [n]1 with

|R0| = |R1| = i

and a bijection

σ : R0 → R1.

Our convention is to use the order-preserving bijections

(1) [n− i]ε → [n]ε rRε

for the definition of trσ.

Consider the graph Γ with vertices [[n]] and edges {i, σ(i)}, {j, b(j)}.
The vertices of Γ have degree ≤ 2, so components can be individual
vertices, (connected) cycles, or paths. First of all, we eliminate all
(connected) cycles and replace each with a factor c (where c ∈ C r Z
is a number fixed throughout). Let s be the number of such cycles.

Paths from [n]0 to [n]1 can be identified with the data of subsets

R̂0 ⊆ [n]0, R̂1 ⊆ [n]1 and a bijection σ̂ : R̂0 → R̂1.
A path from [n]ε to [n]ε ends with a σ-edge on one side and a b-

edge on the other side. Thus, from these paths, we can extract sets

Rε ⊆ [n]ε, Rε ∩ R̂ε = ∅ and injections

ρε : Rε → [n]ε r R̂ε

which send the σ-end of the path to the b-end.
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Definition 4. Call an element of Sn, i.e. a collection of data

Φ = (T (1), . . . ,T (n), χ, β,W0,W1, b),

matchable with resepct to σ if for x ∈ W0∩ R̂0, y ∈ W1∩ R̂1, σ̂(x) = y
implies β(x) = y, and for all T ∈ T (k) one of the following is true:

(1) There exists T ′ 6= T ∈ T (k) such that T∩R̂0 6= ∅ or T∩R̂1 6= ∅,

σ̂(T ∩ R̂0) ⊆ (T ′ ∩ R̂1)

σ̂−1(T ∩ R̂1) ⊆ (T ′ ∩ R̂0).

Note that the conditions imply that the above formulae must
also then be true for T and T ′ switched and that T ′ is unique.

(2) We have T ∩ R̂0 = ∅ and T ∩ R̂1 = ∅.

If Φ ∈ Sn is not matchable with respect to σ, put

trσ(Φ) = 0.

We shall now define trσ(Φ) in the case when Φ ∈ Sn is matchable.

Let Ŵε be obtained from Wε by deleting any source (resp. target)

elements of σ̂ and replacing x ∈ Wε ∩Rε by x̂ = ρε(x) and define β̂ by

taking β and replacing an element x of its source (resp. target) by X̂

when applicable. Similarly, for each T ∈ T (k), let T̂ be obtained by
replacing each x ∈ T ∩Rε by ρε(x).

Replace each T ∈ T (k) satisfying Case 2 of Definition 4 by T̂ . Let

T̃ (k) be the set of all such T̂ , and put χ̃(T̂ ) = χ(T ).

Now let T̂ (k) be the set of all unordered pairs {T, T ′} ⊆ T (k)
satisfying Case 1 of Definition 4. For such a pair {T, T ′}, define

(2)
β{T,T ′} = q(

∑
(γ : (T̂ ∩ [n]0) r R̂0

∼= // (T̂ ′ ∩ [n]1) r R̂1))·

(
∑

(γ′ : (T̂ ′ ∩ [n]0) r R̂0

∼= // (T̂ ∩ [n]1) r R̂1)).

(In (2), we consider a bijection as a “product” of its pairs, the product
is distributive with respect to sums). Define, also,

W {T,T ′}
ε = ((T̂ ∪ T̂ ′) ∩ [n]ε) r R̂ε.

Now let

W̃ε = Ŵε ∪
n−i⋃
k=1

⋃
{T,T}∈T̂ (k)

W {T,T ′}
ε
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and

β̃ = β̂ ·
n−i∏
k=1

∏
{T,T ′}∈T̂ (k)

β{T,T ′}.

Finally, let b̃ be the restriction of σ̂ to

[n]0 r

n−i⋃
k=1

⋃
T∈T̃ (k)

T ∪ W̃0

→ [n]1 r

n−i⋃
k=1

⋃
T∈T̃ (k)

T ∪ W̃1

 .

Now we define
trσ(Φ) = csΦ̃

where

Φ̃ = (T̃ (1), . . . , ˜T (n− i), χ̃, β̃, W̃0, W̃1, b̃),

using the idenitification (1).

For example, the element Φ of T4 corresponding to the diagram

T 7→ 1

T ′ 7→ 1

W0

W1

β

is matchable with respect to

σ : {2, 4} × {0} → {1, 3} × {1}
given by σ((2, 0)) = (1, 1), σ((4, 0)) = (3, 1) (represented by the dotted
lines):

T 7→ 1

T ′ 7→ 1

W1

W0

β
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Then to find trσ(Φ) we delete the elements of the T ’s and W ’s con-

nected by σ. In this case, Zε, Rε and R̂ε are all empty. None of the

T̃ (k)’s will be non-empty, and all remaining points will belong to the

new W̃ε’s. There is only one unordered pair of sets {T, T ′} ∈ T̂ (k),
and

W
{T,T ′}
0 = {(1, 0)}

W
{T,T ′}
1 = {(2, 1)},

with
β{T,T ′} = q · ((1, 0) 7→ (2, 1))

Thus, trσ(Φ) can be visualized as

q·

W̃1

W̃0

β̃τ

(the top row of points representing {(2, 1), (4, 1)} and the bottom row
of points representing {(1, 0), (3, 0)}).

Remark: The motivation of this definition comes from making traces
of diagrams of the form

T ∈ χ−1(i)

T ′ ∈ χ−1(i)

. . .

equal to q, and “introducing no other non-zero traces.” The formalism
of the set W is introduced to eliminate negligible elements that would
arise from different values of i.


