FAST-GROWING C-LINEAR ADDITIVE LOCALLY FINITE CATEGORIES WITH ACU TENSOR PRODUCT AND STRONG DUALITY

SOPHIE KRIZ

The purpose of this note is to describe a class of symmetric, rigid, locally finite tensor categories whose growth is aribtarily large. The categories we construct do not have a tensor abelian envelope. Write $[[n]] = \{1, \ldots, n\} \times \{0, 1\}, [n]_{\epsilon} = \{1, \ldots, n\} \times \{\epsilon\}, \text{ for } \epsilon = 0, 1.$

1. T-Algebras

A graded symmetric, rigid, locally finite tensor category generated by an object X is determined by the strucutre on $End(X^{\otimes n})$ such that $End(1) = \mathbb{C}$ (graded means that for all n, m, k, ℓ such that $m+\ell \neq n+k$,

$$Hom(X^{\otimes m} \otimes (X^{\vee})^{\otimes k}, X^{\otimes n} \otimes (X^{\vee})^{\otimes \ell}) = 0).$$

The structure which determines such a category consists of describing the properties of the traces and products.

Definition 1. Define a T-algebra over \mathbb{C} as a collection of the following data:

- (1) A sequence of complex $\Sigma_n \times \Sigma_n$ -representations V_n indexed by $n \in \mathbb{N}_0$
- (2) For every $n \in \mathbb{N}$, $k \leq n$, $a \Sigma_k \times (\Sigma_{n-k})^2$ -equivariant map

$$\sigma_k: V_n \to V_{n-k}$$

(where we interpret $\Sigma_k \times (\Sigma_{n-k})^2 \subset (\Sigma_k \times \Sigma_{n-k})^2$ by embedding Σ_k diagonally) satisfying

$$\sigma_{k+\ell} = \sigma_k \circ \sigma_\ell$$

as maps over $\Sigma_k \times \Sigma_\ell \times (\Sigma_{n-k} \times \Sigma_{n-k-\ell})^2 \subset \Sigma_{k+\ell} \times (\Sigma_{n-k-\ell})^2$.

(3) A product map

$$\pi: V_m \otimes V_n \to V_{n+m}$$

which is equivariant with respect to

$$(\Sigma_m \times \Sigma_m) \times (\Sigma_n \times \Sigma_n) \subset \Sigma_{m+n} \times \Sigma_{m+n}$$

that is compatible with all σ_k , σ_ℓ for $k \leq m$, $\ell \leq n$. More specifically, the diagram

$$V_{m} \otimes V_{n} \xrightarrow{\pi} V_{m+n}$$

$$\sigma_{k} \otimes \sigma_{\ell} \downarrow \qquad \qquad \downarrow \tau^{-1} \sigma_{k+\ell} \tau$$

$$V_{m-k} \otimes V_{n-\ell} \xrightarrow{\pi} V_{m+n-k-\ell}$$

where τ denotes the permutation given by, for $i \in \{1, \dots, m+n\}$

$$\tau(i) = \begin{cases} i & \text{if } i \leq k \\ i + \ell & \text{if } k < i \leq m \\ i - n + k & \text{if } m < i \leq m + \ell \\ i & \text{if } m + \ell < i \leq m + n \end{cases}$$

(4) π is commutative, associative, unital in the obvious sense. For example, commutativity means commutativity of the diagram

$$V_{m} \otimes V_{n} \xrightarrow{\pi} V_{m+n}$$

$$\downarrow (\sigma, \sigma)$$

$$V_{n} \otimes V_{m} \xrightarrow{\pi} V_{m+n}$$

where T denotes the switch of tensor factors, and $\sigma \in \Sigma_{m+n}$ denotes the permutation sending $\{1, \ldots, m\}$ to $\{n+1, \ldots, m+n\}$ and $\{m+1, \ldots, m+n\}$ to $\{1, \ldots, n\}$ in the order-preserving way.

(5) An element $\iota \in V_1$ such that

$$\sigma_1((12) \times Id(\iota \pi x)) = x$$

It is also useful to consider the operations

$$\sigma_{i,j} = (\tau \times \tau')^{-1} \sigma_1(\tau \times \tau')$$

where we take permutations $\tau = (12...i), \tau' = (12...j).$

Proposition 2. Given a T-algebra $V = (V_n)$, there exists a \mathbb{C} -linear pre-additive category $\mathcal{C}(V)$ with an ACU tensor product and strong duality such that for a certain $X \in Obj(V)$,

$$Obj(\mathcal{C}(V)) = \{ X^{\otimes m} \otimes (X^{\vee})^{\otimes n} | m, n \in \mathbb{N}_0 \}$$

$$Mor(X^{\otimes m_1} \otimes (X^{\vee})^{\otimes n_1}, X^{\otimes m_2} \otimes (X^{\vee})^{\otimes n_2}) =$$

$$= \begin{cases} V_{m_1+n_2} & \text{if } m_1+n_2=m_2+n_1\\ 0 & \text{else} \end{cases}$$

Proof. The defining axioms of a T-algebra are translations of the corresponding categorical ones.

In the remaining sections, we shall construct a T-algebra \mathbb{T} such that $\mathbb{T}_0 = \mathbb{C}$ and $dim(\mathbb{T}_n)$ is finite but grows faster than any given function in n. This gives a symmetric, rigid, locally finite category of arbitrarily high growth.

2. Representation Structure

Definition 3. Fix a sequence of natural numbers $(n_k)_{k\in\mathbb{N}}$. Define \mathbb{T}_n as the free \mathbb{C} -vector space on the set \mathbb{S}_n of choices of the following data:

(1) For $1 \le k \le n$, a subset

$$\mathscr{T}(k) \subseteq \mathscr{P}([[n]]),$$

letting \mathcal{P} denote the power set.

(2) A function

$$\chi: \mathscr{T}(k) \to \{1,\ldots,n_k\}.$$

(3) Subsets $W_0 \subseteq [n]_0$ and $W_1 \subseteq [n]_1$ with

$$|W_0| = |W_1|,$$

and a bijection

$$\beta: W_0 \to W_1$$

(4) A bijection $b: Z_0 \to Z_1$ where

$$Z_{\epsilon} := [n]_{\epsilon} \setminus \left(W_{\epsilon} \cup \bigcup_{k=1}^{n} \bigcup_{T \in \mathscr{T}(k)} T\right)$$

satisfying the following conditions:

(1) For each $T \in \mathcal{T}(k)$, for both $\epsilon = 0, 1$,

$$|T \cap [n]_{\epsilon}| = k.$$

(2) For all distinct $T \in \mathcal{T}(k)$, $T' \in \mathcal{T}(\ell)$,

$$T \cap T' = \emptyset$$

and for $\epsilon = 0, 1$,

$$T \cap W_{\epsilon} = \emptyset.$$

(Note that conditions (1), (2) imply
$$|Z_0| = |Z_1|.$$

For example, the following diagram is a visulaization of an element of \mathbb{S}_8 corresponding to taking $T = \{(1,0), (2,0), (1,1), (2,1)\}\},$

$$\mathcal{T}(2) = \{T\}, \ \chi(T) = 2,$$

 $\mathcal{T}(k) = \emptyset$ for all $k \neq 2$, and $W_{\epsilon} = \{3, 4, 5, 6\} \times \{\epsilon\}$:

The \mathbb{C} -vector space \mathbb{T}_n also has a $\Sigma_n \times \Sigma_n$ -action induced by the $\Sigma_n \times \Sigma_n$ -action on [[n]] given by letting the first and second factors act on $[n]_0$ and $[n]_1$, respectively.

3. Product Structure

For all n, m, we further give a homomorphism over $(\Sigma_n)^2 \times (\Sigma_m)^2 \subseteq (\Sigma_{n+m})^2$ mapping

$$\pi_{n,m}: \mathbb{T}_n \times \mathbb{T}_m \to \mathbb{T}_{n+m}.$$

In diagrams, we will take this operation to be placing diagram side by side, i.e. using disjoint union. More precisely, let us fix elements

$$\Phi = (\mathcal{T}(1), \dots, \mathcal{T}(n), \chi, \beta, W_0, W_1, b) \in \mathbb{T}_n$$

$$\Phi' = (\mathcal{T}'(1), \dots, \mathcal{T}'(m), \chi', \beta', W_0', W_1', b') \in \mathbb{T}_m$$

Take, then,

$$\widetilde{\mathscr{T}(k)} = \mathscr{T}(k) \coprod \mathscr{T}'(k)$$

(taking undefined sets to be empty and identifying $\{1, \ldots, n\} \coprod \{1, \ldots, m\} \cong \{1, \ldots, n+m\}$ by sending $j \mapsto j+n$ for $j \in \{1, \ldots, m\}$),

$$\widetilde{\chi} = \chi \coprod \chi' : \widetilde{\mathscr{T}(k)} \to \{1, \dots, n_k\},$$

for $\epsilon = 0, 1$

$$\widetilde{W}_{\epsilon} = W_{\epsilon} \coprod W'_{\epsilon},$$

 $\widetilde{\beta} = \beta \coprod \beta'$ and $\widetilde{b} = b \coprod b'$. Then we put

$$\pi_{n,m}((\Phi,\Phi')) = (\widetilde{\mathscr{T}(1)},\ldots,\widetilde{\mathscr{T}(n)},\widetilde{\chi},\widetilde{\beta},\widetilde{W_0},\widetilde{W_1},\widetilde{b}),$$

inducing such a product map $\pi_{n,m}$.

4. Trace Structure

To give the sequence of $\Sigma_n \times \Sigma_n$ -representations (\mathbb{T}_n) the structure of a T-algebra, we must also describe trace. We define $\Sigma_{n-i} \times \Sigma_{n-i} \times \Sigma_i$ -equivariant maps

$$tr_{\sigma}: \mathbb{T}_n \to \mathbb{T}_{n-i}$$

(embedding $\Sigma_{n-i} \times \Sigma_{n-i} \times \Sigma_i$ diagonally into

$$\Sigma_{n-i} \times \Sigma_{n-i} \times \Sigma_i \times \Sigma_i \subseteq \Sigma_n \times \Sigma_n$$

for the left hand side) after being given a bijection σ between two *i*-element subsets of $[n]_0$ and $[n]_1$.

Suppose we are given two such subsets $R_0 \subseteq [n]_0$, $R_1 \subseteq [n]_1$ with

$$|R_0| = |R_1| = i$$

and a bijection

$$\sigma: R_0 \to R_1$$
.

Our convention is to use the order-preserving bijections

$$(1) [n-i]_{\epsilon} \to [n]_{\epsilon} \setminus R_{\epsilon}$$

for the definition of tr_{σ} .

Consider the graph Γ with vertices [[n]] and edges $\{i, \sigma(i)\}$, $\{j, b(j)\}$. The vertices of Γ have degree ≤ 2 , so components can be individual vertices, (connected) cycles, or paths. First of all, we eliminate all (connected) cycles and replace each with a factor c (where $c \in \mathbb{C} \setminus \mathbb{Z}$ is a number fixed throughout). Let s be the number of such cycles.

Paths from $[n]_0$ to $[n]_1$ can be identified with the data of subsets $\widehat{R}_0 \subseteq [n]_0$, $\widehat{R}_1 \subseteq [n]_1$ and a bijection $\widehat{\sigma} : \widehat{R}_0 \to \widehat{R}_1$.

A path from $[n]_{\epsilon}$ to $[n]_{\epsilon}$ ends with a σ -edge on one side and a b-edge on the other side. Thus, from these paths, we can extract sets $\overline{R_{\epsilon}} \subseteq [n]_{\epsilon}, \overline{R_{\epsilon}} \cap \widehat{R_{\epsilon}} = \emptyset$ and injections

$$\rho_{\epsilon}: \overline{R_{\epsilon}} \to [n]_{\epsilon} \setminus \widehat{R_{\epsilon}}$$

which send the σ -end of the path to the *b*-end.

Definition 4. Call an element of \mathbb{S}_n , i.e. a collection of data

$$\Phi = (\mathscr{T}(1), \dots, \mathscr{T}(n), \chi, \beta, W_0, W_1, b),$$

matchable with resepct to σ if for $x \in W_0 \cap \widehat{R_0}$, $y \in W_1 \cap \widehat{R_1}$, $\widehat{\sigma}(x) = y$ implies $\beta(x) = y$, and for all $T \in \mathcal{T}(k)$ one of the following is true:

(1) There exists $T' \neq T \in \mathcal{T}(k)$ such that $T \cap \widehat{R_0} \neq \emptyset$ or $T \cap \widehat{R_1} \neq \emptyset$,

$$\widehat{\sigma}(T \cap \widehat{R_0}) \subseteq (T' \cap \widehat{R_1})$$

$$\widehat{\sigma}^{-1}(T \cap \widehat{R_1}) \subseteq (T' \cap \widehat{R_0}).$$

Note that the conditions imply that the above formulae must also then be true for T and T' switched and that T' is unique.

(2) We have $T \cap \widehat{R_0} = \emptyset$ and $T \cap \widehat{R_1} = \emptyset$.

If $\Phi \in \mathbb{S}_n$ is not matchable with respect to σ , put

$$tr_{\sigma}(\Phi) = 0.$$

We shall now define $tr_{\sigma}(\Phi)$ in the case when $\Phi \in \mathbb{S}_n$ is matchable.

Let \widehat{W}_{ϵ} be obtained from W_{ϵ} by deleting any source (resp. target) elements of $\widehat{\sigma}$ and replacing $x \in W_{\epsilon} \cap \overline{R_{\epsilon}}$ by $\widehat{x} = \rho_{\epsilon}(x)$ and define $\widehat{\beta}$ by taking β and replacing an element x of its source (resp. target) by \widehat{X} when applicable. Similarly, for each $T \in \mathcal{T}(k)$, let \widehat{T} be obtained by replacing each $x \in T \cap \overline{R_{\epsilon}}$ by $\rho_{\epsilon}(x)$.

Replace each $T \in \mathcal{T}(k)$ satisfying Case 2 of Definition 4 by \widehat{T} . Let $\widetilde{\mathcal{T}(k)}$ be the set of all such \widehat{T} , and put $\widetilde{\chi}(\widehat{T}) = \chi(T)$.

Now let $\widehat{\mathscr{T}(k)}$ be the set of all unordered pairs $\{T,T'\}\subseteq\mathscr{T}(k)$ satisfying Case 1 of Definition 4. For such a pair $\{T,T'\}$, define

(2)
$$\beta_{\{T,T'\}} = q(\sum (\gamma : (\widehat{T} \cap [n]_0) \setminus \widehat{R_0} \xrightarrow{\cong} (\widehat{T'} \cap [n]_1) \setminus \widehat{R_1})) \cdot (\sum (\gamma' : (\widehat{T'} \cap [n]_0) \setminus \widehat{R_0} \xrightarrow{\cong} (\widehat{T} \cap [n]_1) \setminus \widehat{R_1})).$$

(In (2), we consider a bijection as a "product" of its pairs, the product is distributive with respect to sums). Define, also,

$$W_{\epsilon}^{\{T,T'\}} = ((\widehat{T} \cup \widehat{T'}) \cap [n]_{\epsilon}) \setminus \widehat{R_{\epsilon}}.$$

Now let

$$\widetilde{W_{\epsilon}} = \widehat{W_{\epsilon}} \cup \bigcup_{k=1}^{n-i} \bigcup_{\{T,T\} \in \widehat{\mathcal{T}(k)}} W_{\epsilon}^{\{T,T'\}}$$

and

$$\widetilde{\beta} = \widehat{\beta} \cdot \prod_{k=1}^{n-i} \prod_{\{T,T'\} \in \widehat{\mathscr{T}(k)}} \beta_{\{T,T'\}}.$$

Finally, let \widetilde{b} be the restriction of $\widehat{\sigma}$ to

$$[n]_0 \setminus \left(\bigcup_{k=1}^{n-i} \bigcup_{T \in \widetilde{\mathscr{T}(k)}} T \cup \widetilde{W}_0\right) \to [n]_1 \setminus \left(\bigcup_{k=1}^{n-i} \bigcup_{T \in \widetilde{\mathscr{T}(k)}} T \cup \widetilde{W}_1\right).$$

Now we define

$$tr_{\sigma}(\Phi) = c^s \widetilde{\Phi}$$

where

$$\widetilde{\Phi} = (\widetilde{\mathscr{T}(1)}, \ldots, \widetilde{\mathscr{T}(n-i)}, \widetilde{\chi}, \widetilde{\beta}, \widetilde{W_0}, \widetilde{W_1}, \widetilde{b}),$$

using the idenitification (1).

For example, the element Φ of \mathbb{T}_4 corresponding to the diagram

is matchable with respect to

$$\sigma: \{2,4\} \times \{0\} \to \{1,3\} \times \{1\}$$

given by $\sigma((2,0)) = (1,1), \, \sigma((4,0)) = (3,1)$ (represented by the dotted lines):

Then to find $tr_{\sigma}(\Phi)$ we delete the elements of the T's and W's connected by σ . In this case, Z_{ϵ} , $\overline{R_{\epsilon}}$ and $\widehat{R_{\epsilon}}$ are all empty. None of the $\widetilde{\mathscr{T}(k)}$'s will be non-empty, and all remaining points will belong to the new $\widetilde{W_{\epsilon}}$'s. There is only one unordered pair of sets $\{T, T'\} \in \widehat{\mathscr{T}(k)}$, and

$$W_0^{\{T,T'\}} = \{(1,0)\}\$$

$$W_1^{\{T,T'\}} = \{(2,1)\},\$$

with

$$\beta_{\{T,T'\}} = q \cdot ((1,0) \mapsto (2,1))$$

Thus, $tr_{\sigma}(\Phi)$ can be visualized as

(the top row of points representing $\{(2,1),(4,1)\}$ and the bottom row of points representing $\{(1,0),(3,0)\}$).

Remark: The motivation of this definition comes from making traces of diagrams of the form

equal to q, and "introducing no other non-zero traces." The formalism of the set W is introduced to eliminate negligible elements that would arise from different values of i.