
ON WEIL RECIPROCITY IN MOTIVIC
COHOMOLOGY

SOPHIE KRIZ

Abstract. Using Voevodsky’s derived category of motives, we
prove a reciprocity law in motivic cohomology of a smooth projec-
tive morphism of dimension 1 over a smooth scheme over a perfect
field.

1. Introduction

The norm map in Milnor K-theory was defined by Bass-Tate [3] and
Kato [10] by a reciprocity law stating that the sum of the norms of the
residues of a given element of the Milnor K-theory of the function field
of P1

k at closed points is 0 where k is a given field. This reciprocity also
holds for any smooth projective curve C over k.

To be precise, Milnor K-theory of a field F is defined as

K∗M(F ) = T (F×)/(a⊗ (1− a), a ∈ F r {0, 1}),

where T denotes the tensor algebra. We have residue homomorphisms

∂R : Kn
M(F )→ Kn−1

M (kR)

for a discrete valuation ring R with residue field kR = R/mR. As
explained in Bass-Tate [3], Ch I. §5 and Kato [10], the homomorphism
∂R is uniquely determined by

(1) ∂R(α1, . . . , αn) = vR(αn)(α1 mod mR, . . . , αn−1 mod mR)

for α1, . . . , αn−1 ∈ O×R , αn ∈ F×, and we write (α1, . . . , αn) for the
image α1 ⊗ · · · ⊗ αn in Kn

M(F ). The papers [3, 10] also defined, for a
finite extension E of a field k, a norm homomorphism

NE/k : Kn
M(E)→ Kn

M(k),

which is uniquely determined by

(2)
∑
p∈P1

k

Nkp/k∂Rp(α) = 0 ∈ Kn−1
M (k)

for all α ∈ Kn
M(k(x)) where p runs through closed points of P1

k.
1
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Theorem 1. ([8], Proposition 7.4.4) Let k be a field, C be a smooth
projective curve over k, and L = K(C) be the function field of C. Let
α ∈ Kn

M(L). Then ∑
p∈C

Nkp/k∂Rp(α) = 0 ∈ Kn−1
M (k),

where Rp is the discrete valuation ring with field of fractions L associ-
ated with a closed point p ∈ C.

This can be proved by choosing a finite morphism C → P1
k and using

the functoriality of the norm homomorphism with respect to finite field
extensions.

Kato [10] (Proof of Corollaries in §2.4, p. 647) remarked that a
similar statement is also true in Quillen K-theory. In a recent paper
[13], E. Musicantov and A. Yom Din proved reciprocity laws in Quillen
K-theory for varieties of higher-dimension.

The purpose of this note is to generalize Theorem 1 to a statement
about motivic cohomology of smooth schemes over a field. This work
originated from a suggestion of E. Musicantov and A. Yom Din [12] to
interpret Theorem 1 in terms of motivic cohomology.

Suppose k is a perfect field. Let f : C → S be a smooth projective
morphism of dimension 1 where C, S are smooth varieties over Spec(k).
Let T ⊆ C be a reduced closed subscheme of codimension 1 which is
generic over S (i.e. f(Spec(K(Q))) = Spec(K(S)) for every irreducible
component Q of T ). When T is smooth over S, we can denote the
composition

Hp,q(C r T )
∆ // Hp+1,q(C,C r T )

γ // Hp−1,q−1(T )

where ∆ is the connecting map of the long exact sequence in motivic
cohomology of the pair (C,C r T ) and γ is the Gysin map ([7] Ch. 5,
also studied by Déglise [6]), by

∂T : Hp,q(C r T )→ Hp−1,q−1(T ).

In Definition 15 below, we will define, for a finite morphism g : T → S
of smooth schemes over Spec(k), a norm map

Ng = NT/S : Hp,q(T )→ Hp,q(S).

(We note the these norms are not directly related to the norms con-
sidered by T. Bachmann and M. Hoyois in [1]. Our norms are additive
and hence are group homomorphisms, while the multiplicative norms
considered in [1] are not.)
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Denote Φ = NT/S ◦ ∂T . When we do not assume that T is smooth
over k, we can generalize this construction using higher Chow groups
as follows: [11] Part 5 prove that we have

Hp,q(X) = CHdim(X)−q(X, 2q − p)
(see Definition 16 below), where the right hand side denotes higher
Chow groups. Now Bloch [4] defines a long exact sequence

(3)

. . . // CHr(T,m) // CHr(C,m)

��
CHr(C r T,m)

γ

��
CHr(T,m− 1) // . . .

Also, Chow groups are covariantly functorial with respect to finite
morphisms. Thus, we can define Φ as the composition

Hp,q(C r T )

Φ

��

= // CHdim(S)+1−q(C r T, 2q − p)
γ

��
CHdim(S)+1−q(T, 2q − p− 1)

g∗

��
Hp−1,q−1(S) CHdim(S)+1−q(S, 2q − p− 1).

=oo

The main result of this paper is the following

Theorem 2. We have

0 = Φ : Hp,q(C r T )→ Hp−1,q−1(S).

In the case when S = Spec(k), L = K(C), an element of Kn
M(L) =

Hn,n(Spec(L)), by definition, has non-zero residues at only finitely
many closed points p1, . . . , pm ∈ C, and Theorem 1 is a special case
by letting T = {p1, . . . , pm} ⊆ C for p = q = n. I prove at the end of
Section 3 that the direct definitions of ∂p, NE/k agree with the defini-
tions using motivic cohomology.

Note also that for C as in Theorem 2, there in general does not exist
a finite morphism over S into P1

S (although it exists locally), and thus
the proof of [8] for the case of a point does not immediately generalize
to the present setting. For completeness, we give a simple example in
the Appendix.
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In Section 2 below, I review the relevant foundations of the derived
category of motives, mainly following the book of Mazza, Voevodsky,
and Weibel [11]. The texts by Voevodsky [15] and Friedlander, Suslin,
Voevodsky [7] are also used. In Section 3, I prove the main result.

2. Preliminaries: Motives and Higher Chow Groups

In this section, we will give some definitions of concepts relating to
motives that will be used in the proof of Theorem 1. See [7, 11, 15] for
additional background information.

First, we will define the additive category SmCorS for S a smooth
scheme (we always mean of finite type) over a field k.

Definition 3. The objects of SmCorS are smooth schemes over S.
For X, Y smooth schemes over S, SmCorS(X, Y ) is defined to be the
group of algebraic cycles on X ×S Y whose support is finite over X
(i.e. proper over X of relative dimension 0). Composition is defined
in ([11], Appendix 1A).

Now we will define a notion that will be crucial for the remainder of
this paper.

Definition 4. For S a smooth scheme over a field k, define a presheaf
with transfers on S, or a PST, to be an additive functor

F : SmCorOpS → Ab

(where Ab is the category of abelian groups and COp denotes the oppo-
site category of a category C).

Now, define PST (S) to be the category which has presheaves with
transfers as objects, and natural transformations between them as mor-
phisms. We now give the definition of a particularly useful example of
a presheaf with transfers:

Definition 5. Let S be a smooth scheme over k, and X be a smooth
scheme over S. The presheaf with transfers Ztr(X) represented by X
is defined by, for U ∈ SmCorS,

Ztr(X)(U) = SmCorS(U,X).

As noted in [15], Section 2, Ztr(?) extends canonically to a func-
tor from presheaves of sets to presheaves with transfers, which is left
adjoint to the forgetful functor.

Let us define, for a presheaf with transfers F over S, Lres(F ) as the
canonical left resolution (in the abelian category of presheaves with
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transfers) of F by direct sums of presheaves with transfers over S of
the form Ztr(X). Then we get a natural quasi-isomorphism

Lres(F )→ F.

We have

Lemma 6. ([15], Lemma 3.1) Let F,G be presheaves of sets over S.
Then there is a natural isomorphism

Ztr(F ×S G) = Ztr(F )⊗ Ztr(G).

�

Lemma 7. ([15], Lemma 3.3) Let K,K ′, L be complexes of presheaves
with transfers of the form

⊕
i Ztr(Xi) and K → K ′ be a quasi-isomorphism.

Then K ⊗ L→ K ′ ⊗ L is a quasi-isomorphism.

�

Let K,L be complexes of presheaves with transfers. Then define

K � L := Lres(K)⊗ Lres(L).

By Lemma 7, � is the left derived functor of ⊗ in the abelian category
PST (S).

Following [11], define

∆n = Spec(k[x0, . . . , xn]/(
n∑
i=0

xi = 1).

The jth face map ∂j : ∆n → ∆n+1 is given by the equation xj = 0.

Definition 8. ([11] Definition 2.14) Suppose F is a presheaf with trans-
fers on S. Define C∗F to be the chain complex of presheaves with
transfers on S that takes U to

. . . // F (U ×∆2) // F (U ×∆1) // F (U) // 0 ,

where the arrows are alternating sums of face maps.

Definition 9. ([11] Definition 3.1) Define Z(1) to be the totalization
of the double chain complex of presheaves with transfers over S

C∗Ztr(S)→ C∗Ztr((Gm)S)

(where Ztr(S) is in bidegree (0, 0)). Define

(4) Z(n) = Z(1) � · · ·� Z(1).︸ ︷︷ ︸
n times
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(In fact, we could use ⊗ instead of � in (4), but often, Z(n) is consid-
ered as an object of the derived category of presheaves with transfers,
in which case we must keep in mind that ⊗ does not preserve equiva-
lences.)

Now we will discuss motives:

Definition 10. A presheaf with transfers F over S is called a Nis-
nevich sheaf with transfers when its underlying presheaf is a sheaf on
the category of smooth schemes over S with the Nisnevich topology (see
[11], Lecture 13).

Now let ShNis(SmCorS) be the category of Nisnevich sheaves with
transfers over S. Let D− be the derived category of bounded below (as
chain complexes) complexes of Nisnevich sheaves with transfers with
respect to quasi-isomorphisms.

Definition 11. Let EA be the smallest full additive subcategory of D−

(1) which contains the cone of all morphisms of the form

Ztr(X × A1)→ Ztr(X),

(2) for any distinguished triangle

A→ B → C → A[1]

in D−, if two out of the three of the objects A,B,C are in EA,
so is the third,

(3) if A⊕B ∈ EA, then A,B ∈ Obj(EA), and

(4) if Ai ∈ Obj(EA), i ∈ I, and ⊕Ai ∈ Obj(D−), then ⊕Ai ∈
Obj(EA).

Let WA denote the class of morphisms in D− whose cone is in EA. A
morphism in WA is called an A1-weak equivalence.

Definition 12. ([11], Lecture 14) The triangulated category of motives

DM eff,−
Nis (S) = D−[W−1

A ] over S is defined to be the localization (i.e.
derived category) of D− with respect to A1-weak-equivalences.

Remark 13. By Remark 14.7 of [11], we may equivalently define

DM eff,−
Nis (S)

as the full subcategory of D− on objects of the form C∗(K) for a bounded
below chain complex K of Nisnevich sheaves with transfers. (Strictly
speaking, C∗(K) is a double chain complex; we mean its totalization.)



MOTIVES AND WEIL RECIPROCITY 7

If X is a smooth scheme over S, we write M(X) for the class of

Ztr(X) in DM eff,−
nis (S), and call it the motive of X.

Definition 14. ([11] Lecture 14) The category DM−(S) is obtained

from DM eff,−
nis (S), by inverting the Tate operation

T : M 7→M(1) = M � Z(1).

If we choose a model of T which is injective on objects, this may be
taken to be the colimit, in the category of categories, of the sequence

DM eff,−
nis (S)

T // DM eff,−
nis (S)

T // . . .

There are also unbounded versions of these categories which we
will denote by D, DM eff

Nis(S) = D[W−1
A ], DM(S) where D is the de-

rived category of unbounded chain complexes of Nisnevich sheaves with
transfers with respect to quasisomorphisms. (For the construction of
an unbounded derived category of an abelian category with enough in-
jectives see [9].) Remark 13 also remains true if we replace “bounded
below” by “cell”. A cell object is a chain complex of Nisnevich sheaves
with transfers of the form

C = colimC(m)

where C(0) = 0 and C(m+1) is the mapping cone of a morphism

C∗(Km)→ C(m)

where Km is a bounded below chain complex of Nisnevich sheaves with
transfers. The category DM eff

Nis(S) is a full subcategory of the category
DM(S).

One defines motivic cohomology of a smooth scheme X over a ground
field k by

Hn,m(X) = Hn(X,Z(m))

where the right hand side denotes sheaf cohomology in the Nisnevich
(or, equivalently, Zariski) topology on X. (Strictly speaking, then, we
are restricting the sheaf Z(m) to X; see [11] Lecture 3). One can also
define A(m) for any abelian group of coefficients A. In this paper, the
coefficients will be Z unless specified otherwise. Equivalently, this is

RHomn(Z,Z(m))

in the category DM−(X) (see [15]). For M ∈ Obj(DM(X)), we may
put, more generally,

Hn
X(M) = RHomn(Z,M).
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Now we will define the norm map

Ng = NT/S : Hp(T,Z(q))→ Hp(S,Z(q)),

for g : T → S a finite morphism of smooth schemes over Spec(k). By
[11] Lecture 2, page 13, we have a canonical transfer morphism

Cor(U ×S T,Gk
m × As)→ Cor(U,Gk

m × As).

Thus, we get a morphism of complexes of Nisnevich sheaves

g∗Z(q)T → Z(q)S.

It is known that in the Nisnevich topology, the pushforward along finite
morphisms is exact. Also, by [11], Lecture 13, Zariski and Nisnevich
cohomology of smooth schemes with coefficients in Z(q) agree.

Definition 15. The norm map Ng = NT/S is defined to be the compo-
sition

Hp(T,Z(q))
= // Hp

Nis(T,Z(q))
= // Hp

Nis(S, g∗Z(q))

��
Hp
Nis(S,Z(q))

= // Hp(S,Z(q)).

Definition 16. ([5]) Let X be a separated, reduced scheme of finite type
over Spec(k) (not necessarily smooth). Let Zi(X,m) be the free abelian
group on dimension i+m subvarieties of X ×∆m which intersect with
all faces X × ∆j properly for j < m (properly means in a subscheme
of dimension ≤ i+ j).

Let ∂k : Zi(X,m) → Zi(X,m − 1) be the map given by intersection
with the ith degree (which is well defined, since the faces are effective
Cartier divisors). Define

d : Zi(X,m)→ Zi(X,m− 1)

by d =
∑m

k=0(−1)k∂k. This defines a chain complex

Zi(X) : . . .
d // Zi(X,m)

d // Zi(X,m− 1)
d // . . .

d // Zi(X, 0)

Define CHi(X,m) := Hm(Zi(X)).

Theorem 17. ([11], Part 5): If X is a smooth scheme over k, then
we have a canonical isomorphism

Hp,q(X) ∼= CHdim(X)−q(X, 2q − p).

�
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3. Proof of the Main Result

Recall that k is a perfect field, f : C → S is a smooth projective
morphism of dimension 1 where C, S are smooth varieties over Spec(k),
and T ⊆ C is a reduced closed subscheme of codimension 1 which is
generic over S (i.e. f(Spec(K(Q))) = Spec(K(S)) for every irreducible
component Q of T ).

Proof of Theorem 2. We will be using the diagram

(5)

C r T
ι //

f̃ ##G
GG

GG
GG

GG
C

f
��
S.

We have the derived functors

f̃∗ : DMCrT → DMS

and
f̃ ∗ : DMS → DMCrT .

The functor f̃ ∗ preserves �, and we have a projection formula for F ∈
Obj(DMS), G ∈ Obj(DMCrT )

f̃∗(f̃
∗(F) � G) = F � f̃∗(G).

(In a very general context, this is proved in [2].) We will use this for
F = Z(q − 1),G = Z(1). Thus, we have

Hp,q(C r T ) = Hp
S(Z(q − 1) � f̃∗(Z(1))).

Now, by [11], Thm. 4.1, we have a canonical equivalence between

(6) Z(1)
∼ // Gm[−1] .

More precisely, on the right hand side, we mean the motive associated
with the PST Gm shifted by −1. By Diagram (5), (and the fact that
Z(n), Gm are preserved by pullbacks), we have the canonical morphisms
of motives

f∗(Z(1)) // f̃∗(Z(1)) ,

f∗(Gm) // f̃∗(Gm) .

As PST’s, we have

f∗(Gm)(U) = {U ×S C // Gm}

(7) f̃∗(Gm)(U) = {U ×S (C r T )
h // Gm} .
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From Diagram (5), we get a morphism of motives over C

f∗(Gm) // f̃∗(Gm). ,

which on the level of PST ’s, is given by restricting an invertible regular
function on U ×S C to U ×S (C r T ). Thus, we have a distinguished
triangle

(8) F // f∗Z(1) // f̃∗(Z(1))
δ // F [1] .

In other words, F is the mapping co-cone (or “derived kernel”) of

f∗Z(1)→ f̃∗Z(1). Then the connecting map

∆ : Hp,q(C r T ) // Hp+1,q(C,C r T )

is induced by Z(q−1)�δ. Now, we will give a geometric interpretation
of the map δ in (8): In (7), h ∈ K(U ×S C), where K(U ×S C) is the
field of rational functions on U ×S C. Thus, we have the divisor

(9) Div(h) =
∑
D

vd(h)D ∈ Z1(U ×S C) = f∗(Z1)(U),

where Z1(U ×S C) is the free abelian group on the set of closed codi-
mension 1 subvarieties of U ×S C. If Div(h) is a section of

ker(Ztr(C) � Ztr(C r T )),

(and thus represents a section of F [1]), since it vanishes when restricted
to U×S (CrT ), it only contains summands of the form U×SQ where Q
is an irreducible component of T . Adding their coefficients, multiplied
by the degrees of the finite morphisms Q→ S, defines a degree map

(10) ker(Ztr(C) � Ztr(C r T ))
deg // ZS.

Recall (Definition 5) that ZS = Ztr(S). Now, (10) induces a map (see
(8))

(11) F // Z[−1] ,

and (recalling that tensoring with Z[−1] shifts cohomological degrees
by (−2,−1)), by applying Z(q−1)�? in the category DMS to (11), we
get a map

ψ : Hp+1,q(C,C r T )→ Hp−1,q−1(S).

Lemma 18. We have

ψ ◦∆ = Φ : Hp,q(C r T )→ Hp−1,q−1(S).
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Lemma 18 easily implies our claim. For h ∈ K(U ×S C), we have

deg(Div(h)) = 0,

(looking, for example, at the fiber of a regular value of the projection
T → S), and thus, by the fact that ψ (and ∆) can be obtained by
doing the construction on Z(1) and applying Z(q − 1)�?,

ψ ◦∆ = 0,

thus proving our assertion.

Proof of Lemma 18: We need to show that taking the map (11), com-
posing with δ and applying Z(q− 1)�? induces Φ on motivic cohomol-
ogy. Now in identifying (11), we used (6), interpreting divisors of the
appropriate kind as rational functions. When applying Z(q− 1)�?, we
no longer have divisors, but algebraic cycles. From the point of view
of (3), the starting data can be a higher algebraic cycle on T , of which
both maps take the multiplicity over S (calculated by taking the degree
of the extension in function fields). Thus, the statement is essentially
a tautology. �

This completes the proof of Theorem 2.
�

By [11], Theorem 5.1, for a field F , we have a canonical isomorphism

Kn
M(F ) ∼= Hn,n(Spec(F ))

where the right hand side denotes motivic cohomology. The following
two lemmas link our setup to more classical constructions.

Lemma 19. The following diagram commutes:

(12)

Hn,n(Spec(L))
∆ //

∂p

%%LL
LLL

LLL
LLL

LLL
LLL

LLL
LLL

LLL
L

Hn+1,n(C, Spec(L))

��
Hn+1,n(Spec(OC,p), Spec(L))

γ

��
Hn−1,n−1(Spec(kp)),

where Hn,n denotes motivic cohomology and the unlabeled vertical arrow
is restriction, where ∂p is defined by (1).

(Note: One extends the definition of motivic cohomology to Spec(OC,p)
by taking colimits.)
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Proof. Clearly, the composition of the top vertical and horizontal map
of (12) can also be written as

(13)

Hn,n(Spec(L))
∆p // Hn+1,n(Spec(OC,p), Spec(L))

γ

��
Hn−1,n−1(Spec(kp)),

where ∆p is the connecting map of the long exact sequence correspond-
ing to the inclusion

Spec(L) ⊂ Spec(OC,p).

This is known to be a map of H∗(Spec(OC,p))-modules. One has ([11],
Theorem 4.1)

H1,1(Spec(OC,p)) = H0(Spec(OC,p),Gm) = O×C,p.

By definition, ∂p is also multiplicative with respect to O×C,p. Thus, it
suffices to verify the commutativity of (12) for n = 1. This is a classical
fact. �

Lemma 20. The following diagram commutes:

Hn+1,n(C, Spec(L))

ψ

&&MM
MMM

MMM
MMM

MMM
MMM

MMM
MMM

MMM
MMM

��
⊕pHn+1,n(Spec(OC,p), Spec(L))

γ

��
⊕pHn−1,n−1(Spec(kp)) ⊕Nkp/k

// Hn−1,n−1(Spec(k))

where the vertical arrows are as in (12), and Nkp/k is defined by (2).

Proof of Lemma 20: Fix a closed point p ∈ C. Analogs of (10) and
(11), and hence also an analog ψp of ψ can be defined with C replaced
by Spec(OC,p). Thus, it suffices to consider the diagram

(14)

Hn+1,n(Spec(OC,p), Spec(L))
ψp

**VVVV
VVVV

VVVV
VVVV

VV

γ

��
Hn−1,n−1(Spec(kp))

Nkp/k

// Hn−1,n−1(Spec(k)).
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By motivic purity (see e.g. [6]), up to equivalence, (∼= in this derived
category), the motive represented by the complex

Ztr(Spec(L))→ Ztr(Spec(OC,p))
does not depend on C, in a way compatible with γ and ψp. Thus,
it suffices to consider the Diagram (14) for C = P1, in which case it
follows from the fact that Theorem 1 is by definition true for C = P1,
and this characterizes Nkp/k. �

4. Appendix

It is easy to construct examples of schemes S,C as in Theorem 2 for
which there does not exist a diagram

(15)

C
f //

��

S × P1

p1
��

S
= // S

with f finite, where p1 is the projection to the first factor. Let k = C.
Let γ be a line bundle over S. Consider P (γ ⊕ 1), the associated
projective bundle of γ ⊕ 1 over S. Let H∗(?), H∗(?) denote singular
homology and cohomology with coefficients in Q. We have

H∗(P (γ ⊕ 1)) = H∗(S)[u]/(u(u+ c1(γ)))

where c1(γ) ∈ H2(S) is the first Chern class of γ. Let

H∗(PnC) = Q[x]/(xn+1).

Now, let S = P2. Denote by γ a line bundle over S with c1(γ) = x.
By definition,

H∗(P (γ ⊕ 1)) = H∗(S)[u]/(u(u+ c1(γ))) = Q[x, u]/(x3, u(u+ x)).

Now, assume we have a finite morphism

f : P (γ ⊕ 1)→ P1 × P2

over P2. Let β be a generator of the second homology of P1×{x} where
x is a closed point with coefficients in Q. Let α be a generator of the
second singular homology of the fiber Z of P (γ ⊕ 1) over x. Then f
restricts to a finite morphism Z → P1 × {x}, and hence f∗α = nβ,
n 6= 0.

We have

H∗(P2 × P1) = Q[x]/(x3)⊗Q Q[v]/(v2) = Q[x, v]/(x3, v2).

Now
0 6= 〈nβ, v〉 = 〈f∗α, v〉 = 〈α, f ∗v〉.



14 SOPHIE KRIZ

So, f ∗v 6= 0. However, v2 = 0, so (f ∗v)2 = 0. So, there exist an m ∈ Q
and k, ` ∈ Q, not both zero, with

(16) (kx+ `u)2 = mu(u+ x).

Then

0 = (kx+ `u)2 −m · u(u+ x) =

= k2x2 + 2k`xu+ `2u2 −mu2 −mxu.
Note that on the right hand side of (16), there is no x2, so k2x2 = 0.
Thus k2 = 0. Since k ∈ Q, k = 0.

So, since

0 = `2u2 −mu2 −mxu,

(17) `2u2 = mu2 +mxu.

Since there are no xu’s on the left hand side of (17),

mxu = 0

m = 0.

So, `2u2 = 0. So, `2 = 0. Since ` ∈ Q,

` = k = 0.

Contradiction.
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