
INTERPOLATED EQUIVARIANT SCHEMES

SOPHIE KRIZ

(Preliminary version)

Abstract. We propose an approach to a theory ofGLc-equivariant
schemes over Spec(C) where c is a complex number. We investi-
gate vector bundles and stacks of coherent modules in this context,
and interpretations of these concepts in terms of moduli spaces of
tensor categories. We give several examples, including flag vari-
eties.

1. Introduction

Let X be a GLn-equivariant affine scheme over Spec(C) where n is a
natural number. By definition, X is the spectrum of a GLn-equivariant
(commutative) C-algebra A. We may think of the category of GLn-
equivariant associative commutative unital (ACU) C-algebras as the
category of ACU algebra objects in the symmetric tensor cateogry
Rep(GLn) of Ind-algebraic GLn(C)-representations. The work of P.
Deligne [2, 3] allows us to consider an analogous category Rep(GLc), re-
placing the rank of the general linear group by a general value c ∈ C∖Z
(the case of a negative integer rank general linear groups can be under-
stood classically using the super- formalism). The case of c ∈ C∖Z is
the context we will consider in the present paper.

When c is not an integer, the objects of Rep(GLc) are Ind-objects
in a semisimple tensor category Rep(GLc), but they cannot be under-
stood as representations of a classical algebraic group (this is actually
a theorem of Deligne [4] caused by their “super-exponential growth”).
Because of this, the “points” of X we see are orbits, i.e. Spec(AGLc)
where AGLc is the maximal trivial subrepresentation of an ACU algebra
A in the tensor category Rep(GLc). In the case of c = n a positive
integer, this corresponds to the subalgebra of actual GLn-fixed points
of A, i.e. regular functions on the orbit scheme X/GLn = Spec(AGLn).

On Spec(AGLn), however, we can also consider A as a sheaf of ACU
algebras in Rep(GLn). More precisely, this is a stack, where isomor-
phisms of sections are isomorphisms of algebras in Rep(GLn). (For
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example, when X/GLn is a point, X is a GLn-orbit by an algebraic
subgroup H, and the automorphisms are given by the Weyl group
N(H)/H.) In the case of a general GLn-scheme X, we can recover a
lot of information about X from gluing the stacks on U/GLn where U
are GLn-equivarint affine open subsets.

All of this information has an interpolated version; this is the subject
of the present paper.

Looking at these structures is motivated by the now extremely devel-
oped theory of C-linear categories with ACU tensor product and strong
duality which we refer to as quasi-pre-Tannakian categories (see e.g.
[5, 6, 7, 9, 10, 11, 12, 13, 14, 15]). In particular, with a GLc-equivariant
scheme in our sense, one can associate two stacks of categories: The
stack of vector bundles and the stack of quasicoherent modules (and
coherent modules, in case of appropriate “local finiteness”). The fo-
cus in the existing literature has been mostly when X/GLc is a point
(i.e. when X is an orbit), but the general context describes parametric
spaces of such structures. (The case of infinitesimal deformations was
treated in [13].) In the case of an orbit, it turns out that, using a uni-
versal algebra formalism called T-algebras, GLc-projective modules are
precisely equivalent to the structure of C-linear categories with associa-
tive commutative unital tensor product and strong duality generated
by a “basic object” of dimension c [13].

In the case of local finiteness, it further turns out that the category of
locally finite projective modules is semisimple if and only if it is abelian,
which is equivalent to it being equivalent to the category of coherent
modules [13]. For a general GLc-equivariant scheme X, strong duality
on coherent modules can be interpreted as a smoothness condition on
X.

We begin this paper by giving the relevant definitions in Section 2.
We then discuss some basic examples of GLc-equivariant schemes, such
as affine spaces and the affine and projective line of orbits (Sections 4
and 5). We also treat example of flag varieties (Sections 6, 7). Next,
in Section 3, we briefly review the T-algebra formalism of [12] from the
present point of view, and define the stacks of locally projective and
quasicoherent modules. Finally, in Section 6, we describe the notion of
affine GLc-equivariant group schemes.



3

2. Interpolated Algebraic Geometry

The purpose of this section is to define GLc-equivariant schemes.
We begin by recalling in Subsection 2.1 the definition of P. Deligne’s
category Rep(GLc), and why it can be considered an interpolation of
the representation of a general linear group with non-integer rank. We
describe its algebra (Ind-)objects, which are our interpretation of “GLc-
equivariant algebras” from the classical point of view. In Subsection
2.2, we define GLc-equivariant schemes. In Subsection 2.3, we briefly
consider analogous notions for other interpolated algerbaic groups.

2.1. The category Rep(GLc). Fix a complex number c ∈ C. The
purpose of this first subsection is to recall the definition from [3, 2] of
the C-linear semisimple tensor category Rep(GLc) which is meant to
take the place of the classical representation category of GLn(C).

2.1.1. Schur functors. The basis of this “interpolation” of the general
linear group is that the essence of a category tensor generated by a
basic object X is completely captured in the data of the morphisms
between the tensor powers of X and its dual.

In the case of n ∈ N, the standard representation Xn = Cn, on
which GLn(C) acts by matrix multiplication, tensor generates all of the
group’s representations. We additionally recall that for any m ≤ n, we
may decompose the mth tensor power of Xn as

(1) X⊗m
n =

⊕
|λ|=m

dim(Sλ) · Sλ(Xn),

where in the direct sum, λ runs through all Young diagrams with m
boxes, Sλ denotes the Specht module (in the classification of irreducible
representations of the symmetric group onm elements) associated to λ,
and Sλ denotes its corresponding Schur functor (giving an irreducible
GLn(C)-representation). Therefore, in particular, the endomorphism
algebra of X⊗m

n for m ≤ n is isomorphic to the group algebra on the
symmetric group with m elements, which we shall denote by Σm:

(2) EndRep(GLn(C))(X
⊗m
n ) ∼= CΣm.

For a general Young diagram λ, the dimension of its corresponding
Schur functor applied to a representation V is a polynomial in the
dimension of the representation

dim(Sλ(V )) = pλ(dim(V )),
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depending on the row and column lengths of λ (and not depending on
the underlying group GLn(C)). For a Young diagram λ with a column
length greater than n (i.e. a Young diagram with more n rows), we
find that

pλ(n) = 0.

Putting Schur functors Sλ(Xn) to be equal to 0, we find that (1) may
be extended to all values of m. However, because of the missing terms
arising from Schur functors giving 0, (2) fails for m > n. Note that we
also have

Hom(X⊗m1
n , X⊗m2

n ) = 0,

for distinct m1,m2.

2.1.2. Interpolation. Now we will consider a category modelling this
morphism structure, generated by a basic “standard representation”
Xc, with categorical dimension

dim(Xc) = c.

Recall that the categorical dimension of an object Z of a C-linear cate-
gory C with associative, commutative, unital tensor product and strong
duality is the composition of the unit and co-unit of duality

1 → Z ⊗ Z∨ → 1

which, in the most general context we consider in this paper, may be
an element of an arbitrary C-algebra EndC (1). The condition that the
dimensions of objects be integers corresponds to a relationship between
C and the category of (super) vector spaces.

We begin by constructing a “diagrammatic” category Rep0(GLc)
whose objects consist of pairs (m,n) ∈ N2

0, which we write as tensor
products

X⊗m
c ⊗ (X∨

c )
⊗n.

Define the spaces of morphisms

HomRep0(GLc)(X
⊗m1
c ⊗ (X∨

c )
⊗n1 , X⊗m2

c ⊗ (X∨
c )

⊗n2)

to be the C-vector space freely generated by biijections

(3) [m1]⨿ [n2] → [m2]⨿ [n1].

To define composition, however, we prefer to represent a generator
(3) graphically, as a certain kind of diagram on two columns of dots:
Draw a line of m1 black dots and a line of n1 white dots in the left
column, and draw a line of m2 black dots and a line of n2 white dots
in the right column. Then draw connecting paths between the points
corresponding to the matched elements of (3). Any diagram of paths
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is possible as long as each path connects two points which are either
on opposite sides of the diagram, or are opposite colors. Then, to
compose two such diagrams, we simply concatenate them side by side,
and compose paths when possible. When we encounter a closed circle
of paths, we remove it from the diagram and multiply the generator by
a factor of the coefficient c (similarly as computing the operation in a
Brauer algebra).

In particular, we have, for every m,

EndRep0(GLc)(X
⊗m
c ) ∼= CΣm

and, for every m1 ̸= m2,

HomRep0(GLc)(X
⊗m1
c , X⊗m2

c ) = 0.

The diagrammatic category does not capture well the representation
theory of the general linear groups on the level of objects. To correct the
objects, we formally add (finite) direct sums, and then apply a pseudo-
abelian envelope. The resulting category, denoted here by Rep(GLc), is
the interpolated category of representations of the general linear group,
at rank c. If we allowed infinite direct sums, we would get Rep(GLc),
the category of Ind-objects of Rep(GLc).

2.1.3. Relation with the classical context. For non-integer values of c,
not only is Rep(GLc) an additive C-linear category, but it is an abelian
one. In fact, it actually turns out to be semisimple.

The simple objects of Rep(GLc) are indexed by pairs of Young di-
agrams (λ, µ). It first appears as a summand of X⊗m ⊗ (X∨)⊗n. In
particular, Yλ,∅ can be conisdered as the application Sλ(Xc) of the Schur
functor associated to λ to Xc, and has non-zero dimension

dim(Yλ,∅) = pλ(c) ̸= 0

(since the roots of pλ are all integers).

Plugging in c = n for an integer n ∈ N, we can also recover the
classical representation category Rep(GLn(C)) by applying semisim-
plification to Rep(GLc).

The procedure of semisimplification of a quasi-pre-Tannakian cate-
gory is a more general construction, designed to accomodate subtelties
which do not occur in this particular example. In the case of Rep(GLc)
for c an integer, we do not conisder the category to be a semisimple
pre-Tannakian category because there are non-zero simple objects of
dimension 0. Applying semisimplification in this case simply removes
these objects. However, the general procedure will play an important
role later, so we discuss it in its full generality now:
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Suppose C is a quasi-pre-Tannakian category. For some objects
Y, Z ∈ Obj(C ), define a morphism

f : Y → Z

to be negligible if for every morphism g : Z → Y , we have

tr(f ◦ g) = 0.

Negligible morphisms form a tensor ideal, and the quotient of C iden-
tifying them with the 0 morphism is called the semisimplification of C ,
which we denote by C . However, it can happen that the semisimplifica-
tion of a general quasi-pre-Tannakian category may not be semisimple,
or even abelian (see Section 5.8 of [2]).

In C = Rep(GLc) at c = n for an integer n, the negligible mor-
phisms consist of linear combinations of the identity morphisms on the
simple objects Yλ,µ of dimension 0. Therefore, the semisimplification

Rep(GLc) precisely identifies these simple objects with the 0 object,
recovering the classical representation category

Rep(GLc) ∼= Rep(GLn(C)).

2.2. GLc-equivariant schemes.

2.2.1. The topology of a GLc-equivariant spectrum. We have discussed
the underlying category Rep(GLc) meant to replace Rep(GLn(C)).
The next step should be to propose a GLc-version of the spectrum
functor SpecGLc . Similarly as in the classical framework, SpecGLc(A),
for a GLc-equivariant algebra A, consists of an underlying topological
space, and a “structure stack” on it. The purpose of this subsection is
to discuss the underlying topological space.

Recall that in the classical story of GLn(C)-equivariant sheaves, we
would apply Spec to an associative commutative unital algebra A which
is equivariant with respect to a group action of GLn(C). In the inter-
polated setting, we do not have an actual group GLc. We instead take
SpecGLc to have input data in the form of algebra objects of the cat-
egory Rep(GLc). By this, we mean objects A ∈ Obj(Rep(GLc)) with
multiplication and unit morphisms

µ : A⊗A → A
η : 1 → A

(1 denoting the unit object of Rep(GLc)), which (strictly) satsify the
typical diagrams encoding associativity, commutativity, and unitality.
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We may refer to these objects as GLc-equivariant algebras. Denote the
subcategory of GLc-equivariant algebras (and morphisms in Rep(GLc)
preserving algebra structures) by

Rep(GLc)-Algebra.

Fix an ACU algebra object A in Rep(GLc). We begin by considering
the decomposition of A into a direct sum of simple objects⊕

λ,µ

⊕
i∈Iλ,µ

Yλ,µ

over pairs of Young diagrams λ, µ, for some indexing sets Iλ,µ enumer-
ating the copies of Yλ,µ appearing. For each choice of λ, µ, we write

(4) Aλ,µ :=
⊕
i∈Iλ,µ

Yλ,µ,

and call this the degree (λ, µ)-piece of A. (We may sometimes also use
this terminology for the space of coefficients CIλ,µ of (4).)

In particular, A∅,∅ can be considered as a classical commutative, uni-
tal C-algebra. We may consider the classical affine C-scheme Spec(A∅,∅).
This (with the Zariski topology) is taken to be the underlying topolog-
ical space of SpecGLc(A).

2.2.2. Interpolated schemes and structure stacks. We conclude our def-
inition of SpecGLc(A) by defining the GLc-equivariant structure stack
OA on the underlying topological space Spec(A∅,∅). In this subsection,
we also use this to define general GLc-equivariant schemes.
Recall that Spec(A∅,∅) (with the Zariski topology) has a neighbor-

hood basis consisting of localizations

Spec(f−1A∅,∅) ⊆ Spec(A∅,∅)

for some element f . We assign the Rep(GLc)-algebra of sections of OA
on such an open set by putting

(5) OA(Spec(f
−1A∅,∅)) = f−1A,

where the right hand side is considered as a groupoid by taking its
morphisms to consist of automorphisms

ϕ : f−1A → f−1A
such that the (∅, ∅)-part acts by identity on (f−1A)∅,∅ = f−1A∅,∅

(6) ϕ∅,∅ = Idf−1A∅,∅ .
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To define OA(U) for a general open subset U ⊆ Spec(A∅,∅) of commu-
tative algebras in the categoryRep(GLc): For any point p ∈ Spec(A∅,∅),
we may consider it also as a prime ideal in the whole Rep(GLc)-algebra
A, and may therefore define the localization Ap. For an open set U
of the underlying topological space, we then take OA(U) to consist
functions from U into the disjoint union of localizations Ap for p ∈ U
such that each point is sent into its corresponding localization and the
analogue of “locally being a quotient” is satisfied, exactly analogously
to the classical treatment of the structure sheaf on an affine scheme.
(U is covered by neighborhoods V ⊆ U such that there exist x, y ∈ A
such that for any p ∈ V , y /∈ p, and the function applied to p is equal
to x/y ∈ Ap.

2.2.3. Affinoid and general GLc-schemes. We define SpecGLc(A) to be
the pair of this underlying topological space and structure stack

(7) SpecGLc(A) = (Spec(A∅,∅),OA).

We warn, however, that non-affineness can exist intrinsically in a
Rep(GLc)-algebra (embodied, for example, by the case of the flag
varieties described in Sections 6, 7 below), so we will not count all
SpecGLc(A) as affine GLc-equivariant schemes. Instead, we will refer
to them as the affinoid GLc-equivariant schemes:

Definition 1. For a topological space X and a stack of GLc-equivariant
algebras S on it, we say that (X,S ) forms an affinoid GLc-equivariant
scheme if there exists a GLc-equivariant algebra A such that

(X,S ) ∼= (Spec(A∅,∅),OA) = SpecGLc(A).

Then, similarly as for classical definitions, we require a general GLc-
equivariant scheme to be locally isomorphic to an affinoid one:

Definition 2. A GLc-equivariant scheme is a pair (X,S ) of a topo-
logical space X and a stack S on X of GLc-equivariant algebras such
that for every point x ∈ X, there exists an open neighborhood U ∋ x
such that U (with the subspace topology), together with the restriction
of S to U gives an affinoid GLc-equivariant scheme.

For a GLc-equivariant scheme X = (X,S ), we write S = OX and
call it the structure stack of X .

For a GLc-equivariant scheme X = (X,OX ), define its scheme of or-
bits X/GLc to consist of the topological space X and the sheaf (OX )∅,∅
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of C-algebras defined by taking, for a open subset U ⊆ X, taking

(OX )∅,∅(U) = (OX (U))∅,∅

with restriction and gluing structure from OX . In particular, for a
GLc-equivariant algebra A

(SpecGLc(A))∅,∅ = Spec(A∅,∅).

Then for GLc-equivariant schemes X = (X,OX ), Y = (Y,OY), define
a morphism of GLc-equivariant schemes X → Y as a continuous map

f : X → Y

and a morphism of stacks of ACU algebras in Rep(GLc)

ϕ : f ∗OY → OX ,

such that the restriction to the scheme of points (consisting of f and the
restriction of ϕ to a morphism of sheaves ϕ∅,∅ : f

∗(OY)∅,∅ → (OX )∅,∅) is
a classical morphism of schemes

X/GLc → Y/GLc.

This defines the category of GLc-equivariant schemes, which we denote
by

SchGLc .

We denote the full subcategory of affinoid schemes by SchAffinoid
GLc

.

As usual, we have a

Proposition 3. The GLc-equivariant spectrum defines an equivalence
of categories

SpecGLc : (Rep(GLc)-Algebras)
Op → SchAffinoid

GLc

One sees that if X is a GLc-equivariant scheme and U ⊆ X/GLc

is an open subscheme, then there is a GLc-equivariant scheme Ũ =
(U,OŨ) where OŨ is the restriction of the stack OX . This determines
a morphism of GLc-equivariant schemes

Ũ → X .
We call Ũ an open subscheme of X .
On the other hand, for a GLc-equivariant scheme X , there is an obvi-

ous notion of a stack of ideals I of OX and we have a GLc-equivariant
scheme Z(I ) with underlying scheme having the zero locus Z(I∅,∅) of
I∅,∅ in X/GLc, and the structure stack is the restriction of OX/I . We
call Z(I ) aGLc-equivariant closed subscheme of X . AGLc-equivariant
scheme X where X/GLc is a single point will be called a GLc-orbit.
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On a GLc-equivariant scheme X = (X,OX ), we will also define its
categories of vector bundles and quasi-coherent stacks of modules (co-
herent in the case of local finiteness), denoted by

BunGLc(X ), QCohGLc(X ), CohGLc(X )

and consisting of stacks of projective modules and general modules
(resp. locally finite modules) in Rep(GLc), over S , see Subsection 3.3
below.

2.2.4. Affine GLc-equivariant schemes and relative semisimplification.
To define truly affine GLc-equivariant schemes, we need to first describe
a process of relative semisimplification for a GLc-equivariant algebra A,
which eliminates its possible “intrinsic non-affineness.” (This procedure
is related to the process of semisimplification of categories. We will
explain this in Subsection 3.4 below.)

Consider the class of ideals J ⊆ A in Rep(GLc) such that the pro-
jection A∅,∅ → (A/J )∅,∅ is an isomorphism. We claim the following

Proposition 4. There exists a unique maximal ideal JA that

(A/JA)∅,∅ = A∅,∅.

Proof. In Rep(GLc), we have unique (up to C×-multiple) direct sum-
mand inclusions

(8) Y∅,∅
η // Yλ,µ ⊗ Yµ,λ

Let A be an ACU algebra in Rep(GLc). A morphism in Rep(GLc)
α : Yλ,µ → A is called negligible if for every morphism β : Yµ,λ → A,
the composition

Y∅,∅
η // Yλ,µ ⊗ Yµ,λ

α⊗β // A⊗A µ // A

is 0. It follows immediately that the image of the sum of all negligible
morphisms forms an ideal in A, which is therefore equal to JA. □

We call JA the relative maximal ideal in A. We call the quotient
algebra

(9) Ã := A/JA

its relative semisimplification. (This can also be conisdered as the ter-
minal quotient algebra of A, factoring over A∅,∅.)
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Lemma 5. For a point f ∈ A∅,∅, localization by f preserves the relative
maximal ideal of A:

Jf−1A = f−1JA.

2.3. Other groups. There are a number of versions of interpolated
reductive algebraic groups known at this point, notably orthogonal
and symplectic groups [2]. Also algebraic groups over finite fields can
be interpolated [9, 10]. A generalized context of interpolating finite
groups using oligomorphic groups has be developed by N. Harman and
A. Snowden [7]. Interesting new examples arise [8, 11, 12, 13, 14].
Each of these contexts has, in principle, a theory analogous to the one
presented here. Furthermore, we have the usual group change functors.
We do not develop these theories here systematically, in part because
we will see that the GLc-equivariant context is in some sense universal
in that the other contexts can be discussed within it.

Roughly speaking, for H ⊆ GLc, an H-scheme X has an avatar
GLc ×H X in the category of GLc-schemes. One case which will get
some attention, however, is the inclusion

GLa1 × · · · ×GLan ⊆ GLc,

for a1 + · · ·+ an = c (see Section 7 below).

3. Vector bundles and (quasi-)coherent modules

In this section, we define for a GLc-equivariant algebra A the cat-
egories of projective A-modules and (quasi-)coherent A-modules. In
other words, the categories of vector bundles or (quasi-)coherent stacks
of modules on SpecGLc(A). The case of coherent modules applies when
it is locally finite. (See Subsection 3.3 below.) These notions readily
pass to general GLc-equivariant schemes.

As usual, while the category of vector bundles is always a C-linear ad-
ditive category with strong duality, it may not be an abelian category.
On the other hand, the category of (quasi-)coherent stacks of modules
is always a C-linear abelian tensor category, but it may not have du-
ality. We recall results of [13] and interpret them from this point of
view. We also discuss the significance of affine GLc-equivariant schemes
and semisimplification from this point of view, and define smooth GLc-
equivariant schemes (see Definition 9 below).
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3.1. A universal algebra approach to quasi-pre-Tannakian cat-
egories. In this subsection, we recall the universal algebra concept of
T-algebras. T-algebras are a universal algebra construction that pre-
cisely characterize the data of an additive C-linear category with asso-
ciative, commutative, unital tensor product, strong duality, and a basic
object X tensor-generating the category:

Definition 6. A T-algebra T consists of the data of

• a collection of functorial vector spaces T [S, T ] indexed by pairs
of finite sets S, T

• partial trace maps

τσ : T [S, T ] → T [S ∖ S ′, T ∖ T ′]

for a bijection σ : S ′ → T ′ for subsets S ′ ⊆ S, T ′ ⊆ T ,
• tensor product operations

π(S,T ),(S′,T ′) : T [S, T ]⊗ T [S ′, T ′] → T [S ⨿ S ′, T ⨿ T ′]

for disjoint S, S ′, T, T ′

• and unit data

1 ∈ T [∅, ∅], ι ∈ T [[1], [1]]

The axioms we require are that the tensor product operations are
associative, commutative, and unital with respect to 1, that the compo-
sition of two partial trace maps is the same as the single partial trace
map on the disjoint union of their two matchings, that tensor product
commutes with partial trace, and that the “composition operations” de-
fined from a combination of product and partial trace are associative
and unital with respect to ι (and it’s tensor powers).

Clearly, given a quasi-pre-Tannakian category C with basic object
X, we can define a T-algebra by putting, for finite sets S and T ,

TC [S, T ] = HomC (X
⊗S, X⊗T ).

For a bijection σ : S ′ → T ′, S ′ ⊆ S, T ′ ⊆ T , the partial trace operation
τσ is defined by considering the identification

HomC (X
⊗S, X⊗T ) ∼= HomC (X

⊗(S∖S′), (X∨)⊗S′ ⊗X⊗T )

and composing any element with the co-unit of duality⊗
s∈S′

(X∨)⊗{s} ⊗X⊗{σ(s)} → 1,

tensored with IdX⊗(T∖T ′) . Product operations are the tensor product,
and we take unit data 1 = Id1 and ι = IdX .
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On the other hand, given a T-algebra, a corresponding quasi-pre-
Tannakian category C (T ) can be produced by a similar construction
as the definition of Rep(GLc), by first constructing a diagrammatic
category C0(T ) with formal objects X⊗S⊗ (X∨)⊗T , and spaces of mor-
phisms

HomC (T )(T )(X⊗S1 ⊗ (X∨)⊗T1 , X⊗S2 ⊗ (X∨)⊗T2) =

T [S1 ⨿ T2, S2 ⨿ T1]

(as in the case of Rep(GLc), composition operations can be constructed
from the partial trace data).

3.2. A correspondence with GLc-equivariant algebras. In this
subsection, we recall a correspondence proved in [13] between the data
of a quasi-pre-Tannakian categories with basic object of dimension c
(encoded using T-algebras) andGLc-equivariant algebras. We interpret
this as a version of Tannakian duality for vector bundles over GLc-
equivariant schemes.

Definition 7. For a fixed c ∈ C×, a Tc-algebra is a T-algebra T where
in

T [∅, ∅]
(which is required to be a commutative, unital C-algebra by the gen-
eral T-algebra axioms), the partial trace of the composition unit ι ∈
T [[1], [1]] along the matching Id[1] : [1] → [1] is

τId[1](ι) = c · 1.

We find then that a Tc-algebra is equivalent to the data of a quasi-
pre-Tannakian category C which is generated by tensor powers of a
basic object X ∈ Obj(C ) such that the composition of the unit and
co-unit of duality

1 → X ⊗X∨ → 1

is c·1 ∈ EndC (1) (where 1 on the left hand side denotes the algebra unit
of EndC (1)). Note that we allow EndC (1) to be a general C-algebra.
Tc-algebras are still a universal algebra structure.

Let us denote the cateogry of ind-objects in Rep(GLc) by Rep(GLc).
The main result of [13] is the following

Theorem 8. There is an equivalence of categories

(10)
Rep(GLc)-Algebra → Tc-Algebra

A 7→ TA
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This equivalence sends Rep(GLc)-algebra A to the Tc algebra TA defined
by

TA[S, T ] = HomRep(GLc)(A, X⊗S ⊗ (X∨)⊗T )

(with the data of partial trace and product defined by compositions along
the system of morphisms in Rep(GLc) on X

⊗S ⊗ (X∨)⊗T arising from
composition with co-units and tensor product).

We consider Theorem 8 as a version of Tannakian duality, with the
category C (TA) being equivalent to the category of projective modules
over A, or vector bundles over SpecGLc(A).

3.3. The stacks of vector bundles and (quasi-)coherent mod-
ules. Let X be a GLc-equivariant scheme. Over an affinoid open sub-
set U ⊆ X , we define the category of vector bundles over U as the
quasi-pre-Tannakian category associated with the ACU algebra OU in
Rep(GLc). These categories glue into a stack which we call the stack
of vector bundles over X . We denote it by BunGLc(X ).

On the other hand, we can also assign to U as above the C-linear
tensor category OU -Mod of OU -modules in Rep(GLc). These categories
glue into a stack which we call the stack of quasi-coherent modules on
X. We denote it by QCohGLc(X ).

We call an object of Rep(GLc) locally finite if it contains only finitely
many copies of Yλ,µ for each λ, µ. We call a GLc-equivariant scheme X
locally finite if for U ⊆ X open affinoid, OU , considered as an object of
Rep(GLc), is locally finite.

If X is locally finite, then a coherent module over U ⊆ X open affinoid
is a locally finite OU -module in Rep(GLc). Coherent sheaves then also
form a stack over X , which we call the stack of coherent modules and
denote by CohGLc(X ).

Definition 9. For a locally finite GLc-equivariant scheme X we call X
smooth if for every affinoid open U ⊆ X , the category of global sections
of CohGLc(U) has strong duality.

3.4. Vector bundles and coherent sheaves over an affine or-
bit. We begin by considering the procedure of semisimplification on
quasi-pre-Tannakian categories and relate it to the definition of rela-
tive semisimplification on a GLc-equivariant algebra and affine GLc-
equivariant schemes.
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In a quasi-pre-Tannakian category C , recall that we form its semisim-
plification C by taking a quotient which identifies all negligible mor-
phisms with 0.

Suppose C is tensor-generated by a basic object X of dimension c,
and denote its defining Tc-algbera by TC and the corresponding GLc-
equivariant algebra by A. Then let us consider for every S, T , the
vector subspace of T [S, T ] consisting of negligible morphisms

(11) f : X⊗S → X⊗T

In order to consider semisimplification, let us unpack briefly the state-
ment that negligible morphisms form a tensor ideal in this notation,
and see how they are preserved by T-algebra structure: The partial
trace of a negligible morphism (11) is also negligible, since for any bi-
jection σ : S ′ → T ′ and any morphism g : X⊗(S∖S′) → X⊗(T∖T ′), we
have

tr(τσ(f) ◦ g) = tr(f ◦ (σ ⊗ g)) = 0,

where we consider σ as its action permuting tensor factors

X⊗S′ → X⊗T ′
.

Similarly the tensor product of (11) with any other morphism g is also
negligible, since for any morphism h, the trace tr((f⊗g)◦h) will always
be expressible as the trace of a composition of f with a new morphism
h′ (possibly multiplied by some constants arising from pieces of g that
remain “disjoint” from f).

Therefore, we have

(12) C = C (TA/J )

An important consequence of (4) is that for any maximal ideal m ⊂
A∅,∅, A contains a unique maximal ideal containing m (generated by
the relative maximal ideal JA, together with m). Quotients of A by
these ideals (giving fields) correspond to the true categorical semisim-
plifications in the quasi-pre-Tannakian categories of their categories of
modules in Rep(GLc).

In summary, while the process of relative semisimplification on a
GLc-equivariant algebra A quotients out the unique maximal ideal not
affecting the (∅, ∅)-degree, if one quotients out a true maximal ideal of
A, it corresponds to a semisimplification of the category

BunGLc(SpecGLc(A)).
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Further, e call a GLc-equivariant algebra A field-like, then, if it has
no non-zero ideals. In this case (the underlying topological space) of
SpecGLc(A) is a point. Recalling Theorem 5.10 of [13], we in fact have

Theorem 10. For a field-like GLc-equivariant algebra A, the following
are equivalent:

• There is an equivalence of categories

BunGLc(SpecGLc(A)) ∼= CohGLc(SpecGLc(A))

• The category CohGLc(SpecGLc(A)) has strong duality.

• The category BunGLc(SpecGLc(A)) is semisimple.

4. First Examples: Affine spaces, and an affine and
projective line orbits

The purpose of this section is to give two different kinds of examples
of GLc-equivariant schemes. Our first examples can be interpreted as
affine spaces. They arise naturally from a certain “free” construction
of categories, which we are sometimes referred to as “skein categories.”
We will describe the categories of vector bundles on affine spaces. We
will also look at a particular GLc-equivariant scheme whose scheme of
orbits is an affine line Spec(C[x]), parametrizing the orbitsGLc/(GLx×
GLc−x).

We will also show how to add a point at ∞, thus exhibiting a GLc-
equivariant scheme with scheme of orbits P1

C.
We note, however, that we do not have a general model of the pro-

jective space of a GLc-representation. This is related to the fact that
even for c = n ∈ N, the space of orbits of the projective space of
GLn-representation is usually not a scheme.

4.1. Affine spaces. Take an ACU algebra in Rep(GLc) of the form

(13) A[(mi, ni) | i ∈ I] := Sym(
⊕
i∈I

X⊗mi ⊗ (X∨)⊗ni),

for some chosen pairs (mi, ni) in N2
0. (The symmetric tensor algebra

corresponds to the commutativity of the tensor product.)
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Definition 11. Define the interpolated affine spaces on generators of
degree (mi, ni), for i ∈ I by

(14) A{(mi,ni)|i∈I} := SpecGLc(A[(mi, ni)|i ∈ I]).

(Note that the spaces A{(mi,ni)|i∈I} are indeed affine GLc-equivariant
schemes, since any relation on the free variables corresponding in (13)
to the coefficients of the summand Sym1(X⊗mi ⊗ (X∨)⊗ni) can be
traced down to the (∅, ∅)-degree.)

We can describe the category of vector bundles on A{(mi,ni)|i∈I}. Let
φ : I → N2

0 denote the function φ(i) = (mi, ni).
By an (M,N)-(I, φ)-skein, we shall mean an oriented graph whose

vertices are labelled by I, where each vertex with label i has mi or-
dered incoming edges and ni ordered outgoing edges, with a total of
M ordered open incoming edges and N ordered outgoing edges. A
(0, 0)-(I, φ)-skein will also be called a closed (I, φ)-skein.

Proposition 12. Let T be the T-algebra defining the category of vector
bundles on A{(mi,ni)|i∈I}. Then T [[M ], [N ]] is naturally identified with
the free C-vector space on the set of (M,N)-(I, φ)-skeins.

□

Corollary 13. The C-algebra (A[(mi, ni) | i ∈ I])∅,∅ is the polynomial

algebra on closed connected (I, φ)-skein.

□

The most basic example is

A[(1, 1)] = Sym(X ⊗X∨),

in which case, we find that

(15) (A[(1, 1)])∅,∅ ∼= C[x1, x2, x3, . . . ],

(since the (∅, ∅)-part ofA[(1, 1)] sees generators corresponding to skeins,
which are of the form of the trace of some n successive compositions
of the non-trivial degree (1, 1)-morphism in A-modules, which we rep-
resent by xn in (15)). Therefore, the underlying topological space of
SpecGLc(A[(1, 1)]) is an infinite-dimensional affine space.

Of course, the category defined by a free generator in such a way
is not locally finite. One must add some relations on the variables,
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i.e. consider an affine subvariety. In the general case of A{(mi,ni)|i∈I},
this can be difficult to approach, but in the case of a single “degree 1”
generator as in A[(1, 1)], it can be fully discussed, and will be in the
following subsections.

4.2. An example of an affine line of orbits. In this subsection, we
consider two subvarieties of A(1,1) which can be considered to model a
(non-trivial) “affine point” and an “affine line” made up of these points.
Specifically, we will find ideals of relations

I line ⊆ Ipoint
a ⊆ A[(1, 1)]

(where a is a fixed constant) such that the underlying vector spaces of

SpecGLc(A[(1, 1)]/Ipoint
a ) ⊆ SpecGLc(A[(1, 1)]/I line)

are isomorphic to Spec(C) and A1
C, respectively. We will design these

relations so that the whole category of vector bundles on the “affine
point” is equivalent to

(16) BunGLc(SpecGLc(A[(1, 1)]/Ipoint
a )) ∼= Rep(GLa ×GLc−a)

(see Subsection 3.4 for a more detailed discussion of why such a con-
dition on vector bundles corresponds to being a point). In the “affine
line,” we will have that at a closed point (x− a) ∈ A1

C, the category of
stalks of vector bundles there is equivalent to (16).

We begin with defining the “affine point” relations Ipoint
a . Fix a

constant a ∈ C. We will give an example of an ideal I ⊆ A[(1, 1)]
whose category of vector bundles is equivalent to

Rep(GLa ×GLc−a).

In A[(1, 1)] =
⊕

Symn(X⊗X∨), denote by y the (coefficient of the)

degree n = 1 term X⊗X∨ (representing in the category of vector bun-

dles on A(1,1), a non-trivial morphism on the basic object). Denoting
the algebra operation of A[(1, 1)] by π, we have that

y π y ∈ Sym2(X ⊗X∨).

The simplest way to get an ideal I such that

BunGLc(SpecGLc(A[(1, 1)]/I)) ∼= Rep(GLa ×GLc−a)

is to identify the endomorphism determined by y of the basic vector
bundle to be an idempotent of dimension a. Both of these relations

y ◦ y = y, and tr(y) = a,
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are encoded by relations on the coefficients of decompositions of Sym1(X⊗
X∨) in Sym2(X ⊗X∨).

Recall that

(17) Sym1(X ⊗X∨) = X ⊗X∨ = Y1,1 ⊕ 1.

Since there are no terms of higher multiplicities in (17), there is no
ambiguity to writing (y)1,1 and (y)∅,∅ for the coefficients of Y1,1 and 1.
(Note that the coefficient of the whole summand (17), is by definition y,
so we automatically have that (y)1,1 = y−(y)∅,∅.) To encode tr(y) = a,
we put the element

(18) (y)∅,∅ − a ∈ Ipoint
a

in the relation ideal.

To encode y ◦ y = y, we need to involve the degree 2 product y π y.
Recall that

(19) Sym2(X ⊗X∨) = (Y(2),(2) ⊕ Y(12),(12))⊕ (Y1,1 ⊕ Y1,1)⊕ (1⊕ 1).

From the point of view of the category of vector bundles on A(1,1), the
element y π y and its coefficients in the summands (19) describe all
possible “partial traces” and permutation actions on y ⊗ y. One can
choose to perform an empty partial trace, recovering There are two
different options on how to do a partial trace on y ⊗ y to get a on
an endomorphism of a single tensor factor of the basic object in the
category of vector bundles of A(1,1): matching the source coordinate
of a copy of y with its own target coordinate, or matching the source
coordinate of a copy y with the other copy’s target coordinate. These
two options give

(20) tr(y) · y, or y ◦ y,

respectively. Finally, there are two options to take a “full trace” of
y ⊗ y, giving

(21) tr(y)2, or tr(y ◦ y).

From this point of view, we denote the coefficients of the terms

(y π y)(2),(2), (y π y)(12),(12), (y π y)
Id
1,1, (y π y)

σ
1,1, (y π y)

Id
∅,∅, (y π y)

σ
∅,∅

with the Id and σ labels in the summands with multiplicity 2, corre-
sponding to (20) and (21), respectively (corresponding from the vector
bundle perspective to applying a trace to y ⊗ y or σ ◦ (y ⊗ y)). For
example, y ◦ y is represented by

(y π y)σ1,1 + (y π y)σ∅,∅.
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Therefore, the condition that y is an idempotent can be expressed by
the relation

(22) (y π y)σ1,1 + (y π y)σ∅,∅ − y

(note that once we have, also that once we have a relation, it generates
all partial traces, e.g. in this case, (22) generates the relation that
tr(y ◦ y) = tr(y), i.e.

(23) (y π y)σ∅,∅ − (y)∅,∅).

In summary, to define an “affine point”

Spec(A[(1, 1)]/Ipoint
a ),

we put
Ipoint
a =

((y)∅,∅ − a, (y π y)σ1,1 + (y π y)σ∅,∅ − y).

However, we could also consider the GLc-equivariant algebra given
by only imposing (22) in A[(1, 1)], and not (18). Take

I line = ((y π y)σ1,1 + (y π y)σ∅,∅ − y).

Definition 14. We call the affine subvariety

SpecGLc(A[(1, 1)]/I line) ⊆ A(1,1)

the true interpolated affine line.

We will see in the next section other kinds of “more degenerate”
GLc-equivariant affine subvarieties of A(1,1) which can be interpreted
as affine lines.

Lemma 15. The scheme of orbits of the true interpolated affine line

(Spec(A[(1, 1)]/I line))/GLc

is isomorphic to to A1
C.

Proof. The relation (22) generates other elements in I line obtained tak-
ing a product with other elements of A[(1, 1)] and applying any partial

trace. For example, the relation that (in the vector bundle context)
tr(y ◦ y) = tr(y) comes from applying a trace to (22) to get (23). Sim-
ilarly, by taking a product and (switched) trace with copies of y, we
find that for every n, (22) generates the relation forcing

tr(y◦n) = tr(y)
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(represented in A[(1, 1)] by (y)∅,∅).

In (15), recalling that xn represents tr(y◦n), we therefore find that

(A[(1, 1)]/I line)∅,∅ ∼= C[(y)∅,∅].

□

4.3. A projective line of orbits. One may observe now that we can
make many example of affine subvarieties of the interpolated affine
spaces, for example modelling affine curves, surfaces, etc. The purpose
of this subsection is to show how we may. For example, here we will
construct the “true interpolated projective line” by two (true) inter-
polated affine lines to obtain a GLc-equivariant scheme such that the
underlying topological space is isomorphic to the projective line P1

C.

First, let us consider two copies of the interpolated affine space A(1,1)

generated by y1, y2. The true interpolated projective line is defined as
the pushforward union of the two copies of the true interpolated affine
line along the relation that

(y1)∅,∅ · (y2)∅,∅ = 1 ∈ C.

5. A closer look at A(1,1)

In this section, we give a classification of the categories of vector
bundles over the closed orbits in A(1,1). We also give a description of
its corresponding Tc-algebra in the case when it is semisimple.

5.1. Closed orbits of A(1,1). The purpose of this section is to prove
the following

Proposition 16. Suppose J ⊆ A[(1, 1)] is a maximal ideal. Then one
of the following occurs:

(1) The closed orbit Spec(A[(1, 1)]/J ) is not locally finite.

(2) There exist some a1, . . . ar ∈ C× such that a1+ · · ·+ ar = c and

BunGLc(Spec(A[(1, 1)]/J )) ∼= Rep(GLa1 × · · · ×GLar).

(3) The category BunGLc(Spec(A[(1, 1)]/J )) is a locally finite quasi-
pre-Tannakian category which is not semisimple.
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Comment: Note that in case (2), the closed orbit Spec(A[(1, 1)]/J )

is smooth, and in case (3) it is not. The existence of non-smooth affine
orbits is a key feature of the theory of GLc-equivariant schemes. In the
language of categories, this phenomenon was first noticed by P. Deligne
in [2], Subsection 5.8.

Proof. Recall (15), with xn representing the unique connected closed
skein with n vertices (in this case, we only have one kind of vertex,
which has one input and one output edge). In this case, the connected
skeins with one total incoming edge and one total outgoing edge are
all also determined by their number of vertices. Denote the element of
(A[(1, 1))1,1 corresponding to the connected skein with one open input
edge and one open outgoing edge which has n vertices by yn. We have
that A[(1, 1)]1,1 is then the free module over A[(1, 1)]∅,∅ generated by
y1, y2, . . . , i.e.

(24) (A[(1, 1)])1,1 = C[x1, x2, . . . ]{y1, y2, . . . }.
We have

(25) tr(yn) = xn, yn ◦ ym = yn+m

(where, again, from the point of view of A[(1, 1)], a trace is interpreted

as a (∅, ∅)-part coefficient of an element and composition corresponds
to the coefficient of a certain summand X ⊗X∨ of Sym2(X ⊗X∨)).

Now let us fix a maximal ideal J ⊆ A[(1, 1)] (in Rep(GLc)). Then

the (∅, ∅)-part
J∅,∅ ⊆ A[(1, 1)]∅,∅ = C[x1, x2, . . . ]

forms a classical maximal ideal. Therefore, there exist some constants
αn for n ∈ N such that J∅,∅ is generated by xn − αn

J∅,∅ = (x1 − α1, x2 − α2, . . . ),

giving
A[(1, 1)]∅,∅/J∅,∅ = C.

Now, for every i ∈ N, consider a N0-tuple

Ai = (αi, αi+1, αi+2, . . . ),

whose nth coordinate for n ∈ N is

(Ai)n = αi+n = tr(yn ◦ yi)
(interpreting y0 as the identity morphism on the basic object of the cat-
egory of vector bundles). Linear relations between the N0-tuples Ai are
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equivalent to linear relations between the yi themselves in A[(1, 1)]/J ,
since a morphism is determined by its trace with every other morphism
after semisimplification.

If the N0-tuples Ai are all linearly independent, meaning that after
semisimplification, all the yi are independent, then

SpecGLc(A[(1, 1)]/J )

is not locally finite (since, in particular, A[(1, 1)]/J contains a new Y1,1
summand for each yi). This gives scenario (1).

Suppose that the Ai are linearly dependent, and let r be minimal
such that Ar+1 can be expressed as a linear combination

Ar+1 = brAr + br−1Ar−1 + · · ·+ b1A1

for some bi ∈ C. In fact, this gives a linear recurrence relation

Ar+k = brAr+k−1 + br−1Ar+k−2 + · · ·+ b1Ak

for k ∈ N (by shifting). On yi’s, this gives

yr+1 = bryr + br−1yr−1 + · · ·+ b1y1,

which, by composing with yk−1 for k ∈ N recalling (25), gives

(26) yr+k = bryr+k−1 + br−1yr+k−2 + · · ·+ b1yk.

Now we can consider

(A[(1, 1)]/J )1,1 = C{y1, . . . yr}.

In fact, we can identify the graded algebra of all of the ((n), (n))-pieces
of A[(1, 1)]/J with respect to tensor product with the polynomial C-
algebra on yi’s (graded by degree)⊕

n∈N

(A[(1, 1)]/J )(n),(n) = C[y1, . . . , yr]

where multiplication on the right hand side of yi, yj corresponds to
placing yi and yj next to each other to obtain a skein with more (in
this case two) open incoming and outgoing edges.
The linear recurrsion relation (26) has characteristic polynomial

(27) λr − brλ
r−1 − · · · − b1.

If we have distinct eigenvalues (i.e. roots of (27)) λ1, . . . , λr, then we
can write

yk = a1λ
k
1 + . . . anλ

k
n
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for some a1, . . . , ar ∈ C× (they must be non-zero, or else r was not
minimal). Plugging in k = 0 gives that a1 + · · ·+ ar = c. We get

BunGLc(Spec(A[(1, 1)]/J )) ∼= Rep(GLa1 × · · · ×GLar),

giving scenario (2).

Finally, in the case where we have degenerate, non-distinct eigen-
values, this gives that BunGLc(Spec(A[(1, 1)]/J )) is a locally finite

quasi-pre-Tannakian category which is not semisimple (see Subsection
5.8 of [2]).

□

5.2. The Tc-algebras of semisimple closed orbits of A(1,1). In
this section, we describe a Tc-algebra T GL

(a1,...,ar)
corresponding to the

category Rep(GLa1 × · · · ×GLar):

Definition 17. For an r-tuple (a1, . . . , ar), define the T-algebra

T GL
(a1,...,ar)

by the following collection of data:

• For finite sets S, T , take T GL
(a1,...,ar)

[S, T ] to be 0 if |S| ≠ |T |.
When |S| = |T |, take T GL

(a1,...,ar)
[S, T ] to be the free vector space

with basis elements corresponding to the data of decompositions
of S and T into r disjoint (not necessarily nonempty) subsets

S =
r∐

i=1

Si, T =
r∐

i=1

Ti

and bijections

ϕi : Si → Ti

• Consider subsets S ′ ⊆ S, T ′ ⊆ T with a bijection

σ : S ′ → T ′.

Then, we define the partial trace operation

τσ : T GL
(a1,...,ar)

[S, T ] → T GL
(a1,...,ar)

[S ∖ S ′, T ∖ T ′]

by sending a basis element as described above of the source to 0
unless for every i ∈ [r],

σ(Si ∩ S ′) = Ti ∩ T ′.
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In this case, the image is the basis element of the target of τσ
corresponding to taking

(S ∖ S ′)i = Si ∖ S ′, (T ∖ T ′)i = Ti ∖ T ′,

and composing repeatedly the ϕi’s with σ−1 as is possible, and
multiplying by factors (see the diagrammatic description and
Figure 1 below for examples).

• For disjoint S, T, S ′, T ′, tensor product operations

T GL
(a1,...,ar)

[S, T ]⊗ T GL
(a1,...,ar)

[S ′, T ′] → T GL
(a1,...,ar)

[S ⨿ S ′, T ⨿ T ′]

arise by applying disjoint union to pairs of basis data for [S, T ]
and [S ′, T ′].

• The tensor unit 1 is precisely the single basis element in the
above description for S = ∅, T = ∅. The composition unit ι
corresponding to the identity on the basic object is the sum over
i ∈ [r] of the basis elemenets of T GL

(a1,...,ar)
[[1], [1]] corresponding

to choosing

Si = [1], Ti = [1], ϕi = Id[1],

and all other sets to be empty.

The generators of the vector spaces T GL
(a1,...,ar)

[S, T ] for a pair of finite
sets S, T may be graphically represented by drawing two columns of
dots, with the left and right columns corresponding to S and T , respec-
tively, and the bijections ϕi drawn as lines between the two columns,
with color i indicating the index. Up to r colors may therefore be in-
volved. To apply a partial trace τσ to this data, we draw uncolored
lines along σ between the two columns. The trace is 0 unless uncolored
lines connect on both ends to lines of the same color. We assign the un-
colored lines the color they connect to on both sides, otherwise. Then
we compose each color of lines as possible, and multipy by a factor of
ai when a loop of color i appears in the diagram.

Note in the case of r = 1, this is exactly the description given by P.
Deligne in [2], Section of the category Rep(GLc).
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τ[2] 7→[2]( )
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=
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Figure 1. Two examples of applying partial trace to a
generator of T GL

(a1,a2)
[[3], [3]]. The two colors

corresponding to 1, 2 are represented as solid and
dashed lines, respectively. The points are labelled as
their corresponing elements in [3] to avoid confusion.

Colorless lines are represented by thick lines.

6. Interpolated flag varieties

We will now introduce a class of examples of non-affine smooth GLc-
equivariant orbits, which can be interpreted as interpolated flag vari-
eties (i.e. Schubert varieties of standard parabolics of GLc).

In this section, we will introduce these GLc-obrits by means of their
associated Tc-algebras, and will prove their smoothness. In the next
section, we will justify their geometric interpretations.

6.1. The category of representations of an interpolated para-
bolic subgroup of GLc. Recalling Definition 17 which described the
representation category Rep(GLa1 × · · · ×GLar) of the Levi subgroup,
define the T-algebra corresponding to Rep(PGL(a1, . . . , ar)) is defined
as follows:

Definition 18. For an r-tuple (a1, . . . , ar), define the T-algebra

T P
(a1,...,ar)

by the following collection of data:

• For finite sets S, T , take T P
(a1,...,ar)

[S, T ] to be 0 if |S| ̸= |T |.
When |S| = |T |, take T(a1,...,ar)[S, T ] to be the free vector space
with basis elements corresponding to the data of decompositions
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of S and T into r+
(
r
2

)
(possibly empty) disjoint subsets indexed

by subsets of [r] of cardinality ≤ 2

(28)

S =
r∐

i=1

Si ⨿
∐

{i<j}⊆[r]

S{i<j}

T =
r∐

i=1

Ti ⨿
∐

{i<j}⊆[r]

T{i<j}

and bijections

(29) ϕi : Si → Ti, ϕ{i<j} : S{i<j} → T{i<j}.

• Consider subsets S ′ ⊆ S, T ′ ⊆ T with a bijection

σ : S ′ → T ′.

Then, we define the partial trace operation

τσ : T P
(a1,...,ar)

[S, T ] → T P
(a1,...,ar)

[S ∖ S ′, T ∖ T ′]

by sending a basis element of the source, corresponding to some
choice of decomposition (28) of S, T and bijections (29) to 0
unless for every i ∈ [r],

σ−1(T ′ ∩ Ti) ⊆ Si ⨿

(
r∐

j=i+1

S{i<j}

)
.

In this case, the basis element is sent to the basis element of
the target of τσ corresponding to as in the GL case, deleting the
elements of S ′ and T ′ in each set Si, Ti, and similarly in S{i<j},
T{i<j}, and defining new bijections by composing the original
choices of ϕi, ϕ{i<j} with σ−1 as long as possible, with final
indexing given by taking the smallest (resp. largest) imin (resp.
jmax) appearing in the composition when ϕ{i<j} are involved,
multiplied by the coefficient

ca1,...,ar(σ|∐i Si∩σ−1Ti
),

corresponding to the restriction of σ mapping a subset of each
Si to a subset of Ti, arising in the T-algebra for

Rep(GLa1 × · · · ×GLar).

(A diagrammatic description is described in the below remark.)
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Figure 2. An example of a basis element of
T P
(a1,a2,a3)

[[5], [5]] where the colors 1, 2, 3 are represented
by solid, dashed, and dotted lines, respectively. In this
case, the rules can be considered to force any line to

remain the same or become “less solid” in its right half

• As in the description of T GL
(a1,...,ar)

, for disjoint S, T, S ′, T ′, tensor
product operations arise by applying disjoint union to pairs of
basis data for [S, T ] and [S ′, T ′].

• The unit data is the same as in T GL
(a1,...,ar)

with data indexed by
pairs taked to be empty.

Remarks: 1. First, note that the trace of the composition unit ι ∈
T P
(a1,...,ar)

[[1], [1]] along Id[1] : [1] → [1] gives, as in T GL
(a1,...,ar)

,

(a1 + · · ·+ ar) · 1 ∈ T P
(a1,...,ar)

[∅, ∅] ∼= C

2. There is a natural diagrammatic description of the basis elements
of T P

(a1,...,ar)
[S, T ], adding to the diagrammatic description in the case

of T GL
(a1,...,ar)

. Again, we draw two columns of points corresponding to S
and T on the left and right, respectively. We draw lines between the
two columns in i different colors corresponding to the bijections ϕi. To
represent the bijections ϕ{i<j}, we draw lines which are half-colored i
on the left and half-colored j on the right. For example, an example
when r = 3 is pictured in Figure 2 below.

In this diagrammatic description, trace can be described diagram-
matically by drawing additional (a priori colorless) lines corresponding
to σ between the two columns of dots, and then attempting to compose
where possible. The answer is 0 if a colorless line connects the ends of
two lines with different colors. Otherwise, a colorless line assumes the
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single color it immediately connects to on both sides. In a multicolored
composition, colors in the middle (not connecting to a dot on the left
or right that survives in the trace) are ignored, and the composition
only remembers the data of the beginning and ending color in its in-
dex. Note that by these rules, no multicolored loops can occur. As in
Rep(GLa1 ×· · ·×GLar), when a loop of color i occurs, it is deleted and
becomes a coefficient factor of ai. An example of applying a partial
trace to the generator pictured in Figure 2 is shown in Figure 3 below.

Theorem 19. The category Rep(PGL(a1, . . . , ar)) is an abelian cate-
gory with strong duality. There is a tensor functor

Rep(GLa1 × · · · ×GLar) → Rep(PGL(a1, . . . , ar))

such that the images of the simple objects of Rep(GLa1 × · · · × GLar)
are precisely the simple objects of Rep(PGL(a1, . . . , ar)). In fact, the
semisimplification of Rep(PGL(a1, . . . , ar) again recovers

Rep(PGL(a1, . . . , ar)) ∼= Rep(GLa1 × · · · ×GLar).

Comment: In particular, applying SpecGLc to the GLc-equivariant
algebra corresponding to the Tc-algebra T P

(a1,...,ar)
gives a smooth GLc-

orbit which is not affine (though it is, by definition, affinoid). This
GLc-orbit, which we denote by GLc/PGL(a1, . . . , ar), is the interpolated
flag variety.

6.2. The proof of Theorem 19, and restriction functors. In this
subsection, we prove Theorem 19. We will also describe the restriction
functors

Rep(GLa1+···+ar) → Rep(PGL(a1, . . . , ar)) → Rep(GLa1 × · · · ×GLar).

Proof of Theorem 19. We begin with describing the simple objects of

Rep(PGL(a1, . . . , ar)).

First, we will define a decreasing filtration on morphisms capturing
“tensor degree.” By the T-algebra description given in the previous
section, it suffices to define a filtration on the vector spaces

(30) T P
(a1,...,ar)

[S, T ]

for every choice of finite sets S, T .
For a basis elements of (30) corresponding to a choice of data

D := (Si, Ti, S{i<j}, T{i<j}, ϕi, ϕ{i<j} | i, j ∈ [r]),
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1

2
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3

4

3

1

a2·

Step 3

Figure 3. Applying the trace along the bijection
pairing σ : {1, 2, 5} → {2, 4, 5} by 5 7→ 5, 2 7→ 4 to the
generator in Figure 2. We now label the dots with the
elements of [5] they correspond to, to avoid confusion.
In Step 1, we draw “colorless lines” in the diagram,
which due to graphic constraints are represented by
thick lines. In Step 2, we assign the forced colors to

these lines. In Step 3, we complete the composition and
multiply by the arising coefficient.

consider the number, for i ∈ [r]

N(D)i = |
r∐

j=i+1

S{i<j}| − |
i−1∐
k=1

S{k<i}|.

(This measures the difference of “inputs” of color i and “outputs” of
color i in the diagrammatic representation of D.) We may then define
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a well-ordering on all basis elements D of vector spaces (30) from the
lexicographic ordering on the r-tuples

(N(D)1, N(D)2, . . . , N(D)r) ∈ Zr.

We then define a filtration

F(T P
(a1,...,ar)

[S, T ])

graded by this ordering.
Since the ordering is additive with respect to the tensor product on

the T-algebra, the filtration is as well. Let us consider the associated
graded T-algebra

GrF(T P
(a1,...,ar)

).

The simple objects of Rep(PGL(a1, . . . , ar)) will be precisely the simple
objects of the category defined by this new T-algebra.

However, the associated graded T-algebra obtained from Fi precisely
recovers the T-algebra

T GL
(a1,...,ar)

,

since the degree of dataD only changes when bicolored lines are present
(bijections ϕi : Si → Ti do not contribute). Hence, the simple objects
of the two categories are the same.

Further, note that since Rep(GLa1 × · · · × GLar) is a semisimple
category with the same simple objects as, the quotient functor of T-
algberas

T P
(a1,...,ar)

→ GrF(T P
(a1,...,ar)

)

which gives a quotient functor of tensor categories

Rep(PGL(a1, . . . , ar)) → Rep(GLa1 × · · · ×GLar),

in fact describes a semisimplification functor. Hence, Rep(PGL(a1, . . . , ar))
must have originally been abelian (and therefore pre-Tannakian) cate-
gory.

□

Now consider the restriction functor

(31) Rep(GLa1+···+ar) → Rep(GLa1 × · · · ×GLar).

We would like to understand how this functor (31) factors through the
intermediate category Rep(PGL(a1, . . . , ar)). Of course, these functors
can be understood by the above Theorem, since as previously discussed,

Rep(PGL(a1, . . . , ar)) → Rep(GLa1 × · · · ×GLar)
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can be expressed as the semisimplification functor, sending simple ob-
jects to themselves, and the functor

Rep(GLa1+···+ar) → Rep(PGL(a1, . . . , ar)

arises, for example, from the universal property of interpolations of the
general linear group, since the basic object of Rep(PGL(a1, . . . , ar)) has
dimension a1 + · · ·+ ar.

On the level of T-algebras, the functor (31) occurs by considering a
bijection [n] → [n] in T GL

(a1+···+ar)
[[n], [n]] (labelled a single color), to the

sum of all choices of basis elements in T GL
(a1,...,ar)

[[n], [n]] over all choices

of possible colorings of the bijection in r colors. To get to T P
(a1,...,ar)

instead, we instead sum over all choices of replacing every line of a
bijection [n] → [n] by a line colored a single (one of r) colors, or a pair
of colors (beginning with the color corresponding to the lower index
i ∈ [r]).

7. Geometric interpretation; interpolated equivariant
group schemes

In this section, we will give some geometric motivation for the defi-
nitions made in the last section, which also motivate the definition of
interpolated equivariant group schemes.

7.1. Classical standard parabolics. We begin with recalling the
standard parabolics of GLn(C), n ∈ N.

Let us begin with the parabolic subgroup PGL(a, b) of GLn(C) with
Levi subgroupGLa(C)×GLb(C), for a, b ∈ N with a+b = n. We use the
convention defining PGL(a, b) to be the subgroup of GLa+b consisting
of matricies of the form (

A M
0 B

)
where A ∈ GLa(C), B ∈ GLb(C), and M is a general a × b matrix.
Specifically, we may consider the space of a× b matrices as the tensor
product

Xa ⊗X∨
b

where Xa = Ca, Xb = Cb are the standard representations of the
general linear groups. In fact, then we may describe the parabolic by

PGL(a, b) ∼= (GLa ×GLb)⋉ (Xa ⊗X∨
b )
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with semidirect product along the natural action of GLa, GLb on Xa,
Xb (transpose for X∨

b ).

Now, for the case of a general number of blocks r, fix an r-tuple
(a1, . . . , ar) of constants ai ∈ N such tht a1 + · · ·+ ar = n.

Similarly as for r = 2, for a general r-tuple (a1, . . . , ar) we define the
parabolic PGL(a1, . . . , ar) to be the subgroup of GLn(C) consisting on
matricies of the form

(32)


A1 M{1<2} M{1<3} . . . M{1<r}
0 A2 M{2<3} . . . M{2<r}

0 0 A3 . . .
...

0 0 0 . . . Ar


where Ai ∈ GLai(C) and for each pair {i < j} ⊆ [r],M{i<j} is a general
ai × aj matrix. Hence, again writing Xai = Cai , we have

(33) PGL(a1, . . . , ar) ∼= (GLa1 × · · · ×GLar)⋉ (
⊕

{i<j}⊆[r]

Xai ⊗X∨
aj
).

In this semidirect product, the sum of Xai ⊗ X∨
aj
, (i.e. the normal

subgroup consisting of matrices (32) where each Ai = Iai is the identity
matrix), is the unipotent radical of PGL(a1, . . . , ar).

7.2. The interpolated theory. Now we will consider r-tuples

(a1, . . . , ar)

of ai ∈ C∖Z. In this subsection, we will freely operate in the category
of GLa1×· · ·×GLar -equivariant schemes, which is introduced following
the same steps as for r = 1 (as we mentioned in Subsection 2.3).

As above, we want to think of the parabolic as a semidirect product
of a Levi subgroup GLa1 × · · · ×GLar with a unipotent radical N

(34) PGL(a1, . . . , ar) = (GLa1 × · · · ×GLar)⋉N.

We interpret this by considering N as a GLa1 × · · ·×GLar-equivariant
affine group scheme:

Definition 20. We define a GLa1×· · ·×GLar -equivariant affine group
scheme to be SpecGLa1×···×GLar

(A) for an ACU algebra object

A ∈ Obj(Rep(GLa1 × · · · ×GLar))
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with the additional data of coproduct, co-unit, and conjugation

ψ : A → A⊗A
ϵ : A → 1

γ : A → A
satisfying co-associativity, co-unitality, and co-inversion.

For a GLa1 × · · · ×GLar-equivariant group scheme

G = SpecGLa1×···×GLar
(A),

we define the category of G-representations

RepGLa1×···×GLar
(G)

to be the category of A-comodules in Rep(GLa1 × · · · × GLar), i.e.
objects M with a co-multiplication morphism

µ :M →M ⊗ A

(satisfying co-associativity and co-unitality). If G is locally finite, we
can define locally finite G-modules to be A-comodules of finite type
(again defined by containing only finitely many copies of each simple
object in Rep(GLa1 × · · · ×GLar)).

Example: The unipotent radical. In Rep(GLa1 × · · · × GLar),
consider the object Xai which is the summand of the basic object of
dimension ai, corresponding to the basic object of Rep(GLai). Consider
the algebra

A(a1,...,ar) :=

Sym

 ⊕
{i<j}⊆[r]

Xai ⊗X∨
aj

 ∼=
⊗

{i<j}⊆[r]

Sym(Xai ⊗X∨
aj
)

in Rep(GLa1 × · · · × GLar). It has a coproduct operation defined by,
for each i < j,

ψ : Xai ⊗X∨
aj

→
⊕
i≤s≤j

(Xai ⊗X∨
as)⊗ (Xas ⊗X∨

aj
),

coming from the units of duality for each X∨
as . (A unique conjugation

and counit exist.)

Theorem 21. The category Rep(PGL(a1, . . . , ar)) is equivalent to the
category of representations

RepGLa1×···×GLar
(SpecGLa1×···×GLar

(A(a1,...,ar)))
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of the affine group scheme SpecGLa1×···×GLar
(A(a1,...,ar)).

□

Comment: The above example suggests that in the notion of a stack
in the definition of GLc-equivariant schemes, the automorphism groups
could also be interpolated. As further evidence, note that one can, in
fact, give an interpolated interpretation of the absolute Weyl group of
GLc as the interpolated symmetric group Σc, and the normalizer of the
maximal torus as Σc ≀Gm. This will be done in future work.
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