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Abstract. In [12], we considered Howe duality over finite fields
for a certain range of type I reductive dual pairs with “small”
orthogonal groups. In this note, we prove a version of Howe duality
for an opposite range of type I reductive dual pairs consisting of
a symplectic group and an orthogonal group on a space with a
maximal isotropic subspace of dimension greater than or equal to
that of the symplectic space.

1. Introduction

For a symplectic vector space V over a field k, given a non-trivial
additive character

Fq → C,

one may consider the associated oscillator or Weil-Shale representation
ω of the symplectic group Sp(V) (when, for example, k = C or Fq), or
the metaplectic group Mp(V) (when k = R or Qp). The question of
Howe duality asks about the decomposition of the restriction of ω to
the product of a reductive dual pair of subgroups of Sp(V) or Mp(V).
Denote this reductive dual pair by G,H. Consider the decomposition

(1) ResG×H(ω) =
⊕

ρ∈Ĝ,π∈Ĥ

µ(ρ, π) · (ρ⊗ π)

for some multiplicities

µ : Ĝ× Ĥ → N0.

(In this note, for a group G, Ĝ denotes its Pontrjagin dual.)
For fields k = C,R, or Qp, there in fact exist subcollections SG

and SH of the irreducible representations of G and H, and a bijective
correspondence (called the theta correspondence)

θ : SG → SH ,
1
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such that

(2)

ResG×H(ω) =⊕
ρ∈SG

ρ⊗ θ(ρ) =
⊕
π∈SH

θ−1(π)⊗ π.

This result, referred to as the Howe duality conjecture, is the culmi-
nation of a long history of work, (see, for example, [11] for the case
of k = R and [4] for k = Qp), and has many deep applications in
arithmetic geometry, number theory, and representation theory. It is
an interesting and difficult question to find its appropriate analogue in
the case when k is a finite field. This case, where k = Fq (for q a power
of an odd prime), is the main topic of the present note.

It can be calculated that the exact statement (2) does not hold for
a finite field k, due to the large isotropic subspace contained in any
orthogonal space over a finite field Fq. However, many meaningful
patterns regarding which pairs ρ⊗ π appear in the decomposition (1)
have been observed and studied, see for example [1, 2, 3, 6, 7, 13, 14, 16].

In [12], we prove a version of Howe duality, fully decomposing the re-
stricted oscillator representation, for a certain range of type I reductive
dual pairs where the dimension of the involved symplectic space is at
least double the dimension of the orthogonal space. We shall refer to
this range of reductive dual pairs as the “symplectic stable range.” We
found that the restriction of the oscillator representation to a product
of such a reductive dual pair of subgroups of a symplectic group de-
composes into “levels” corresponding to the the sub-orthogonal groups
obtainable from removing hyperbolic summands from the original sym-
metric bilinear form. At the top level (corresponding to removing no
hyperbolic summands), the appearing summand is a direct sum of ten-
sor product of each irreducible representation of the orthogonal group
with its eta correspondence, which was observed by S. Gurevich and
R. Howe to be “highest rank,” in a certain sense (see [6, 7] for more
details). The summand at level k consists of tensor products of the eta
correspondence applied to each irreducible representation of the cor-
responding lower orthogonal group, tensored with its appropriate par-
abolic induction to a representation of the original orthogonal group
(twisted by a certain character arising from the restriction of an oscil-
lator representation to the general linear group).

In this follow-up note, we prove a symmetrical result for the range of
reductive dual pairs where the dimension of the maximal isotropic sub-
space of the orthogonal space is greater than or equal to the dimension
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of the symplectic space, which we call the “orthogonal stable range.”
Specifically, we find a correspondence identifying irreducible represen-
tations of the symplectic groups with levels of irreducible representa-
tions of an orthogonal group with which they fall into the orthogonal
stable range.

In the remaining range of reductive dual pairs where neither sym-
plectic nor orthogonal space has dimension less than or equal to the
maximal isotropic subspace of the other (the “unstable range”), the
restriction of the oscillator representation remains unknown.

The present paper is organized as follows: In Section 2, we introduce
notation and precisely state our version of Howe duality. In Section
3, we recall the vector space structure of the endomorphism algebra
of an oscillator representation. In Section 4, we consider its algebra
operation, and find generators giving a subalgebra isomorphic to the
group algebra of the symplectic group part of a reductive dual pair
in the orthogonal stable range. In Section 5, we conclude the proofs
of our results using an inductive argument and several combinatorial
observations.

Acknowledgement: The author is thankful to Jialiang Zou for sug-
gesting this question and for discussions.

2. Notation and Statements

Let us denote by U an n-dimensional Fq-vector space with a non-
degenerate bilinear form B, and let us denote by V a 2N -dimensional
Fq-vector space with a non-degenerate symplectic form S. Without
loss of generality, we may assume that B, as a matrix, is of the form

(3) B =


a1 0 . . . 0
0 a2 . . . 0
...

...
0 0 . . . an


for some a1, . . . , an ∈ F×

q .
The maximal dimension of an isotropic subspace of V with respect to

S is N . We denote by m(U,B) the maximum dimension of an isotropic
subspace of U with respect to B. Over a finite field, in the case when
n = 2m is even, we either have

m(U,B) = m− 1 or m
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(giving rise to the two orthogonal groups O+
2m(Fq) and O−

2m(Fq), re-
spectively). In the case when n = 2m+ 1 is odd, then we must have

m(U,B) = m.

For i the dimension of an isotropic space Z in V (resp. U), we denote
by (V [2N−2i], S[2N−2i]) (resp. (U [n−2i], B[n−2i])) the subspace of
dimension 2N −2i (resp. n−2i) and its accompanying non-degenerate
symplectic (resp. symmetric) form, which are obtained by projecting
away from Z and its dual in V with respect to S (resp. B).

Note then that U ⊗ V forms a 2nN dimensional vector space with
symplectic form B⊗S. The type I reductive dual pairs in a symplectic
group Sp(V) consist precisely of subgroups Sp(V ), O(U) where V ∼=
U ⊗ V (with consistent forms). Write

(4) f : O(U)× Sp(V ) → Sp(U ⊗ V ).

Further, let us denote by PV,i (resp. PU,i) the parabolic subgroups
of Sp(V ) (resp. O(U)) corresponding to an i-dimensional isotropic
subspace of V (resp. U) with Levi subgroup

GLi(Fq)× Sp2N−2i(Fq)

(resp.

GLi(Fq)×On−2i(Fq)).

For a ∈ F×
q , we may associate to a a non-trivial additive character

of Fq

ψa : Fq → C×

x 7→ e
2πi
p

·TrFq/Fp (a·x).

For a symplectic space V , let us denote by ω[V ] the oscillator repre-
sentation arising from the non-trivial additive character corresponding
to 1 ∈ Fq. We write

(5) ψ := ψ1.

More generally, we write ω[V ]a for the oscillator representation aris-
ing from the additive character corresponding to a ∈ F×

q . (Recall that

ω[V ]a ∼= ω[V ]b when a and b are equal in the quotient F×
q /(F×

q )
2, so

there are only two non-isomorphic oscillator representations over a fi-
nite field.)

The problem of type I Howe duality then concerns the restriction of
the oscillator representation ω[U⊗V ] to anO(U)×Sp(V )-representation,
and its resulting decomposition into tensor products of irreducible rep-
resentations of O(U) and Sp(V ). We may consider this decomposition
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to be indexed either by the irreducible representations of O(U)

(6) f ∗(ω[U ⊗ V ]) =
⊕

ρ∈Ô(U)

ρ⊗ Φ(ρ),

or by the irreducible representations of Sp(V )

(7) f ∗(ω[U ⊗ V ]) =
⊕

π∈Ŝp(V )

Ψ(π)⊗ π

for some (not necessarily irreducible or non-zero) Sp(V )- and O(U)-
representations Φ(ρ) and Ψ(π) In the classical cases of Howe duality
over C, R, or Qp (with the symplectic group replaced by the meta-
plectic group in the latter two cases), the functions Φ and Ψ, both

restricted away from the elements of Ô(U), Ŝp(V ) where they give 0,
give irreducible representations and are inverse to each other.

In the case when dim(U) ≤ dim(V )/2, it can be calculated that all
the irreducible representations of O(U) appear when further restricting
f ∗(ω[U ⊗ V ]) to O(U) (see [6, 7, 12]). The eta correspondences then
can be expressed as injections

ηU,V : Ô(U) ↪→ Ŝp(V )

which assign to an irreducible representation ρ of O(U), the “highest
rank” irreducible summand of Φ(ρ) (see [6, 7] for more details). In [12],
we proved that in fact,

(8)

f ∗(ω[U ⊗ V ]) =

m(U,B)⊕
k=0

⊕
ρ∈ ̂O(U [n−2k])

Ind
PU,k

O(U)(ρ⊗ ϵ(det))⊗ ηU [n−2k],V (ρ)

where ϵ : F×
q → {±1} denotes the non-trivial multiplicative character

of Fq of order two, and

ϵ(det) : GLk(Fq) → F×
q → {±1}

is considered as a representation of the GLk(Fq) factor of the Levi
subgroup of PU,k.

In the present note, we prove that in the case when dim(V ) ≤
m(U,B), all the irreducible representations of Sp(V ) occur in the re-

striction of f ∗(ω[U ⊗V ]) to Sp(V ), meaning that for every π ∈ Ŝp(V ),
the O(U)-representation Ψ(π) in (7) is non-zero. Further, we determine
a “top” irreducible summand

ζU,V (π) ⊆ Ψ(π)
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which can be considered an analogue of the eta correspondence. Finally,
we obtain a symmetric formula to (8):

Theorem 1. When dim(V ) ≤ m(U,B), we have injections

ζV,U : Ŝp(V ) ↪→ Ô(U)

sending irreducible Sp(V )-representations to irreducible O(U)-represen-
tations, with disjoint images for non-isomorphic choices of (V, S), (U,B),
such that

(9)

f ∗(ω[U ⊗ V ]) ∼=
N⊕
k=0

⊕
π∈ ̂Sp(V [2N−2k])

Ind
PV,k

Sp(V )(π ⊗ ϵ(det))⊗ ζV [2N−2k],U(π).

3. Endomorphisms of the Oscillator Representation

As in [12], our main method to approaching Theorem 1 is by ex-
amining the endomorphism algebra of ω[U ⊗ V ]. In this section, we
recall a certain description of the endomorphism algebra of a oscillator
representation as a linearization of its symplectic vector space, which
we can use to restate Theorem 1.

First, consider a general symplectic space and form (V,S). Recall
that for an oscillator representation ω[V]a, its dual is the oscillator rep-
resentation of opposite character ω[V]−a (see [8]). Their tensor product
gives the standard representation CV, where Sp(V) acts geometrically.
Hence, for a subgroup G ⊆ Sp(V), the endomorphism algebra of the

restriction of the oscillator representation to G is, as a vector space,

EndG(ω[V]a) ∼= HomG(1, ω[V]a ⊗ ω[V]−a) ∼= (CV)G,

which can also be considered as the C-vector space with a basis indexed
by G-orbits on V.
In fact, we can introduce an operation ⋆V on CV corresponding to

composition in the endomorphism algebra such that, as C-algebras,
(EndV ect(ω[V]a), ◦) ∼= (C(V), ⋆V)

(for subgroups G ⊆ Sp(V), the endomorphism algebra of ω[V] over
G is again isomorphic to the subalgebra generated by G-orbits on V).
We put, for u, v ∈ V,

(u) ⋆V (v) = ψa(
1

2
S(u, v)) · (u+ v).
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This can be considered as an “untwisted” variant of the algebra opera-
tion arising from the Schrödinger model of the oscillator representation:

Recall that for a decomposition of a symplectic space V into La-
grangians Λ+ ⊕ Λ−, we may identify ω[V]a ∼= CΛ−. The action of
an element (v, c) of the Heisenberg group H (for v ∈ V, c ∈ Fq) on a
generator w ∈ Λ− is given by

(v, c)(w) = ψa(c+
1

2
S(v+, w)) · (v− + w),

where v = v+ + v− is the unique decomposition of a vector v into
v+ ∈ Λ+, v− ∈ Λ−. This gives ω[V]a the structure of a Weil-Shale rep-
resentation. The action of Sp(V) making it an oscillator representation
arises from the uniquess of the Weil-Shale representation for each cen-
tral character. We then see a natural action of an algebra (CV, ∗V)
for algebra operation ∗ given by, for u = u+ + u−, v = v+ + v− ∈ V,
u±, v± ∈ Λ±,

(u) ∗ (v) = ψa(S(u+, v−)) · (u+ v).

Applied to w ∈ Λ−, a vector v ∈ (CV, ∗V) acts by
(v)(w) = ψa(S(v+, w)) · (v− + w).

Now our choice of algebra (CV, ⋆V) is isomorphic to the algebra
(CV, ∗V) along

(CV, ⋆V) → (CV, ∗V)

(v) 7→ ψa(
1

2
S(v+, v−)) · (v)

for v = v++ v− ∈ V with v± ∈ Λ±. Therefore, an element v ∈ (CV, ⋆)
acts on w ∈ Λ− by

(10) (v)(w) = ψa(S(v+, w) +
1

2
S(v+, v−))(v+ + w)

for v = v+ + v− with v± ∈ Λ±.

Applying this to the present situation, where V = U⊗V , S = B⊗S,
we have (EndV ect(ω[U ⊗ V ]), ◦) ∼= (C(U ⊗ V ), ⋆U⊗V . For u1, u2 ∈ U ,
v1, v2 ∈ V

(u1 ⊗ v1) ⋆U⊗V (u2 ⊗ v2) =

ψ(
B(u1, u2) · S(v1, v2)

2
) · (u1 ⊗ v1 + u2 ⊗ v2).

When the ground space is clear, we omit the subscript in ⋆. To prove
Theorem 1, we will consider the subalgebra of O(U)-equivariant endo-
moprhisms

(11) (EndO(U)(ω[U ⊗ V ]), ◦) ∼= ((C(U ⊗ V ))O(U), ⋆).
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We reframe Theorem 1 as the following

Theorem 2. For m(U,B) ≥ dim(V ), we have

(12) EndO(U)(ω[U ⊗ V ]) ∼=
N⊕
k=0

M|Sp(V )/PV,k|(CSp(V [2N − 2k])).

The proofs of Theorems 1 and 2 naturally progress together in a
single argument. The first step is to enumerate the basis vectors of
EndO(U)(ω[U ⊗ V ]).

By (11), as a vector space, EndO(U)(ω[U ⊗ V ]) has a basis corre-
sponding to O(U)-orbits in

(13) U ⊗ V = U ⊕ · · · ⊕ U︸ ︷︷ ︸
2N

(with respect to the diagonal action). We claim that in the orthogonal
stable range of dimensions, we have the following enumeration of orbits:

Lemma 3. For dim(V ) ≤ m(U,B), the orbits of O(U) acting on (13)
are indexed by reduced row echelon form matrices with 2N columns, and
a choice of a constant in Fq for each unordered pair of pivot columns
(including a pivot column with itself). Hence, we have

dim(EndO(U)(ω[U ⊗ V ])) = (q + 1) . . . (q2N + 1).

Proof. To enumerate the number of O(U)-orbits in (13), note that, for
a 2N -tuple (u1, . . . , u2N) of vectors ui ∈ U , the action of O(U) must
precisely preserve 1. the linear independence/dependence relations of
u1, . . . , u2N and 2. the values of the bilinear form applied to the ui’s.

First, the linear independence/dependence relations of the ui’s cor-
respond exactly to the data of which GL(U)-orbit (u1, . . . , u2N) is an
element of. Recall that the GL(U)-orbits of (13) can be identified as
precisely the images of d×2N matricesM in reduced row echelon form
for

0 ≤ d = dim(⟨u1, . . . , u2N⟩) ≤ 2N,

i.e. the sets of 2N -tuples

{M · (u′1, . . . , u′d) | u′1, . . . , u′d ∈ U linearly independent}
(u′1, . . . , u

′
d are renamings of the vectors ui1 , . . . , uid where the indices

1 ≤ i1 < · · · < id ≤ 2N are the pivot columns of M). By our assump-
tion on the dimension of U , all d and choices of M are possible.
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Now, given a choice of a d × 2N matrix M in reduced row echelon
form, if

(u1, . . . , u2N) =M · (u′1, . . . , u′d)
for some linearly independent u′1, . . . , u

′
d ∈ U , then the data of the form

B’s values on any pair of ui, uj, is determined by (and equivalent to)
the data of constants

νi≤j = B(u′i, u
′
j) ∈ Fq,

for i ≤ j ∈ {1, . . . , d}. Since we assumed that dim(U) > 2 · dim(V ),
there indeeed must exist an isotropic subspace of U with respect to B
of dimension 2N = dim(V ). In fact, then, all values of B on linearly
independent u′1, . . . , u

′
d are possible and therefore give non-empty orbits

(the cardinality of each orbit will depend on the choice of symmetric
bilinear form B on U).

Hence, the orbits are indexed by the data of, for d = 0, . . . , 2N , a
d× 2N matrix M in reduced row echelon form, together with a choice
of constants νi≤j ∈ Fq for i, j ∈ {1, . . . , d}. Therefore, the number of
orbits is

2N∑
d=0

q(
d
2)+d ·

( ∑
1≤i1<···<id≤2N

q2dN−(i1+···+id)−(d2)

)
=

∑
1≤i1<···<id≤2N

d∏
j=1

q(2N+1)−ij = (q + 1) . . . (q2N + 1).

□

4. The Top Subalgebra

Now that we have identified a set of basis elements of EndO(U)(ω[U⊗
V ]), the next step is to find a subalgebra isomorphic to the group
algebra of Sp(V ). The goal of this section is to prove the following

Proposition 4. If dim(V ) ≤ m(U,B), then the subalgebra of

EndO(U)(ω[U ⊗ V ])

consisting of endomorphisms that cannot be factored as a composition

(14) ω[U ⊗ V ] → ω[U ⊗ V [2N − 2k]] → ω[U ⊗ V ]

for any k = 1, . . . , N contains the group algebra CSp(V ).
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Proof of Proposition 4. We begin by recalling how an O(U)-orbit in
(13), considered as a linear combination of vectors in U ⊗ V , can be
applied to an element of ω[U ⊗ V ]. We will again use the Schrödinger
model of ω[U ⊗ V ]. Let us write V = Λ+ ⊕ Λ− for V ’s decomposition
into complementary Lagrangians with respect to S. According to (10),
writing an element of the algebra (C(U⊗V ), ⋆) as (v+1 +v

−
1 , . . . , v

+
n +v

−
n )

for v±i ∈ Λ±, and writing an element of ω[U ⊗ V ] = CU ⊗ Λ− as
(w1, . . . , wn) for wi ∈ Λ−, we have

(15)

(v+1 + v−1 , . . . , v
+
n + v−n ) · (w1, . . . , wn) =

ψ(
n∑

j=1

ai · (S(v+i , wi) +
S(v+i , v

−
i )

2
)) · (v−1 + w1, . . . , v

−
n + wn)

(where ψ denotes the non-trivial additive character corresponding to
our choice of oscillator representation ω).

To write this in terms of the symmetric bilinear form B and vectors
u ∈ U , let us fix bases of the Lagrangians Λ+, Λ− such that, with
respect to the basis λ+1 , . . . , λ

+
N , λ

−
1 , . . . , λ

−
N of V , the symplectic form

S is (
0 I
−I 0

)
.

Then, alternatively, writing an element of U⊗V as (z+1 , z
−
1 , . . . , z

+
N , z

−
N)

for z±i ∈ U ⊗ Fq{λ±i }, and an element of U ⊗ Λ− as (u1, . . . , uN) for
ui ∈ U ⊗ Fq{λ−N}, we have

(16)

(z+1 , z
−
1 , . . . , z

+
N , z

−
N) · (u1, . . . , uN) =

ψ(
N∑
i=1

B(z+i , ui) +
B(z+i , z

−
i )

2
) · (u1 + z−1 , . . . , uN + z−N)

To prove the claimed statement, we will find elements of C(U⊗V )O(U)

which act on elements of the Schrödinger model of ω[U ⊗ V ] by the
representation action of group generators of Sp(V ).

Let us first consider the case when dim(V ) = 2. In this case, we may
reduce (16) to

(z+, z−) · (u) = ψ(B(z+, u) +
B(z+, z−)

2
) · (u+ z−).

From this perspective, the action of the matrices in SL2(Fq)(
0 1
−1 0

)
,

(
1 0
t 1

)
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on the oscillator representation should correspond to transformations

(17) (u) 7→ 1

qn/2
·
∑
v∈U

ψ(B(−u, v)) · (v), (u) 7→ ψ(
t ·B(u, u)

2
) · (u)

respectively. The matrices (
s 0
0 1/s

)
act by (u) 7→ (s · u), for s ∈ F×

q . Now consider, for example, the
operators given by the action of

gt =
1

qn/2
·
∑
z∈U

ψ(
tB(z, z)

2
) · (z, tz) ∈ C(U ⊗ V )O(U)

for t ∈ F×
q . Applied to u ∈ U , these endomorphisms give

gt · (u) =
1

qn/2
·
∑
z∈U

ψ(B(z, u) +B(z, tz)) · (u+ tz),

which, replacing v = u+ tz, can be simplified to

1

qn/2
·
∑
v∈U

ψ(B(
v − u

t
, v)) ·(v) = 1

qn/2
·
∑
v∈U

ψ(
B(v, v)

t
) ·ψ(B(

−u
t
, v)) ·(v).

Therefore, each gt corresponds to the group action of the composition
of matrices

(18)

(
1 0
2/t 1

)(
0 1
−1 0

)(
1/t 0
0 t

)
=

(
0 t

−1/t 2

)
on ω[U ⊗ V ]. These matrices generate SL2(Fq).

Now, for general V , dim(V ) = 2N , we may find these generators for
all choices of 1-dimensional subspaces in a Lagrangian (and its dual).
This system of group algebras over SL2(Fq) corresponding to choices of
isotropic 1-dimensional subspace of V therefore generate Sp(V ). Hence,
we get

(19) CSp(V ) ⊆ EndO(U)(ω[U ⊗ V ]).

Additionally, since these endomorphisms encode the geometric action
of Sp(V ) ⊆ Sp(U ⊗ V ) on ω[U ⊗ V ] and are, in particular, bijective,
they are inexpressible as compositions of the form (14). □

The reason why we use the matrices (18) (instead of a more common
set of generators of SL2(Fq), such as (20) below) is due to the fact that
their corresponding elements of C(U ⊗ F2

q)
O(U) are fairly simple and

easy to guess. While not directly necessary to the logic of the proof
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of the results of the above proposition, it is, however, instructive to
write down the explicit formulae for the elements corresponding to the
matricies

(20)

(
t 0
0 1/t

)
,

(
0 1
−1 0

)
,

(
1 0
s 1

)
for t, s ∈ F×

q .

To do this, we need to introduce certain constants, arising from the
quadratic sums of characters. They will depend on our choice of charc-
ter ψ. If we use a different character, the answer may differ by a sign.
Let us write q = pℓ for p an odd prime, and ℓ ∈ N. To avoid confusion,
we denote the quadratic multiplicative characters of Fq and Fp by

ϵp : F×
p → {±1}, ϵq : F×

q → {±1},

respectively. As usual, we extend these to 0 by ϵp(0) = ϵq(0) = 0.
Denoting the norm of the field extension by NFq/Fp : F×

q → F×
p , we

have

(21) ϵp ◦NFq/Fp = ϵq.

We may re-write the classical quadratic Gauss sum as

(22)
∑
n∈Fp

e
2πi
p

n2

=
∑
m∈Fp

(1 + ϵp(m)) · e
2πi
p

n2

=
∑
m∈Fp

ϵp(m) · e
2πi
p

n2

(since the linear sum of characters is 0, and for each m ∈ Fp, there
are exactly 1 + ϵp(m) elements in Fp whose square is m), which is
well-known to equal

(23)
∑
n∈Fp

e
2πi
p

a·n2

= ϵp(a) ·
√
ϵp(−1) · p.

Now the same argument as (22) can be applied to give∑
x∈Fq

ψ(x2) =
∑
x∈Fq

e
2πi
p

TrFq/Fp (x
2) =

∑
y∈Fq

ϵq(y) · e
2πi
p

TrFq/Fp (y).

Applying the Hasse-Davenport relation for Gauss sums to (23), we get
that ∑

y∈Fq

ϵq(y) · e
2πi
p

TrFq/Fp (y) = (−1)ℓ+1 ·
(√

ϵp(−1) · p
)ℓ

,
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which simplifies to give

(24)
∑
x∈Fq

ψ(x2) = (−1)ℓ+1
√
ϵq(−1) · q

Now, for c ∈ F×
q , again since a linear sum of characters vanishes, we

have ∑
x∈Fq

ψ(c · x2) = ϵq(c) ·
∑
x∈Fq

ψ(x2).

Combining this with (24), we find that∑
u∈U

ψ(c ·B(u, u)) =
∑

u1,...,un∈Fq

ψ(
n∑

i=1

c · ai · u2i ) =

n∏
i=1

∑
ui∈U

ψ(c · ai · u2i ) = ϵq(c
n · a1 . . . an) · (

∑
x∈Fq

ψ(x2))n =

(−1)n(ℓ+1) · disc(B) · qn/2 · ϵq(c)n · ϵq(−1)n/2,

where disc(B) denotes is discriminant, i.e. ϵq(det(B)). For notational
brevity, we denote these coefficients by

(25)
K(c) :=

∑
x∈Fq

ψ(c · x2) =

(−1)n(ℓ+1) · disc(B) · qn/2 · ϵq(c)n · ϵq(−1)n/2.

Proposition 5. Consider an Fq-space U and a symmetric bilinear form
B.

(1) For t ∈ F×
q , the element

αt :=
1

qn
·
∑

y+,y−∈U

ψ(− t+ 1

2(t− 1)
·B(y+, y−)) · (y+, y−)

acts as the matrix (
t 0
0 1/t

)
.

(2) The element

β :=
1

K(1) · qn/2
∑

y+,y−∈U

ψ

(
1

4
(B(y+, y+) +B(y−, y−))

)
· (y+, y−)
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acts as the matrix (
0 1
−1 0

)
.

(3) For s ∈ F×
q , the element

γs :=
1

K(−1/2s)

∑
z∈U

ψ(− 1

2s
B(z, z)) · (z, 0)

acts as the matrix (
1 0
s 1

)
.

Proof. We begin with the proof of (1): For an element u ∈ U ∼= U⊗Λ−,
we can calculate that ft acts as follows:

(26)

αt(u) =

1

qn
·
∑

y+,y−∈U

ψ

(
(
1

2
− t+ 1

2(t− 1)
) ·B(y+, y−) +B(y+, u)

)
· (y− + u)

=
1

qn
·
∑

y+,y−∈U

ψ(B(y+,− y−

t− 1
+ u)) · (y− + u).

The sum runs over arbitrary choices of y+, meaning that for fixed u ∈ U
and chosen y− ∈ U , the coefficient sum

(27)
∑
y+∈U

ψ(B(y+,− y−

t− 1
+ u))

of the vector (y− + u) is a linear sum of characters, and is therefore 0,
unless

− y−

t− 1
+ u = 0,

in which case (27) is qn. Hence, the only contributing choice of y− is
y− = (t− 1) · u. Therefore, (26) simplifies as

αt(u) =
qn

qn
· ((t− 1) · u+ u) = (t · u),

agreeing with the action of the proposed matrix on the oscillator rep-
resentation CU .

Now we prove (2): For u ∈ U , at each choice of y+, y− ∈ U , applying
the corresponding term of the sum in β (disregarding the coefficient,
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for now) gives

ψ

(
1

4
(B(y+, y+) +B(y−, y−))

)
· (y+, y−)(u) =

ψ

(
1

4
(B(y+, y+) + 2B(y+, y−) +B(y−, y−)) +B(y+, u)

)
· (y− + u) =

ψ(B(
y+ + y−

2
,
y+ + y−

2
) +B(y+, u)) · (y− + u)

Therefore, we have

(28)

β(u) =

1

K(1) · qn/2
∑

y+,y−∈U

ψ(B(
y+ + y−

2
,
y+ + y−

2
) +B(y+, u)) · (y− + u).

Renaming variables using z = y− + u, we may rewrite this as

(29)
1

K(1) · qn/2
∑

y+,z∈U

ψ(B(
y+ + z − u

2
,
y+ + z − u

2
)+B(y+, u)) · (z).

Now we may also notice that

B(
y+ + z − u

2
,
y+ + z − u

2
) +B(y+, u) =

B(
y+ + z + u

2
,
y+ + z + u

2
)−B(z, u),

allowing us to rewrite (29) as

1

K(1) · qn/2
∑

z,y+∈U

ψ(B(
y+ + z + u

2
,
y+ + z + u

2
)−B(z, u)) · (z).

Renaming variables using w = (y+ + z + u)/2 gives

1

K(1) · qn/2
∑
z,w∈U

ψ(B(w,w))ψ(−B(z, u)) · (z),

which, applying (25), reduces to

β(u) =
1

qn/2

∑
z∈U

ψ(−B(z, u)) · (z),

which is precisely the action (17).
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Finally, we prove (3): For u ∈ U ,

(30)

γs(u) =

1

K(−1/2s)

∑
z∈U

ψ(− 1

2s
B(z, z)) · (z, 0)(u) =

1

K(−1/2s)

∑
z∈U

ψ(− 1

2s
B(z, z) +B(z, u)) · (u).

Now we may notice that

B(z, u)− 1

2s
B(z, z) = − 1

2s
(−2s ·B(z, u) +B(z, z)) =

− 1

2s

(
B(su− z, su− z)− s2 ·B(u, u)

)
=

− 1

2s
·B(su− z, su− z) +

s

2
·B(u, u).

Therefore, substituting w = su− z, we can rewrite (30) as

(31) γs(u) =
1

K(−1/2s)

∑
w∈U

ψ(− 1

2s
·B(w,w)) · ψ(s

2
·B(u, u)) · (u).

Since, by definition,∑
w∈U

ψ(− 1

2s
·B(w,w)) = K(−1/2s),

(31) then reduces to

γs(u) = ψ(
s

2
·B(u, u)) · (u),

agreeing precisely with (17).
□

It may also be helpful to compute some examples of ⋆ applied to these
elements, and see how it recovers matrix multiplication (especially to
see the relationship between gt, αt, β, and γ2/t). We do an example of
such a computation in the Appendix.

Proposition 4 corresponds to the k = 0 term of the claimed decompo-
sition (11), and would ensure that every irreducible Sp(V )-representation
appears with multiplicity at least one in the restriction of f ∗(ω[U⊗V ])
to an Sp(V )-representation. From the point of view of Theorem 1, this
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implies that there exist some O(U)-representations ζU,V (ρ) for each ir-

reducible representation ρ ∈ Ŝp(V ) such that ζU,V (ρ)⊗ρ are summands
of f ∗(ω[U ⊗ V ]).

5. The Proofs of Theorem 2 and Theorem 1

In this section, we conclude the remainder of the proofs of Theorem 2
and Theorem 1, which follow by an inductive argument combined with
certain combinatorial observations, similarly as in [12]. Suppose that
the claim (12) holds for (V, S) replaced by (V [2N−2k], S[2N−2k]). Let
us denote by Y2N−2k the top part of the restriction of ω[U⊗V [2N−2k]]
to O(U)× Sp(V [2N − 2k]), i.e.

Y2N−2k =
⊕

π∈ ̂Sp(V [2N−2k])

π ⊗ ζU,V [2N−2k](π).

By the induction hypothesis, restricting the oscillator representation of
V [2N − 2k]⊗ U to O(U),

N−k⊕
ℓ=0

|Sp(V [2N − 2k])/PV [2N−2k],ℓ| · Y2N−2(k+ℓ)

For clarity, let us write

g : Sp(V [2N − 2k])×O(U) ↪→ Sp(V )×O(U)

for the natural inclusion of groups.
Then first note that by the induction hypothesis, restricting ω[V ⊗U ]

to an Sp(V [2N − 2k])⊗O(U) representation,

HomO(U)(g
∗(ω[V ⊗ U ]), ω[V [2N − 2k]⊗ U ]) =

N⊕
ℓ=1

|Sp(V [2N − 2k])/PV [2N−2k],ℓ| ·HomO(U)(Y2N−2(k+ℓ), ω[V ⊗ U ])
.

Now, again by the duality of oscillator representations, we have

(32)
dim(HomO(U)(g

∗(ω[V ⊗ U ]), ω[V [2N − 2k]⊗ U ]) =

dim(HomO(U)(1,C(U⊕2N−k))

By the proof of Lemma 3, we find that (32) is

(q + 1) . . . (q2N−k + 1).
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We claim that

(33)

(q + 1) . . . (q2N−k + 1) =

m(U,B)−k∑
ℓ=0

|Sp(V [2N − 2k])/PV [2N−2k],ℓ| · |Sp(V )/PV,k+ℓ| · |Sp(V [2N − 2k − 2ℓ])|

It is well-known that, for every N ∈ N, the order of the symplectic
group on F2N

q is

(34) |Sp2N(Fq)| = qN
2

N∏
i=1

(q2i − 1),

and, writing the Gaussian binomial coefficients(
x

y

)
q

=
(qy − 1) · (qy−1 − 1) . . . (qy−x+1 − 1)

(qx − 1) · (qx−1 − 1) . . . (q − 1)

the cardinality of its quotient by a maximal paraolic PF2N
q ,k (i.e. the

number of k-dimensional isotropic subspaces of F2N
q ) is

(35) |Sp2N(Fq)/PF2N
q ,k| =

(
N

k

)
q

·
N∏

i=N−k+1

(qi + 1).

The argument for (33) then follows by dividing the left and right hand
side by the shared factors of (qi+1), then redistributing the remaining
factors on the left hand side to approximate the factors , as in the proof
of Lemma 7, [12].

However, we may also compare (34) and (35) to the numbers of
elements in O2N+1(Fq), and its parabolic quotients (see (10) of [12]), to
notice that

|Sp2N(Fq)| =
1

2
· |O2N+1(Fq)|,

and
|Sp2N(Fq)/PF2N

q ,k| = |O2N+1(Fq)/PF2N
q ,k|.

Therefore, the expression (33), combinatorially, is exactly formula (25)
of Corollary 1, [12] at n = 2N + 1, divided on both sides by 2.

Now, as in [12], we may recursively use Lemma 3 and the induction
hypothesis to solve for the dimensions of the Hom-spaces from each
Y2N−2k piece to ω[U ⊗ V ] to get

dim(HomO(U)(Y2N−2k, ω[U ⊗ V ])) = |Sp(V )/PV,k|,
verifying (after adjunction) that the parabolic induction summands
appear with multiplicity 1. This argument again follows from [12],
(45), where n is replace by 2N +1, and both sides are divided by 2, by
Lemma 3.
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Finally, it remains to check that the dimensions of both sides of (12)
are in fact equal. This implies that, in Proposition 4, the group algebra
CSp(V ) makes up the entire top sub-algebra of EndO(U)(ω[U ⊗ V ]).
From the point of view of Theorem 1, this gives that the ζU,V (ρ) are all
distinct irreducible O(U)-representations, and that no other summands
may appear. By Lemma 3, this statement reduces to checking that

(q + 1) . . . (q2N + 1) =
N∑
k=0

|Sp(V )/PV,k|2 · |Sp(V [2N − 2k])|.

Appendix A. An Explicit Composition Computation

Fix t ∈ F×
q . In this appendix, we complete the calculation that

(36) gt ⋆ αt = γ2/t ⋆ β.

The composition gt ⋆ αt is 1/q3n/2 times the sum over all choices of
y+, y−, z ∈ U of terms

(37) ψ(
t

2
B(z, z)− t+ 1

2(t− 1)
B(y+, y−)) · (z, tz) ⋆ (y+, y−).

Writing out

(z, tz) ⋆ (y+, y−) = ψ(
1

2
(B(z, y−)− t ·B(z, y+))),

each term (37) can be simplified to the pair of vector (y+ + z, y− + tz)
multiplied by the coefficient

ψ(
t

2
B(z, z)− t+ 1

2(t− 1)
B(y+, y−) +

1

2
B(z, y−)− t

2
B(z, y+)).

By considering

− t+ 1

2(t− 1)
=

1

2
− t

t− 1
, − t

2
=
t

2
− t,

this can be rewritten as

ψ(
1

2
B(y+ + z, y− + tz)− t

t− 1
B(y+, y− + (t− 1)z)).

Substituting u = y+ + z, v = y− + tz gives

ψ(
1

2
B(u, v)− t

t− 1
B(u− z, v − z)).



20 SOPHIE KRIZ

Therefore, we have reduced gt ⋆ αt to

(38)
1

q3n/2

∑
z,u,v∈U

ψ(
1

2
B(u, v)− t

t− 1
B(u− z, v − z)) · (u, v).

Writing

B(u− z, v − z) = B(u, v)−B(u+ v, z) +B(z, z),

we may “complete the square” by noticing that

−B(u+ v, z) +B(z, z) =

B(z − u+ v

2
, z − u+ v

2
)−B(

u+ v

2
,
u+ v

2
).

Substituting variables using w = z − (u + v)/2, putting the terms
together, we get

B(u− z, v − z) = B(u, v) +B(w,w)−B(
u+ v

2
,
u+ v

2
) =

B(w,w)−B(
u− v

2
,
u− v

2
).

Therefore, (38) reduces to

(39)

gt ⋆ αt =

1

q3n/2

∑
w,u,v∈U

ψ(
1

2
B(u, v)− t

t− 1
(B(w,w)−B(

u− v

2
,
u− v

2
))) · (u, v) =

K(−t/(t− 1))

q3n/2

∑
u,v∈U

ψ(
1

2
B(u, v) +

t

t− 1
B(

u− v

2
,
u− v

2
)) · (u, v).

Now let us consider the other side of (36). The composition γ2/t ⋆ β

is 1/qn/2K(−t/4)K(1) times the sum over all choices of y+, y−, z ∈ U
of terms

ψ(− t

4
B(z, z) +

1

4
(B(y+, y+) +B(y−, y−))) · (z, 0) ⋆ (y+, y−)

Writing out

(z, 0) ⋆ (y+, y−) = ψ(
1

2
B(z, y−)) · (z + y+, y−),
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this term is the pair of vectors (z+y+, y−) multiplied by the coefficient

ψ(− t

4
B(z, z) +

1

4
(B(y+, y+) +B(y−, y−)) +

1

2
B(z, y−)) =

ψ(−t ·B(
z

2
,
z

2
) +B(

y+ − y−

2
,
y+ − y−

2
) +

1

2
B(z + y+, y−))

Substituting variables u = z+ y+, v = y−, w = z/2 we reduce γs ⋆ β
to∑
u,v,w∈U

ψ(−tB(w,w) +B(
u− v

2
− w,

u− v

2
− w) +

1

2
B(u, v)) · (u, v).

Writing

B(
u− v

2
− w,

u− v

2
− w) =

B(
u− v

2
,
u− v

2
)− 2B(

u− v

2
, w) +B(w,w),

we have

−tB(w,w) +B(
u− v

2
− w,

u− v

2
− w) =

−(t− 1) ·B(w,w)− 2 ·B(
u− v

2
, w) +B(

u− v

2
,
u− v

2
).

Completing the square gives

B(w,w) +
2

t− 1
B(

u− v

2
, w) =

B(w +
u− v

2(t− 1)
, w +

u− v

2(t− 1)
)− 1

(t− 1)2
B(

u− v

2
,
u− v

2
).

Replacing variables x = w + 1
2(t−1)

(u− v) gives

−tB(w,w) +B(
u− v

2
− w,

u− v

2
− w) +

1

2
B(u, v) =

−(t− 1)B(x, x) + (1 +
t− 1

(t− 1)2
)B(

u− v

2
,
u− v

2
) +

1

2
B(u, v) =

−(t− 1)B(x, x) +
t

t− 1
B(

u− v

2
,
u− v

2
) +

1

2
B(u, v)



22 SOPHIE KRIZ

Thus, γt ⋆ β is the factor 1
qn/2K(−t/4)K(1)

times∑
u,v,x∈U

ψ(−(t− 1)B(x, x) +
t

t− 1
B(

u− v

2
,
u− v

2
) +

1

2
B(u, v)) · (u, v) =

K(−(t− 1)) ·
∑
u,v∈U

ψ(
t

t− 1
B(

u− v

2
,
u− v

2
) +

1

2
B(u, v)) · (u, v).

This agrees with our above calculation of gt ⋆ αt in (39), up to a
constant. It remains to check that the constants precisely agree, i.e.

(40)
K(−(t− 1))

qn/2K(−t/4)K(1)
=
K(−t/(t− 1))

q3n/2
.

Recalling (25), first note that since

K(c) = (−1)n(ℓ+1)disc(B) · qn/2 · ϵq(c)n · ϵq(−1)n/2

only depends on ϵq(c), we have K(−t/4) = K(−t). We can therefore
simplify (40) to

qn ·K(−(t− 1)) = K(−t/(t− 1)) ·K(−t) ·K(1).

Next, the signs, i.e. the factors (−1)n(ℓ+1)disc(B) in each K factor will
cancel, since both the left and right hand side have and odd number of
K factors. Further, collect the powers of q, both sides have a factor of
q3n/2, which we may factor out. This reduces the claim to

ϵq(−(t− 1))n · ϵ(−1)n/2 = ϵq(−t/(t− 1))nϵq(−t)nϵq(−1)3n/2.

Dividing both sides by ϵq(−1)n/2 and collecting terms gives

ϵq(−(t− 1))n = ϵq(
−t
t− 1

· (−t) · (−1))n,

which holds, since ϵq(−(t− 1)) = ϵq(−1/(t− 1)).
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