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CONSTANT COEFFICIENTS

SOPHIE KRIZ

Abstract. In this paper, for a finite group, we discuss a method
for calculating equivariant homology with constant coefficients. We
apply it to completely calculate the geometric fixed points of the
equivariant spectrum representing equivariant (co)homology with
constant coefficients. We also treat a more complicated example of
inverting the standard representation in the equivariant homology
of split extraspecial groups at the prime 2.

1. Introduction

Equivariant spectra are the foundation of equivariant generalized ho-
mology and cohomology theory of G-spaces (and ultimately, G-spectra)
for a finite (or more generally compact Lie) group G, which has all the
formal properties of generalized non-equivariant homology and coho-
mology theory, including duality, along with stability under suspensions
by finite-dimensional real representations. They were introduced and
developed in [11] (see also [1, 4]). Equivariant homology and coho-
mology HAG with constant coefficients in an abelian group A, on the
other hand, can be defined on the chain level, as a part of the the-
ory of Bredon [3]. Both contexts are reconciled in [10], where, more
generally, equivariant Eilenberg-MacLane spectra of Mackey functors
are defined. In this paper, we discuss a spectral sequence (Proposition
4, 5) which can be used to compute generalized equivariant homology
of a G-CW-complex from its subquotients of constant isotropy. This
spectral sequence is especially efficient in the case of HAG. For exam-
ple, we shall prove that for a (finite) p-group G, the spectral sequence

computing HZ/pG
∗

(X) always collapses to E1 (see Theorem 7 below).

Note that this is false in cohomology. By [3], for a G-CW-complex
X and an abelian group A,

(1) H∗G(X;A) = H∗(X/G;A).
1
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Let G = Z/2 and X = Sα where α denotes the sign representation of
Z/2. Then X/(Z/2) ' ∗. Thus, by (1), Hn

G(X;A) is only non-trivial
for n = 0, while X has a 1-cell of isotropy {e}.

One may think, therefore, that equivariant homology with constant
coefficients carries less information than cohomology. It turns out, how-
ever, that equivariant E-homologies of certain spaces give important
information about a spectrum E. For example, the geometric fixed
point spectra ([4] and [11], II §8, 9) ΦHE, where H runs through sub-
groups of G, completely characterize the spectrum E. The coefficients
ΦGE∗, for a finite group G, are the reduced E-homology of the smash
product S∞V of infinitely many copies of the one-point compactifica-
tion SV of the reduced regular representation V . Geometric fixed point
spectra proved very useful in applications, for example, in [14, 5, 6].

We will see that our method allows a complete computation of the
coefficients of the geometric fixed point spectrum of homology with
constant coefficients ΦG(HA)∗, which we denote by ΦG(A)∗, by reduc-
ing it to the case where G is an elementary abelian group. We show
(Proposition 11) that ΦGHAG = 0 if G is not a p-group, and that

ΦGHAG = ΦG/G′pHAG/G′p

where G is a p-group and G′p is its Frattini subgroup (Proposition 9).
In the elementary abelian case, the computation was carried out for
A = Z/p in my previous paper [9] (see also [7, 8]).

Let first p = 2. We have

H∗((Z/2)n;Z/2) = Z/2[x1, . . . , xn]

where xi have cohomological dimension 1. Let, for α = (α1, . . . , αn) ∈
(Z/2)n r {0},

xα = α1x1 + . . . αnxn.

For p > 2, following the notation of [9], we have

H∗((Z/p)n;Z/p) = Z/p[zi]⊗ ΛZ/p[dzi]

where zi have cohomological dimension 2 and dzi have cohomological
dimension 1. Let, for α = (α1, . . . , αn) ∈ (Z/p)n r {0},

zα = α1z1 + · · ·+ αnzn,

dzα = α1dz1 + · · ·+ αndzn.

Theorem 1. ([7, 8, 9]) (a) Φ(Z/2)n(Z/2) is the subring of

H∗((Z/2)n;Z/2)[x−1α | α 6= 0]

generated by yα = x−1α .
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(b) For p > 2, Φ(Z/p)n(Z/p) is the subring of

H∗((Z/p)n;Z/p)[z−1α |α ∈ (Z/p)n r {0}]
generated by tα = z−1α and uα = tαdzα.

One can also explicitly describe these rings in generators and defining
relations:

Theorem 2. ([7, 8, 9]) (a) For p = 2, we have

Φ(Z/2)n
∗ (Z/2) ∼= Z/2[yα|α ∈ (Z/2)n r {0}]/ ∼

where ∼ denotes the relations

yαyβ + yαyγ + yβyγ ∼ 0

for α + β + γ = 0. The elements yα are in degree 1.
(b) For p > 2,

(2) Φ(Z/p)n
∗ (Z/p) = Z/p[tα]⊗ ΛZ/p[uα]/ ∼

where ∼ denotes the relations

tiα ∼ i−1tα, uiα ∼ uα

tβtα+β + tαtα+β ∼ tαtβ

tβuα+β − tα+βuβ + tα+βuα ∼ uαtβ

−uβuα+β + uαuα+β ∼ uαuβ,

where i ∈ Z/pr {0}, for α, β, α+ β ∈ (Z/p)n r {0}. The elements uα
are in degree 1 and the elements tα are of degree 2.

This allows a complete answer for Z, the universal constant coeffi-
cients. Fix an element α0 ∈ (Z/p)n r {0} and put ũα = uα − uα0 ,
(ỹα = yα − yα0 for p = 2). For p = 2, we also set tα0 = y2α0

.

Theorem 3. (a) For every prime p, Φ
(Z/p)n
∗ (Z) is the subring of the

ring Φ
(Z/p)n
∗ (Z/p) on which the Bockstein

β : Φ(Z/p)n
∗ (Z/p)→ Φ

(Z/p)n
∗−1 (Z/p)

vanishes.
(b) Explicitly, for p = 2, we have

Φ(Z/2)n
∗ (Z) ∼= Z/2[ỹα, tα0 |α ∈ (Z/2)n r {0}]/ ∼

where ∼ denotes the relations

ỹα0 ∼ 0

ỹαỹβ + ỹαỹγ + ỹβ ỹγ + tα0 ∼ 0

where α + β + γ = 0.
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(c) For p > 2

Φ
(Z/p)n
∗ (Z) ∼= (Z/p[tα|α ∈ (Z/p)n r {0}]
⊗ΛZ/p[ũα|α ∈ (Z/p)n r {0}])/ ∼

where ∼ denotes the relations

tiα ∼ i−1tα, ũiα ∼ ũα

tβtα+β + tαtα+β ∼ tαtβ

(3) ũα0 ∼ 0

tβũα+β − tα+βũβ + tα+βũα ∼ tβũα

−ũβũα+β + ũαũα+β ∼ ũαũβ,

for i ∈ Z/pr {0} and α, β, α + β ∈ (Z/p)n r {0}.

The reductions contained in Proposition 9 and Proposition 11 are
quite easy. However, if one considers the more general problem of

calculating H̃A
G

∗ (S∞γ) for a general finite dimensional representation
γ of G, one gets non-trivial examples. One such example is treated in
Section 4, whereG is a split extraspecial 2-group and γ is the irreducible
representation non-trivial on the center.

The present paper is organized as follows: In Section 2, we discuss
our spectral sequences. In Section 3, we discuss the application to geo-
metric fixed points. Section 4 contains the extraspecial group example.

2. The Spectral Sequences

For a G-equivariant spectrum E, we will need to use the homotopy
co-fixed point (Borel homology) spectrum

(4) EhG = (E ∧ EG+)G

where EG is a non-equivariantly contractible free G-CW complex and
for a space X, we write X+ = X

∐
{∗}. The formula (4) includes

a key fact called the Adams isomorphism ([11] II §7): G-equivariant
cell spectra with G-free cells can be identified with naive (i.e. non-
equivariant) cell spectra with a free cellular G-action. The Adams
isomorphism says that for any cell G-spectrum E, EhG is equivalent to
(E ∧ EG+)/G where E ∧ EG+ is considered as a naive G-spectrum.
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Recall that a family F is defined as a set of subgroups of G that
is closed under sub-conjugacies. For a family F , we have a G-CW
complex EF such that

EFH ' ∗, for H ∈ F
EFG ' ∅, for H /∈ F .

If we denote by X̃ the unreduced suspension of a G-space X, we have

ẼF
H
' ∗, for H ∈ F

ẼF
G
' S0, for H /∈ F .

If V is a real G-representation, denote by S(V ) the unit sphere of V
and by SV the union of the 1-point compactifications of SW for finite
dimensional subrepresentations W of V . If we set ∞V =

⊕
∞ V , then

S(∞V ) is a model for EFV where FV = {H ⊆ G|V H 6= 0}. Thus

S∞V is a model for ẼF V . Since S∞V ∧S∞V = S∞V , for a commutative
ring spectrum E,

Ẽ∗ẼF V = Ẽ∗S
∞V

is a commutative ring. Here Ẽ∗X, for a G-spectrum E and a based
G-CW complex X (recall that the base point is required to be G-fixed),
is the equivariant reduced homology of X, i.e. π∗(E ∧Σ∞X) (without
adding a disjoint base point). Note that this is also the Z-graded part
of the RO(G)-graded coefficient ring of α−1V E where αV ∈ π−VE is the
class obtained from the inclusion S0 → SV .

For a finite group G, a family F , and an H ∈ F , define the height
of H inductively by

hF (H) = max{0, hF (K)|K ∈ F , H ( K}+ 1.

Now let X be a G-CW-complex. Consider the family

F = FX = {H ⊆ G|XH 6= ∅}.

Let E be a G-spectrum. Then we have a spectral sequence converging
to the E-homology of X, using Borel homology of parts of X of the
same isotropy. There are two versions of the spectral sequence, one for
the unreduced homology of X, the other for the reduced homology of
its unreduced suspension. Keeping track of terms can be delicate, so
we list both versions:

Proposition 4. We have a spectral sequence

E1
p,q ⇒ Ep+qX
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where

(5) E1
p,q =

⊕
(H),H∈FX ,hFX

(H)=p

((EH ∧ (XH/
⋃
H(K

XK))hW (H))p+q.

(Here W (H) = N(H)/H where N(H) is the normalizer of H in G,
and (H) runs through the conjugacy classes of H ∈ FX .)

Proposition 5. We have a spectral sequence

E1
p,q ⇒ Ẽp+qX̃

where
E1

0,q = Eq(∗)

(6) E1
p,q =

⊕
(H),H∈FX ,hFX

(H)=p

((EH ∧ (XH/
⋃
H(K

XK))hW (H))p+q−1.

The proofs of these statements are sufficiently similar to only give
one of them. We prove Proposition 5 which is more closely related to
our applications.

Proof of Proposition 5: Define an increasing G-equivariant filtration of
X by

F ′pX =
⋃

hF (H)≤p

XH =
⋃

hF (H)=p

XH .

Then define an increasing G-equivariant filtration of X̃ by

F0X̃ = S0

FpX̃ =
⋃

hF (H)≤p

(X̃)H =
⋃

hF (H)=p

(X̃)H .

We have a spectral sequence

E1
p,q = Ẽp+q(FpX̃/Fp−1X̃)⇒ Ẽp+q(X̃) = (E ∧ X̃)p+q.

By definition, for p ≥ 1,

FpX̃/Fp−1X̃ =
⋃

hF (H)=p

(X̃)H/
⋃

hF (H)≤p−1

(X̃)H .

On the other hand,

FpX̃/Fp−1X̃ = (FpX̃/F0X̃))/(Fp−1X̃/F0X̃) =

= (ΣF ′p(X)+)/(ΣF ′p−1(X)+) =

= Σ(F ′p(X)/F ′p−1(X)).
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Thus,

Ẽp+q(FpX̃/Fp−1X̃) = Ẽp+q−1(F
′
p(X)/F ′p−1(X)).

Now, we have

F ′p(X)/F ′p−1(X) =
⋃

hF (H)=p

XH/
⋃

hF (H)<p

XH =

=
∨

hF (H)=p

(
XH/

⋃
H(K∈F

XK

)
.

Note that

XH/
⋃

H(K∈F

XK

is a free based W (H)-CW complex.
On the other hand,

ẼG
p+q−1(

∨
hF (H)=p

(XH/
⋃

H(K∈F

XK)) =

=
⊕

(H), hF (H)=p

ẼG
p+q−1(

∨
H′=gHg−1

(XH/
⋃

H′(K∈F

X)K)) =

=
⊕

(H), hF (H)=p

Ẽ
N(H)
p+q−1(X

H/
⋃

H(K∈F

XK).

To justify the third isomorphism above, note that G acts transitively
on the conjugacy classes of H and thus∨

H′=gHg−1

(XH/
⋃

H′(K∈F

X)K)

is the pushforward from N(H) to G of

XH/
⋃

H(K∈F

XK .

Therefore,

E1
p,q =

⊕
(H), hF (H)=p

Ẽ
N(H)
p+q−1((X

H/
⋃
H(K

XK) ∧ EW (H)+) =

=
⊕

(H), hF (H)=p

((EH ∧ (XH/
⋃
H(K

XK))hW (H))p+q−1,

since EG = (EK)G/K .
�
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We shall be especially interested in the case of classifying spaces of
families. Consider, for a family F and a group H ∈ F , the poset

(7) PF
H = {K ∈ F |K ) H}

with respect to inclusion. Note that this poset has a N(H)-action by
conjugation.

For a poset P , denote by |P | the nerve (also called the classifying
space or bar construction) of P , which one defines as the geometric
realization of the simplicial set whose n-simplicies are chains

x0 ≤ · · · ≤ xn

where faces are given by deletions and degeneracies by repetitions. This
is a special case of the nerve of a category where n-simplicies are com-
posable n-tuples of morphisms.

Corollary 6. We have a spectral sequence

E1
p,q ⇒ (E ∧ ẼF )p+q = Ẽp+qẼF

where

E1
0,q = Eq(∗)

and for p > 0,

(8) E1
p,q =

⊕
(H), H∈F ,hF (H)=p

((EH ∧ |̃PF
H |)hW (H))p+q−1

where (H) runs through the conjugacy classes of groups H ∈ F .

Proof. Apply Proposition 5 to X = EF . Note that FEF = F . Let
H ∈ F = FX . Then

EFH ' ∗.
We may realize the system of spaces (EFK)H(K∈F as aN(H)-equivariant
functor

F : PF
H → ∆Op-Set

where the right hand side denotes the category of simplicial sets, such
that the canonical maps

colim
y<x

F (y)→ F (x)

are injective for all x ∈ PF
H . Now if we denote by π : PF

H → ∗ the
terminal map,

⋃
H(K∈F EFK is the left Kan extension π#F . However,

by our injectivity assumption, the canonical N(H)-equivariant map

(9) Lπ#F → π#F
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(where L denotes the left derived functor) is a non-equivariant equiva-
lence. Additionally, the left hand side can be expressed as the 2-sided
bar construction B(∗, PF

H , F ). Since the values of F on objects are
contractible, we have an N(H)-equivariant map

(10) B(∗, PF
H , F )→ B(∗, PF

H , ∗) = |PF
H |

which is a non-equivariant equivalence. The equivariant maps (9),
(10) induce equivalences on homotopy fixed points, since they are non-
equivariant equivalences. Thus, we have an equivalence

(EH ∧ (EFH/
⋃
H(K

EFK))hW (H) ∼ (EH ∧ |̃PF
H |)hW (H)

as required.
�

Again, there is also an unbased version for EF instead of ẼF .

Theorem 7. If G is a p-group and E = HZ/p, then the spectral se-

quence (5) collapses to E1. Additionally, the spectral sequence (6) col-
lapses to E1 when XG = ∅.

Proof. Again, the proofs of the reduced and unreduced cases are simi-
lar. We treat the unreduced case this time.

Suppose G is a p-group and X is a G-CW-complex. Then HZ/pG
∗
X

can be calculated on the chain level. Let CG(X) be the cellular chain
complex of X in the category of G-coefficient systems in the sense of
Bredon [3], i.e. functors OOp

G → Ab where OG is the orbit category.
This is defined by

(CG
n (X))(G/H) = Ccell

n (XH).

Then we have

HAn(X) = Hn(CG(X)⊗OG
A)

where A is the constant co-coefficient system for an abelian group A,
i.e. the functor OG → Ab where for f : G/H → G/K ∈ Mor(OG), f∗
is multiplication by |K||H| .

We will show that

(11) CG(X)⊗OG
Z/p ∼=

⊕
(H)

C̃cell(XH/
⋃
H(K

XK)⊗Z[W (H)] Z/p.

In each degree separately, (11) holds as abelian groups, since all OG-
identifications corresponding to non-isomorphisms are trivial. For any
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f : H ( K, consider the summand of the differential dtot of CG(X)⊗OG

Z/p
dH,K : Cn(XH)⊗ Z/p→ Cn−1(X

K)⊗ Z/p.
By conjugation, it suffices to show that these maps are 0.

The differential dtot is given by⊕
d/ ∼:

⊕
Cn(XH)⊗ Z/p/ ∼→

⊕
Cn−1(X

H)⊗ Z/p/ ∼

where ∼ denotes the equivalence relation generated by

f ∗a⊗ b ∼ a⊗ f∗b.
In particular, for q ∈ Cn(XH), let c ∈ Cn−1(X

H) be the sum of the
terms of d(q) on cells in XK , where d is the differential of C(XH).
Then we have

dH,K(q) = f ∗c⊗ 1 = c⊗ f∗1 = c⊗ |K|
|H|

= 0.

Therefore, dH,K = 0. Thus, we have proved (11), and hence the spectral
sequence collapses to E1.

�

3. Geometric Fixed Points

In this section, we shall apply the methods of the previous section
to completely calculate the coefficients of the geometric fixed point
spectrum

ΦG
∗HA = H̃A∗ẼF [G]

where F [G] = {H|H ( G} for any finite group G.
A basic fact about posets is useful for computing examples:
For functors F : C → D between any categories, we get continuous

maps
|F | : |C | → |D |,

and for natural transformations F → G, we get

|F | ' |G|.
In particular, if f, g : P → Q are morphisms of posets and f ≤ g, then
|f | ' |g|. Thus, in particular, if P has lowest or highest element x,
|Id| ' |Constx|. Therefore, then, |P | is contractible.

Lemma 8. For posets Q ⊆ P , if there exists a morphism f : P → Q
which satisfies both
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(1) For every x ≤ y ∈ P , we have f(x) ≤ f(y)
(2) For every x ∈ P , we have x ≤ f(x) (or alternately x ≥ f(x)),

then the inclusion induces a homotopy equivalence |Q| ' |P |.

Proof. Suppose we have P,Q posets and a f : P → Q satisfying the
assumptions. We have an inclusion

ι : Q ↪→ P.

For an x ∈ Q, ι(x) = x. So, for every x ∈ Q

f ◦ ι(x) = f(x) ≥ x = IdQ(x).

Therefore f ◦ ι ≥ IdQ. So |f ||ι| = |f ◦ ι| ' Id|Q|. On the other hand,
for x ∈ P , f(x) ∈ Q, so

ι ◦ f(x) = f(x) ≥ x = IdP (x).

So, f ◦ ι ≥ IdP . So |ι||f | = |ι ◦ f | ' Id|P |.
�

Denote by G′p the Frattini subgroup of G, i.e. the subgroup generated
by the commutator subgroup and p’th powers.

Proposition 9. Suppose G is a p-group. Then for any G-spectrum E,
we have

ΦG(E) ' ΦGab/p(EG′p).

In particular, for a constant Mackey functor A, we have

ΦG(A) ' ΦGab/p(A).

Comment: Note that one always has an equivalence

ΦG(E) ' ΦG/HΦHE.

The special feature here is that EH → ΦHE induces an equivalence
on G/H-geometric fixed points if G is a p-group and H is the Frattini
subgroup.

We shall first prove

Lemma 10. Let G be a p-group and let H ⊆ G be a subgroup not
containing G′p. Then

|PF [G]
H | ' ∗.

Proof. Denote by Q the poset of proper subgroups of G containing

G′p · H. We have an inclusion Q ⊆ P
F [G]
H . By the Burnside basis
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theorem, for any subgroup K ( G, we have K · G′p ( G. Thus, we

have a map of posets ϕ : P
F [G]
H → Q given by

K 7→ K ·G′p.

Also, for K ∈ Q, ϕ(K) ⊇ K. Thus, |Q| ' |PF [G]
H | by Lemma 8.

However, |Q| ' ∗ since Q has a minimal element.
�

Note that this implies Proposition 9, since the quotient map

(12) ẼF [G]→ ẼF [G/G′p]

induces an isomorphism on E1-terms of the spectral sequence (5). (The
spectral sequence is not functorial in general with respect to change of
groups. In the present case, however, we have a surjection of groups
which preserves the height of the proper subgroup containing G′p, while
the remaining terms in the source are 0. Thus, a morphism of spectral
sequences which is an isomorphism an E1 arises.)

Also note that for the present purpose, the spectral sequence can be
skipped entirely and one can simply argue that (12) is an equivalence
by examining its H-fixed points for each H: The fixed point set of the
left hand side is contractible for H ( G and equivalent to S0 if H = G,
while the right hand side is contractible if H ·G′p ( G and equivalent to

S0 if H ·G′p = G. By the Burnside basis theorem, both conditions are
equivalent. This was pointed out to me during the process of revising
this paper.

Proposition 11. If G is not a p-group, then

ΦG(A) = 0.

Proof. First, suppose G is a finite group that is not a p-group.
The spectrum ΦG(Z) is a commutative ring spectrum, since we have

S∞V ∧ S∞V ∼= S∞V .

Choose a prime p. Then by the first Sylow theorem, there exists a p-
Sylow subgroup P of G. Then there exists a H with P ⊆ H ( G that
is maximal (i.e. there does not exist K such that P ⊆ H ( K ( G).
Therefore the contribution of H to the spectral sequence will include

(13) H̃
W (H)
0 (∅̃) ' H

W (H)
0 (∗) = Z.
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In (13), 1 ∈ Z represents an element η ∈ E1
1,0 where

d1(η) = ±|G|
|H|
∈ Z = E1

0,0.

Since we have p - |G||H| , the g.c.d. of all these numbers is 1, and thus,

1 ∈ Z = E1
0,0 of the spectral sequence (8) is killed. Since ΦG

∗ (Z) is a
commutative ring, it must be 0. So

ΦG(Z) = 0.

�

Now, one can apply the results of my previous paper [9], as well as
those of [7, 8], to calculate Φ(Z/p)n(Z).

Recall that for any space or spectrum X, we can obtain maps

(14) Hn(X;Z/p)
β // Hn+1(X;Z/p)

(15) Hn(X;Z/p)
β // Hn+1(X;Z)

as the connecting maps of the long exact sequences from taking co-
homology with coefficients in the following respective short exact se-
quences:

0→ Z/p→ Z/(p2)→ Z/p→ 0

0 // Z
·p // Z // Z/p // 0.

These are called the Bockstein maps, and the long exact sequence in-
volving (15) forms an exact couple which gives rise to the Bockstein
spectral sequence, in which (14) is d1.

Consider first the case of p > 2. Recalling the notation of Theorems
1 and 2, the Bockstein acts by

β(dzi) = zi

βzi = 0.

Also recall that we have

(16) β(ab) = βa · b+ (−1)|a|a · βb.
Thus we get

β(tα) = 0

β(uα) = 1

(Note that β preserves the relations of (2). For example,

β(−uβuα+β + uαuα+β − uαuβ) =

= −β(uβ)uα+β + uββ(uα+β) + β(uα)uα+β
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−uαβ(uα+β)− β(uα)uβ + uαβ(uβ) = 0.)

Now by computing directly on the chain level the equivariant (Z/p)n-
homology of S∞V where V is the reduced regular representation, the
standard (Z/p)n-CW decomposition of S∞V (thought of as a colimit of
smash products of representation spheres of non-trivial 1-dimensional
complex representations α) has only one 0-cell beside the base point,
to which (using one α) p 1-cells are attached on which (Z/p)n acts

transitively. Thus, Φ
(Z/p)n
0 (Z) = Z/p. Since Φ

(Z/p)n
∗ (Z) is a ring, it

has characteristic p (i.e. every element is annihilated by p). Thus the
Bockstein spectral sequence collapses to E2, or in other words

(17) H∗(Φ
(Z/p)n
∗ (Z/p), β) = 0.

Hence, we have an exact sequence

(18) 0 // Φ
(Z/p)n
∗ (Z) // Φ

(Z/p)n
∗ (Z/p)

β // Φ
(Z/p)n
∗ (Z/p).

Therefore, Φ
(Z/p)n
∗ (Z) contains the elements tα and

∑
i aiuαi

where∑
i ai = 0 ∈ Z/p. Choosing an α0 ∈ (Z/p)n r {0}, since we are in

characteristic p, the elements
∑

i aiuαi
where

∑
i ai = 0 ∈ Z/p are

linear combinations of ũα = uα − uα0 . One easily verifies the relations
(3). For example,

−ũβũα+β + ũαũα+β − ũαũβ =

= −(uβ − uα0)(uα+β − uα0) + (uα − uα0)(uα+β − uα0)

−(uα − uα0)(uβ − uα0) = −uβuα+β + uα0uα+β + uβuα0 − u2α0
+ uαuα+β

−uα0uα+β − uαuα0 + u2α0

−uαuβ + uα0uβ + uαuα0 − u2α0
= 0

Let R̃n denote the ring Z/p[tα, ũα] modulo the relations (3). Write (18)
as

0 // RZ // RZ/p
β // RZ/p

We therefore have a homomorphism of rings

ϕ : R̃n → RZ.

We want to prove that this is an isomorphism.

Now, let us consider p = 2. Choose again a representative α0 ∈
(Z/2)n r {0}. Again, the RZ contains elements of the form

∑
i aiyi

with
∑

i ai = 0 which are generated by ỹα = yα − yα0 . Also, the
elements tα = y2α ∈ RZ (by (16)), but note that ỹ2α = y2α + y2α0

(since we
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are in characteristic 2), so we only need to include tα0 in the generators.
Now similarly as for p > 2, one proves the relations.

(19)
ỹα0 = 0

ỹαỹβ + ỹαỹα+β + ỹβ ỹα+β + tα0 = 0.

Let R̃n denote the quotient of the ring Z/2[ỹα, tα0 ] by relations (19).
Again, we have a homomorphism of rings

ϕ : R̃n → RZ

ỹα 7→ yα − yα0 ,

tα0 7→ y2α0
.

We can prove that ϕ is an isomorphism by calculating the Poincaré

series of R̃n, checking that it is the same as the Poincaré series of RZ
and exhibiting an additive basis of R̃n that is linearly independent in
RZ/2.

Recall from [7, 8] that the Poincaré series of RZ/p is

P (RZ/p) =
1

(1− x)n

n∏
i=1

(1 + (pi−1 − 1)x).

Thus, by (17), we have an exact sequence of graded Z/p-vector spaces

0 // RZ // RZ/p
β // RZ/p[1]

β // RZ[2] // 0

and hence
(20)

P (RZ) =
1

1 + x
P (RZ/p) =

1

(1− x2)(1− x)n−1

n∏
i=1

(1 + (pi−1 − 1)x).

For p = 2, we know that the Poincaré series of R̃1 is 1
1−x2 . Now

we can treat the α as elements of (Z/2)n r {0} and assume that
α0 = (1, 0, . . . , 0). For n = 2, we only have ỹ(0,1), ỹ(1,1), ỹ(1,0) = 0.
By the relations, we have ỹ(0,1)ỹ(1,1) = tα0 . Therefore this ring has ad-

ditive basis ỹm≥1(0,1) t
m′
α0

, ỹk≥1(1,1)t
k′
α0

, and t`α0
(m′, k′, ` ≥ 0), which give the

terms x
(1−x)(1−x2) twice and 1

1−x2 in the Poincaré series. Therefore, the

Poincaré series of the ring is

P (R̃2) =
1

1− x2
+ 2 · x

(1− x)(1− x2)
=

1 + x

(1− x)(1− x2)
.

After this, we can continue by induction since the relations imply

P (R̃n) = P (R̃n−1) · (1 + (2n−1 − 1)x) · 1

1− x
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similarly as in [7]: The additive basis is formed by the additive basis of

R̃n−1 times ỹ≥0(0,...,0,1) or ỹ≥1(α′,1) where α′ ∈ (Z/2)n−1r{0}. These elements

are linearly independent in RZ/2 by performing a similar induction there
(which was done in [7]).

The case of p > 2 is completely analogous. We define the homomor-
phism of rings

ϕ : R̃n → RZ

ũα 7→ uα − uα0

tα 7→ tα,

which again we can check is a ring homomorphism by computing the re-
lations in the target. Again, we check ϕ is an isomorphism by checking

that for every n, the Poincaré series of R̃n agrees with (20). We have R̃1

is generated by the basis of (t(1))
m≥0. Thus, as before, P (R̃1) = 1

1−x2 .

This time, for every n ≥ 2, an additive basis of R̃n is given by the ad-

ditive basis of R̃n−1 times t≥0(0,...,0,1) · ũε(0,...,0,1) where ε ∈ {0, 1}, or times

t≥1(α′,1), or times t≥0(α′,1) · ũ(α′,1) where α′ ∈ (Z/p)n−1 r {0}. This gives

P (R̃n) = P (R̃n−1) · (1 + (pn−1 − 1)x) · 1

1− x
,

and we can proceed by induction.

4. Another Example

For the rest of the paper, we will consider equivariant homology
with constant coefficients Z/p for a prime p. If G = (Z/p)n is an
elementary abelian group, S is a set of 1-dimensional representations
(real or complex depending on whether p = 2 or p > 2), and γ =⊕

α∈S α, then we completely calculated in [9] the (Z-graded) coefficients
of

(21) H̃Z/p
G

∗
(S∞γ) = H̃Z/p

G

∗
ẼFγ.

By the above method, for any p-group G and any set S of non-trivial
irreducible 1-dimensional representations of G/G′p, γ =

⊕
α∈S α, we

have

H̃Z/p
G

∗
(S∞γ) = H̃Z/p

G/G′p

∗
(S∞γ).

However, for a G-representation γ which does not factor through
G/G′p the calculation of (21) can be non-trivial. In this section, as an
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example, we consider the case where G is the split extraspecial group
(as described below) at p = 2 and V is the irreducible real represen-
tation non-trivial on the center. This group is the central product
of n copies of D8. We write Vn = (Z/2 ⊕ Z/2)n where the gener-
ators of the ith copy of Z/2 ⊕ Z/2 are denoted by v1,i, v2,i. Define
q(v1,i) = q(v2,i) = 0, q(v1,i + v2,i) = 1, and let q be additive between
different i summands. This is a split quadratic form on the F2-vector
space Vn with associated symplectic form

b(x, y) = q(x+ y) + q(x) + q(y).

A vector subspace W ⊆ V is called isotropic when b is 0 on W and is

called q-isotropic if q is 0 on W . The split extraspecial group Ṽn is an
extension

1→ Z/2→ Ṽn → Vn → 1

where for v ∈ Vn, 2v 6= 0 if and only if q(v) 6= 0 and for v, w ∈ Vn,
vwv−1w−1 = b(v, w).

Clearly Ṽn is isomorphic to a central product of n copies ofD8 and the
(real) irreducible representation γ non-trivial on the center is obtained
as the tensor product of the dihedral representation of the n copies of
D8. We shall apply Proposition 4 to

H̃Z/2
Ṽn

∗
(S∞γ).

The family Fγ consists of elementary abelian subgroups of Ṽn disjoint
with the center which project to q-isotropic subspaces of Vn. Two sub-
groups are conjugate if and only if they project to the same q-isotropic
subspaces U of Vn. We shall refer to these subgroups as decorations of
U , and call them decorated q-isotropic subspaces.

We shall need to consider the following modular representations of

the split extraspecial 2-group Ṽn: All these representations will factor
through the Frattini quotient Vn. By the representation 2i, we mean
a tensor product of the regular representation of Z/2{v1,i} with the
trivial representation on Z/2{v2,i}, where v1,j, v2,j act trivially for j 6= i.
(For counting purposes, equivalently, 1 and 2 can be reversed). The
representation 3i is the kernel of the augmentation from the regular
representation on Z/2{v1,i, v2,i} to the trivial representation (with the
other coordinates also acting trivially).

Let P n be the poset of elementary abelian subgroups of Ṽn which
project to a non-trivial q-isotropic subspace of Vn. We will refer to
these subgroups as decorated q-isotropic subspaces of Vn.
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Theorem 12. For n > 1, H̃k(|P̄n|) = 0 except for k = n − 1. As a

Ṽn-representation, Hn := H̃n−1(|P n|) is given recursively as follows:

H1 = 31

(22)

Hn+1 = 3n+1 ⊗Hn

⊕2n+1 ⊗ (22n−1 − 2n−1)Hn

⊕2n+1 ⊗ (22n−1 + 2n−1 − 1)(2Hn − 2n22n−2Hn−1).

The subtraction in the last term is to be interpreted recursively as fol-
lows: We set H0 = 1. Then one copy of 2nHn−1 is “subtracted” from
the first summand of (22) with n replaced n − 1, to leave a copy of
Hn−1. The remaining 22n−2 − 1 copies of 2nHn−1 are subtracted from
the second summand of the formula (22) with n replaced by n−1 (thus,
only one copy of the 2Hn is involved in the subtraction).

Comment: The expression for Hn given by the Theorem is a direct
sum of representations of the form⊗

i∈S1

2i ⊗
⊗
j∈S2

3j

for S1∩S2 = ∅. I do not know if homology groups of Ṽn with coefficients
in these representations are all completely known. For |S2| ≤ 2, they
can be deduced from the computation of Quillen [12].

Proof. We proceed by induction on n. In the case of n = 1, the isotropic

subspaces are 〈v1〉 and 〈v2〉, and there are two lifts to Ṽ1, and each pair
of lifts is given by one Z/2-summand of V1 = Z/2⊕Z/2. Note that we
have 3, because we must consider reduced homology.

Now to pass from |P̄n| to |P̄n+1|, consider first the poset Q̄n of dec-
orated q-isotropic subspaces of Vn+1 which intersect non-trivially with
Vn. Then the inclusion |P̄n| ⊂ |Q̄n| is an equivalence by Lemma 8,
considering the map the other way given by

W 7→ W ∩ Vn.
Now a q-isotropic subspace W of Vn+1 with W ∩Vn = 0 has dim(W ) ≤
2. Let R̄n+1 denote the union of Qn and the set of decorated isotropic
subspaces W ⊂ Vn+1 with dim(W ) = 2, W ∩ Vn = 0. Then the poset
(R̄n+1)≥W ∩ Qn for any such space W consists of copies of the poset
4P̄n−1 (here we use 4 to denote 4 additional independent decorations).
The factors (22) correspond to the choices of W , consisting of one
non-zero q-isotropic vector w ∈ Vn, and one vector w′ with q(w′) = 1,
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b(w,w′) = 1. There are 22n−2 choices of w′ for each w. Then W =
〈v1 + w, v1 + v2 + w′〉. This leads to a based cofibration

(23) |P̄n| → |R̄n+1| →
∨

4(22n−1+2n−1−1)22n−2

Σ|P̄n−1|.

Now P̄n+1 is the union of R̄n+1 with the set of all decorated q-isotropic
subspaces W ⊂ Vn+1 with W ∩ Vn = 0, dim(W ) = 1. For such a space
W , (P̄n+1)≥W ∩Rn+1 consists of

(24) 2(2(22n−1 + 2n−1) + (22n−1 − 2n−1))

copies of P̄n. The 2, again, corresponds to additional decorations. The
2(22n−1+2n−1) summands correspond to q-isotropic vectors of the form
w + v1, w + v2, for w ∈ Vn, the 22n−1 − 2n−1 summand correspond to
q-isotropic vectors of the form w + v1 + v2. Thus, we obtain a based
cofibration sequence

(25) |R̄n+1| → |P̄n+1| →
∨

2(2(22n−1+2n−1)+(22n−1−2n−1))

Σ|P̄n|.

Now from (23) and (25), we can easily eliminate |R̄n+1|, as we see that
the copies of Σ|P̄n| in (25) corresponding to w = 0 project identically
to Σ|P̄n| ⊂ Σ|R̄n+1| under the connecting map. Thus, we obtain a
cofibration sequence of the form
(26)

|P̄n+1| →
∨

2(2(22n−1+2n−1−1)+22n−1−2n−1)

Σ|P̄n| →
∨

4(22n−1+2n−1−1)22n−2

Σ2|P̄n−1|.

The second map (26) is shown to be onto in reduced homology using
the sums of terms indicated in the statement of the Theorem. (In
particular, we consider, for a q-isotropic vector w + v, with 0 6= w ∈
Vn+1, all choices of vectors w′ such that 〈w + v1, w

′ + v1 + v2〉 is q-
isotropic. Note that this includes but is not equal to, for n > 1, all
〈w + v1, u〉 q-isotropic.)

The dichotomy between canceling the first or second summand in
(22) comes from distinguishing whether the projection of w to Vn−1 is
0 or not.

�

Comment: The same method shows that the reduced homology of
the poset of undecorated q-isotropic subspaces of Vn is concentrated in
degree n − 1 and has rank 2n(n−1). This poset (for n ≥ 2) is the Tits
building of Ω+

2n(2) (the adjoint Chevally group of type Dn at the prime
2), and this fact therefore also follows from the Solomon-Tits Theorem
[13].



20 SOPHIE KRIZ

The number of q-isotropic subspaces Uk of dimension k of Vn is

vn,k = 2
k(k−1)

2 · (2
2n−1+2n−1−1)(22n−3+2n−2−1)...(22n−2k+1+2n−k−1)

(2k−1)(2k−1−1)...(2−1)

The Weyl group of Uk is Ṽn−k. Thus, we have proved the following

Theorem 13. We have

H̃Z/2
G

0
(S∞γ) = Z/2.

For i > 0,

H̃Z/2
G

i
(S∞γ) = vn,k

n⊕
k=0

Hi−n+k−1(Ṽn−k,Hn−k).

�
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