
SOME EXAMPLES OF SIMPLE GENERIC
FI-MODULES IN POSITIVE CHARACTERISTIC

SOPHIE KRIZ

Abstract. We give, in any characteristic p > 0, examples of sim-
ple generic FI-modules whose underlying representations are re-
ducible in all sufficiently high degrees.

1. Introduction

In this paper, an FI-module (more precisely, an FI-module over K)
is a functor from the category FI of finite sets and injections into K-
modules for a field K. FI-modules were introduced by Church, Ellen-
berg, and Farb in [2] with numerous applications in topology, algebra,
and number theory in mind, and have been since studied extensively
(see e.g. [1, 3, 4, 5, 11, 9, 17, 19, 20, 21, 22, 23]). Stable phenomena
of the representation theory of symmetric groups are encoded by the
category of generic FI-modules, defined in a way to disregard elements
which go to 0 in the representations of Σn for n � 0. This is analo-
gous to the construction of the category of quasi-coherent sheaves from
the category of graded modules over the projective coordinate ring of
a projective scheme [25]. This analogy was in fact used by Sam and
Snowden [24] to gain a good understanding of the category of generic
FI-modules in characteristic 0. In particular, they identified all the
simple objects of that category.

The case of characteristic p > 0 is more complicated. Nevertheless,
simple generic FI-modules in positive characteristic were characterized
by Nagpal [21], Theorem 1.11. R.Nagpal asked if the Σn-representation
terms of a simple generic FI-module in positive characteristic are nec-
essarily irreducible for infinitely many n. The main result of the present
paper is to construct counterexamples for all primes p.

To discuss our result more precisely, we need some notation. Let
[n] = {1, . . . , n}. For an FI-module X, we will sometimes write X(N)
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instead of X([N ]). For a given N , we identify a KΣN -module with the
FI-module over K equal to it in degree N and 0 in other degrees. An
FI-module X is called torsion if each of the elements of every X(n)
goes to 0 ∈ X(m) for some m � 0. Torsion FI-modules (over K)
form a Serre subcategory of the category of FI-modules (over K), and
taking the Serre quotient by them gives the category of generic FI-
modules (over K) (see [8] for the details of this construction). Nagpal
[21], Theorem 1.11 (see also Theorem 2 below) proved that in every
characteristic, isomorphism classes of simple generic FI-modules are
in bijective correspondence with p-regular Young diagrams. We denote
the simple generic FI-module in positive characteristic corresponding
to a p-regular Young diagram λ by Dλ. The following theorem answers
a question by Nagpal:

Theorem 1. Suppose K is a field of characteristic p > 0.

(1) If p = 2, then for every N � 0, the ΣN -representation

D(3,1)(N)

is reducible.
(2) If p > 2, then for every N � 0, the ΣN -representation

D(p,2)(N)

is reducible.

We will review the structure of simple generic FI-modules in Section
2 below. This is needed in our main argument. The proof of Theorem
1 requires different approaches depending on whether p = 2 or p > 2.
The case of p = 2 is treated in Section 3, and the case of p > 2 is
treated in Section 4.

Acknowledgment: I am thankful to A. Snowden and R. Nagpal for
discussions. I would like to thank A. Mathas for developing the GAP
package Specht, which I used to verify the computations of Theorem 1
for small numbers.

2. Preliminaries and Nagpal’s Theorem

We begin with some notation. A Young diagram is a k-tuple λ =
(λ1, . . . , λk) where λ1 ≥ · · · ≥ λk are positive integers (this can be
visualized as a diagram of boxes with k rows and λi boxes in the i-th
row). For a Young diagram λ, let |λ| denote the number of its boxes (i.e.
|λ| = λ1 + · · · + λk). Let Sλ denote the Specht module corresponding
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to a Young diagram λ. As a general reference for Specht modules, we
recommend [12]. We denote by Mλ the Spechtral FI-module consisting
of the Specht modules of the Young diagrams obtained by adding a
row to the top of λ at each degree ≥ |λ|+λ1 ([2] Definition 2.2.6: they
work in characteristic 0, but the construction works over Z, see [16]).

A Young diagram λ = (λ1, . . . , λk) is called p-regular if at most p−1
of the numbers λ1, . . . , λk are equal to any given number i. Recall
that the set of Young diagrams with ` boxes has a natural ordering
called dominance given by saying, for two partitions µ = (µ1, . . . , µn),
ν = (ν1, . . . , νm) of `, µ� ν when

µ1 + · · ·+ µk ≥ ν1 + · · ·+ νk

for all k ≥ 1. In this note, we will also call a Young diagram µ strictly
dominant over ν (write µ� ν) if we have µ� ν and µ 6= ν.

For every p-regular Young diagram λ, Sλ has a unique quotient Dλ

which is a simple KΣ|λ|-module. These form a complete set of repre-
sentatives of isomorphism classes of simple KΣ|λ|-modules. Moreover,
for a p-regular Young diagram λ, all the other composition factors of
Sλ are Dµ with µ� λ ([12], Section 12).

One defines two functors

Ψ′ : FI-Mod→ FI-Mod

Φ′ : FI-Mod→ FI-Mod

by

(1) Ψ′(M•) : [N ] 7→ HomFI-Mod(KMapFI([•], [N ])∨,M•)

(2) Φ′(M•) : [N ] 7→ KMapFI([N ], [•])∨ ⊗FI-Mod M•

for an FI-module M•. By definition, Φ′ is left adjoint to Ψ′. It is
also easy to see that applying Φ′ to a torsion FI-module gives 0 (by
surjectivity of morphisms in the first factor of the right hand side of
(2)) and that applying Φ′ to any FI-module gives a torsion FI-module.
This shows that for ever FI-modules M•, denoting by M≥N the sub-
FI-module in degree ≥ N (and 0 below), the projection induces a
surjection

(3) Φ′(M≥N)→ Φ′(M).

However, considering the additional relations in Φ′(M) involving x ∈
Mn for n < N , one sees that they are also present in the source of (3).
Thus, (3) is in fact an isomorphism.
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Let FI-Modgen denote the category of generic finitely generated FI-
modules over K and let FI-Modtor denote the full subcategory of FI-
modules overK on finitely generated torsion FI-modules overK. Then
Φ′, Ψ′ induce a pair of functors

Φ : FI-Modgen → FI-Modtor

Ψ : FI-Modtor → FI-Modgen

where Φ is left adjoint to Ψ. (See [21], Section 1.)

In characteristic 0, by Schur-Weyl correspondence, the functors Ψ,
Φ coincide with the functors of the same names in [24], where they
are proved to be inverse equivalences of categories. This is false in
characteristic p > 0.

Nagpal’s Theorem can be restated as follows:

Theorem 2. ([21], Theorem 1.11) Let K be a field of characteristic p.
For every p-regular Young diagram λ, there exists a canonical non-zero
morphism of FI-modules over K

ιλ : Mλ → Ψ(Dλ)

such that Dλ = Im(ιλ) is a simple object in the category FI-Modgen

of generic finitely generated FI-modules over K. Additionally, every
simple generic finitely generated FI-module over K is isomorphic to
Dλ = Im(ιλ) for a unique p-regular Young diagram λ.

In this paper, we denote the induction from a subgroup H to a
group G by IndHG with the philosophy that the superscript indicates
a contravariant variable. The opposite convention also occurs in the
literature. Note that one can identify

KMapFI([m], [m]) ∼= KΣn/Σn−m.

Note that a morphism of FI-modules is determined by a sequence of
Σn-equivariant maps commuting with the structure maps correspond-
ing to the standard inclusions [n] ⊂ [n+ 1].

For our purposes, we will need to review the construction of the
map ιλ. First, one notes that for an FI-module X, Φ(X)(m) can be
described as the colimit of a diagram of the form

(4) (X(n))Σn−m (X(n− k))Σn−k−m

(Ind
Σn−k×Σk
Σn

X(n− k))Σn−m .

φ−

44iiiiiiiiiiiiiiiiφ+

jjTTTTTTTTTTTTTTT
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Precisely speaking, the objects of the category I indexing the diagram
(4) consist of a “top row” and a “bottom row.” The objects in the top
row are indexed by n = m,m+1,m+2, . . . . The objects in the bottom
row are indexed by pairs of integers (n, n − k) where m ≤ n − k ≤ n.
The morphisms are those drawn in (4). The morphisms φ+, φ− are
described as follows: φ+ is given by taking Σn−m-cofixed points (also
nown as coninvariants) of the natural

Ind
Σn−k×Σk
Σn

X(n− k)→ X(n).

The map φ− is defined to be the composition

(Ind
Σn−k×Σk
Σn

(X(n− k)))Σn−m

��

(Ind
Σn−k×Σk
Σn

(X(n− k)))Σk×Σn−k−m

��
(X(n− k))Σn−k−m

where the top map is taking corestriction (i.e. summing over coset
representatives of Σn−m/Σk×Σn−m−k), and the lower map is the counit
of adjunction of the induction as a right adjoint to cofixed points,
followed by Σn−k−m-cofixed points.

Dually, Ψ(X)(N) is the limit of the diagram

(5) Ind
Σ`−k×ΣN−`+k
ΣN

(X(`− k))

ψ+

**VVVV
VVVV

VVVV
VVVV

VV
Ind

Σ`×ΣN−`
ΣN

(X(`))

ψ−

ttjjjj
jjjj

jjjj
jjjj

Ind
Σ`−k×ΣN−`+k
ΣN

((X(`))Σk)

where the indexing category is IOp where I is the indexing category of

the diagram (4). The map ψ+ is given by applying Ind
Σ`−k×ΣN−`+k
ΣN

to
the natural map

X(`− k)→ (X(`))Σk .
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The map ψ− is defined as the composition

Ind
Σ`×ΣN−`
ΣN

(X(`))

��

Ind
Σ`×ΣN−`
ΣN

(Ind
Σ`−k×Σk
Σ`

(X(`)Σk))

��

Ind
Σ`−k×ΣN−`+k
ΣN

(X(`)Σk)

where the top map is given by induction applied to the unit of adjunc-
tion of fixed points and induction, and the lower map, noting that

Ind
Σ`×ΣN−`
ΣN

◦ IndΣ`−k×Σk
Σ`

= Ind
Σ`−k×Σk×ΣN−`
ΣN

,

is given by corestriction (i.e. summing over coset representatives of

(Σ` × ΣN−`)/(Σ`−k × Σk × ΣN−`)).

Let λ = (λ1, . . . , λk) be a p-regular Young diagram and let N ≥
|λ|+ λ1. Define

λ+
N = (N − |λ|, λ1, . . . , λk).

We will sometimes omit N when it is implicit.

Lemma 3. Suppose λ is a p-regular Young diagram, N > |λ|+ λ1.

(A) Ψ(Dλ)(N) has a unique composition factor isomorphic to Dλ+N
.

(B) Let X be a finitely generated FI-module. Suppose there exists a
generic surjection Mλ � X. Then there exists a canonical (up to
scaling) surjection

(6) Φ(X) � Dλ.

Additionally, the map

(7) X → Ψ(Dλ)

adjoint to (6) sends the composition factor Dλ+N
to itself by an

isomorphism. More precisely, there exists filtrations on X(N) and
Φ(Dλ)(N) compatible with the map, giving the stated isomorphism
on the associated graded pieces.

Proof. By [14], Theorem 3, the induction to N � 0 of Dλ contains
Dλ+N

as a unique composition factor, and all other composition factors

are of the form Dµ for µ� λ+
N . Additionally, Dλ+N

is not a composition
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factor in the induction of any Σn-module with n < |λ|. By the above
description of the functor Ψ, this implies (A).

Also by [14], Theorem 3, for every N , the cofixed point KΣ|λ|-module

(8) (Dλ+N
)ΣN−|λ|

is Dλ and the cofixed point module of Dλ+N
under ΣN−i with i < |λ|

is 0 (since Dλ occurs at the “top branching level” of L(λ+
N)). Thus,

by the description of the functor Φ as the colimit (4), Dλ is by defi-
nition a quotient of the module of generators of Φ(X). Additionally,
the assumption guarantees that these generators are not killed by the
relations (again by [14], Theorem 3, since, if µ+

N � λ+
N , then µ � λ or

|µ| < |λ|). This implies the first statement of (B).
For the last statement, we also observe that by [14], Theorem 3, we

cannot have λ+
N = µ+

N for |µ| < |λ| and thus, by the description of Ψ as
the limit (5), Dλ+N

is a composition factor of Ψ(Dλ)(N) (since there is

no condition excluding this factor). Additionally, all other composition
factors of Ψ(Dλ)(N) are Dµ for µ� λ+

N . Moreover, our construction of
(6) from (8) implies that the adjoint (7) defines an isomorphism on the
constituent factors Dλ+N

.

�

Now, by Lemma 3, for a p-regular Young diagram λ, we have a
natural (non-zero) surjection

βλ : Φ(Mλ)→ Dλ.

Then since Φ and Ψ are adjoint, we obtain a non-zero map

ιλ : Mλ → Ψ(Dλ).

For the remainder of the proof of Theorem 2, we refer the reader to
[21].

3. Proof of Theorem 1 at p = 2

First, note that we have a short exact sequence

(9) 0→ S(4) → S(3,1) → D(3,1) → 0.

Thus,

dim(D(3,1)) = dim(S(3,1))− dim(S(4)) = 3− 1 = 2,
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which is also the dimension of S(2,2). Since, at p = 2, we have

(3, 1) = (2, 2)r

(where λr denotes the Young diagram obtained from shifting the boxes
of λ as high as possible along each ladder (see [13]), D(3,1) is a compo-
sition factor of S(2,2) (by [13], Theorem A). Thus,

D(3,1) = S(2,2).

By Lemma 3, we have a natural surjection

Φ(M(3,1)) � D(3,1) = S(2,2).

Now we claim the following

Proposition 4. There is a short exact sequence

0→M(2,2) → Ψ(D(3,1))→M(2) → 0.

First, note that by the Pieri rule, the restriction of the KΣ4-module
D(3,1) = S(2,2) to Σ3 is the Specht module S(2,1) (since the only remov-
able box in (2, 2) is the bottom right corner). We thus obtain that the
induction of S(2,1) has composition factors

(10) D(3,1), D(4), D(3,1), D(4), D(3,1),

listed from top to bottom (i.e., with the piece that can be considered as
a quotient listed first, and the piece that can be considered a submodule
listed last).

Lemma 5. The unit of adjunction

S(2,2) → IndΣ3
Σ4

(S(2,2)|Σ3)

maps S(2,2) isomorphically to the bottom D(3,1) piece (10) (coming from
S(2,1,1)).

Proof. We can identify the non-zero elements of S(2,2) with 4-cycle sub-
graphs of the complete graph on vertices [4] = {1, 2, 3, 4}. On the
other hand, S(2,1) can be identified with the submodule of K [3] con-

sisting of vectors whose coordinates have sum 0. Thus, IndΣ3
Σ4

(S(2,1))

is a submodule of IndΣ3

Σ4
(K [3]), which is identified with MapFI([3], [4])

(where by our convention, the image of 1 is the new coordinate and the
image of 2 comes from the coordinate in [3]). We encode an injective
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map [2] → [4] by a 4-tuple where we write i for the image of i = 1, 2,
and 0’s in the remaining places. Under these conventions, our unit of
adjunction maps

(11)

S(2,1) 3 {1, 2}+ {2, 3}+ {3, 4}+ {4, 1} 7−→

(2, 0, 0, 1) + (0, 0, 1, 2) + (1, 0, 0, 2)+
+(0, 1, 2, 0) + (0, 0, 2, 1) + (0, 2, 1, 0)+

+(1, 2, 0, 0) + (2, 1, 0, 0).

On the other hand, in this notation, the generators of the Specht mod-
ule S(2,1,1) ⊆ MapFI([2], [4]) can be identified with, choosing i ∈ [4], the
sum qi of the six 4-tuples which are non-zero on i. We then see that
(11) lies in this submodule, and namely, is equal to q1 + q3.

The images under the unit of adjunction of other elements of S(2,2)

then also lie in the submodule

S(2,1,1) ⊆ IndΣ3
Σ4

(S(2,1)).

�

Proof of Proposition 4. Now for induction from S(2,2) to a degree N �
0, the Pieri rule gives pieces (from top to bottom)

S(N−2,2), S(N−3,2,1), S(N−4,2,2).

The middle summand is eliminated by the above observation using the
description of the functor Ψ in the beginning of Section 2 as the limit
of the Diagram (5). Thus, we get generically

0→M(2,2) → Ψ(D(3,1))→M(2) → 0.

�

Now any map of FI-modules

M(3,1) →M(2)

is 0, since the map is necessarily 0 in degree 7 (since the composition
factors of S(3,3,1) are D(7) and D(4,2,1), while S(5,2) is irreducible. Hence,
the map ι(3,1) factors through

M(3,1)

yy

κ ι(3,1)

��
0 // M(2,2)

// Ψ(S(2,2))
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for some map

κ : M(3,1) →M(2,2).

At an FI-degree N , denote the cokernel

C = Coker(κ).

We claim the following

Lemma 6. In degrees � 0, generically,

C = M∅.

To prove this Lemma, we will need calculations of Ψ(S(4)) and Ψ(S(3,1)),
which we make in the following propositions:

Proposition 7. Generically, there is a short exact sequence

0→M(4) → Ψ(S(4))→M∅ → 0.

Proof. First, the restriction of the Specht module S(4) to Σ3 is exactly
the Specht module S(3), whose induction to Σ4 has pieces (listed from
top to bottom) S(4), S(3,1). The unit of adjunction (between restriction
and induction) sends S(4) monomorphically to the lowest piece.

Now the induction of S(4) to N ≥ 8 has pieces (listed from top to
bottom)

S(N), S(N−1,1), S(N−2,2), S(N−3,3), S(N−4,4).

The above observation, along with our description of the functor Ψ,
eliminates all but the first and last piece. Thus, using the FI-module
structure of the induction, we get generically

0→M(4) → Ψ(S(4))→M∅ → 0.

�

Proposition 8. We have

Ψ(S(3,1)) = M(3,1).
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Proof. First, note that the restriction of the Specht module S(3,1) to
Σ3 has pieces S(3), S(2,1). The induction back to Σ4 of the first piece
is S(3,1), to which the bottom piece D(4) of S(3,1) injects by the unit of
adjunction. The piece S(2,1) inducts to S(3,1) and S(2,1,1), to which the
top piece S(2,2) of S(3,1) injects.

Now the induction of S(3,1) to N ≥ 8 has pieces

S(N−1,1), S(N−2,2), S(N−2,1,1), S(N−3,3), S(N−3,2,1), S(N−4,3,1).

The first, second, and fourth price are eliminated by the first part of the
unit of adjunction (to the induction of S(3)) and the third and fourth
pieces are eliminated by the second part of the unit of adjunction (to
the induction of S(2,1,1)), similarly as in the proofs of Proposition 4 and
Proposition 7. Thus,

Ψ(S(3,1)) = M(3,1).

�

Proof of Lemma 6. Recall again the exact sequence

0→ S(4) → S(3,1) → S(2,2) → 0.

Since Ψ is right adjoing to Φ, it is left exact, so we obtain

0 // Ψ(S(4)) // Ψ(S(3,1))
ρ // Ψ(S(2,2)).

Then ρ factors through κ (since by above, Ψ(S(3,1)) = M(3,1)).
Thus, at every FI-degree N � 0, the dimension of C(N) equals

dim(M(2,2)(N))− dim(M(3,1)(N)) + dim(Ψ(S(4))(N)) =

= dim(M(2,2)(N))− dim(M(3,1)(N)) + dim(M∅(N)) + dim(M(4)(N)) =

= dim(M∅(N)) = dim(S(N)) = 1

(since, by the hook length formula,

dim(S(k,3,1)) =
(k + 4)(k + 3)(k + 1)(k − 2)

8

dim(S(k,4)) =
(k + 4)(k + 3)(k + 2)(k − 3)

24
and

dim(S(k,3,1))− dim(S(k,4)) =
(k + 4)(k + 3)k(k − 1)

12
) = dim(S(k,2,2)).
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Hence, C(N) is a KΣN -module with dimension 1. Thus, for every
N , C(N) = S(N), proving that, as FI-modules,

C = M∅.

�

Finally, to prove Theorem 1, we let Rλ = KΣλ
row where Σλ

row is
the subgroup of Σ|λ| of permutations preserving the rows of a Young
diagram λ.

Proof of Theorem 1. SupposeN ≥ 8 is odd. We consider the morphism

(12) θT1 : R(N−3,2,1) → R(N−4,2,2)

of [12] given by the tableau T1 with rows

3 3 2 1 . . . 1

2 1

1

We calculate that, using the notation of [12],

N1,1(T1) = N − 6, N2,1(T1) = 1, N3,1(T1) = 2,

N1,2(T1) = 1, N2,2(T1) = 1, N3,2(T1) = 0,

N1,3(T1) = 1, N2,3(T1) = 0, N3,3(T1) = 0,

and thus T1 satisfies the condition of Theorem 24.6, (ii), [12] (since N is
assumed to be odd). Hence, by Theorem 24.6, (ii), [12], the restriction
of θT1 is a non-zero homomorphism

θT1|S(N−3,2,1)
: S(N−3,2,1) → S(N−4,2,2).

Since T1 is reverse semistandard, by the proof of Theorem 24.6,

Im(θT1|S(N−3,2,1)
) ⊆ S(N−4,2,2)

contains the composition factor D(N−3,2,1). Therefore, this composition
factors must be present in Im(ι(3,1))(N) ∼= Im(κ)(N), which is there-
fore not simple, since it also contains the composition factor D(N−4,3,1).

Suppose N ≥ 8 is even. We consider the morphism

(13) θT2 : R(N−2,1,1) → R(N−4,2,2)

given by the tableau T2 with rows
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3 3 2 1 . . . 1

2

1

We calculate, using the notation of [12],

N1,1(T1) = N − 5, N2,1(T1) = 1, N3,1(T1) = 2,

N1,2(T1) = 0, N2,2(T1) = 2, N3,2(T1) = 0,

N1,3(T1) = 1, N2,3(T1) = 0, N3,3(T1) = 0,

and thus, again, T2 satisfies the considiton of Theorem 24.6, (ii), [12]
(since N is assumed to be even). Hence, the restriction of θT2 is a
non-zero homomorphism

θT2|S(N−2,1,1)
: S(N−2,1,1) → S(N−4,2,2).

Now all composition factors of S(N−2,1,1) are of the form Dλ where
λ � (N − 2, 1, 1) (by Theorem 12.1 of [12]). Then θT2|S(N−2,1,1)

must
be non-zero on at least one such Dλ, and therefore Dλ must be a
composition factor of Im(θT2|S(N−2,1,1)

) ⊆ S(N−4,2,2). Hence, this Dλ

is also a composition factor of Im(ι(3,1)) ∼= Im(κ). By Theorem 24.4
of [12], λ 6= (N). In addition, since λ � (N − 2, 1, 1), we also have
λ 6= (N − 4, 3, 1). Therefore, since Im(ι(3,1))(N) ∼= Im(κ)(N) also
contains the composition factor D(N−4,3,1), it can not be simple.

�

4. Proof of Theorem 1 at p > 2

Suppose p > 2. First, we have the following

Proposition 9. There is a short exact sequence

0→ S(p+1,1) → S(p,2) → D(p,2) → 0.

Proof. If hλ(a, b) is the hook length of a box (a, b) in a Young diagram
λ, we say that the box (a, b) is bad if vp(hλ(a, b)) > 0 and there are boxes
(x, b), (a, y) in λ such that vp(hλ(a, b)) 6= vp(hλ(x, b)) and vp(hλ(a, b)) 6=
vp(hλ(a, y)).

First note that since (p, 2) contains a bad box, S(p,2) must be re-
ducible (see [6, 7]). It therefore contains a submodule of the form Dλ
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where λ� (p, 2). The only options for λ are (p+ 1, 1) and (p+ 2). By
[12], Theorem 24.4, D(p+2) = S(p+2) is not a submodule of S(p,2) since
p is not −1 mod p. Thus, D(p+1,1) = S(p+1,1) (the equality holds since
(p+ 1, 1) has no bad boxes) is a submodule of S(p,2).

To prove the Proposition, by [12], Section 11, it suffices to show

(14) S⊥(p,2) ∩ S(p,2) = S(p+1,1),

where S⊥(p,2) is the orthogonal complement of S(p,2) in R(p,2) (the stan-

dard permutation module basis of R(p,2) is orthonormal). By the above
discussion, we already know S⊥(p,2) ∩ S(p,2) ⊇ S(p+1,1) in (14).

To prove the other inclusion in (14), first, by the hook formula, we
have

dim(S(p,2)) =
(p+ 2)!

(p+ 1)p(p− 2)!2
=

(p+ 2)(p− 1)

2
,

and we also have

dim(R(p,2)) =
(p+ 2)!

p!2
=

(p+ 2)(p+ 1)

2
.

So

(15) dim(R(p,2))− dim(S(p,2)) =
2(p+ 2)

2
= p+ 2.

Let

Vn = KΣn/Σn−1 = R(n−1,1).

Then we have a homomorphism

ψ1,1 : R(p,2) → Vp+2

and S(p,2) ⊆ ker(ψ1,1) (by [12], Corollary 17.18), where ψ1,1 is defined
as a sum of standard basis elements obtained by moving one box from
the second row to the first row. In fact, in this case ψ1,1 is surjective
since its image contains sums of every pair of standard basis elements
in Vp+2 and p > 2.

Thus, since dim(Vp+2) = p + 2, by (15), we have a short exact se-
quence

0 // S(p,2)
// R(p,2)

ψ1,1 // Vp+2
// 0.

Hence, S⊥(p,2)
∼= Vp+2, and in particular,

S⊥(p,2) ∩ S(p,2) ≤ p+ 2.

To prove (14), since we already know the ⊇-inclusion, it suffices to
show

S⊥(p,2) ∩ S(p,2) ≤ p+ 1 = dim(S(p+1,1)).
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To this end, it suffices to find an element in S⊥(p,2) rS(p,2). Consider the
map

R(p,2) → K,

given by sending a basis element to 1 ∈ K if it has a 2 in a given position
and to 0 ∈ K else. This is equivalent to taking the dot product with
the sum v of such basis elements, of which there are p + 1. Thus, the
dot product of the element v with itself is p+ 1 which is non-zero, and
thus, v is not in S(p,2) = ker(ψ1,1). Thus, (14) is proven, concluding
the proof of the Proposition.

�

Again, since Ψ is a right adjoint, it is left exact, giving

(16) 0→ Ψ(S(p+1,1))→ Ψ(S(p,2))→ Ψ(D(p,2)).

We then claim the following

Proposition 10. We have

Ψ(S(p+1,1)) = M(p+1,1).

Proof. Letting

Vn = K(Σn/Σn−1) ∼= Kn,

we have

S(p+1,1) = K{(v1, . . . , vp+2) ∈ Vp+2|
p+2∑
i=1

vi = 0}.

Consider the unit of adjunction between induction and restriction

(17) S(p+1,1) → Ind
Σp+1

Σp+2
Res

Σp+2

Σp+1
S(p+1,1).

Using the isomorphism

Ind
Σp+1

Σp+2
Res

Σp+2

Σp+1
S(p+1,1)

∼= K(Σp+2/Σp+1)⊗K S(p+1,1)

the map (17) can be described as sending (v1, . . . , vp+2) ∈ S(p+1,1) to
(1, 1, . . . , 1)⊗ (v1, . . . , vp+2).

Now the restriction of S(p+1,1) to Σp+1 has pieces S(p+1), S(p,1), with
S(p+1) above S(p,1). The image of (17) must be contained in the induc-
tion of S(p,1) since any (1, . . . , 1) ⊗ (v1, . . . , vp+2) in the image of (17)
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can be expressed as the sum

p+2∑
i=1

(0, . . . , 0, 1, 0, . . . , 0)⊗ (v1, . . . , vi−1, 0, vi+1, . . . , vp+2)

(where in the ith summand, the 1 is in the ith place).
The only piece of the induction of S(p+1,1) to N � 0 that is not a

piece in the induction of S(p,1) is S(N−p−2,p+1,1). Thus, by the description
(5) of Ψ,

Ψ(S(p+1,1)) = M(p+1,1).

(The FI-module structure again follows from the FI-module structure
on the induction.)

�

Proof of Theorem 1: Fix some N � 0. Denote by ϕ the first map of
(16). By Proposition 10, the injection is of the form

ϕ : S(N−p−2,p+1,1) → Ψ(S(p,2))(N).

We therefore obtain the short exact sequence

(18) 0→ ϕ−1(S(N−p−2,p,2))→ S(N−p−2,p,2) → (Im(ι(p,2)))(N)→ 0.

(For the sake of brevity, let us write k = N − p− 2.)
Now consider the map

(19) θT : R(b kpcp+p,k−b kpcp+1,1) → R(k,p,2)

(again using the notation and definitions given in [12]) where T is the
reverse semistandard tableau

3 3 2 . . . 2 2 . . . 2 1 . . . 1

2 1 1 . . . 1

1

which has

N1,1(T ) =

⌊
k

p

⌋
p− 1, N2,1(T ) = p− 1, N3,1(T ) = 2

N1,2(T ) = k −
⌊
k

p

⌋
p, N2,2(T ) = 1, N3,2(T ) = 0

N1,3(T ) = 1, N2,3(T ) = 0, N3,3(T ) = 0.
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This satisfies the conditions of Theorem 24.6, (ii), [12] and therefore
(19) restricts to a non-zero map

θ̂T : S(b kpcp+p,k−b kpcp+1,1) → S(k,p,2).

It therefore suffices to show θ̂T does not lift to a map

(20) S(b kpcp+p,k−b kpcp+1,1) → ϕ−1(S(k,p,2)) ⊆ S(k,p+1,1),

for (18) (since then (Im(ι(p,2)))(N) will have composition factorsD(k,p,2)

and Dλ for some λ dominant or equal to (
⌊
k
p

⌋
p + p, k −

⌊
k
p

⌋
p + 1, 1)

and therefore be reducible, having two different composition factors).
Suppose a lifting (20) exists. If p divides k, then (k, p + 1, 1) con-

tains no bad boxes, so S(k,p+1,1) is irreducible, thus already forming a
contradiction since then (20) is 0. So, suppose p does not divide k.
By [12], Theorem 13.13, it suffices to show all linear combinations of

θ̂T for semistandard (
⌊
k
p

⌋
p + p, k −

⌊
k
p

⌋
p + 1, 1)-tableaux T of type

(k, p+1, 1) which have image contained in the Specht module S(k,p+1,1)

are 0. The only semistandard (
⌊
k
p

⌋
p+ p, k−

⌊
k
p

⌋
p+ 1, 1)-tableau T of

type (k, p+ 1, 1) is

(21)

1 1 . . . 1 1 . . . 1 2 . . . 2

2 2 . . . 2

3

.

We will prove that Im(θ̂T ) * S(k,p+1,1) using [12], Corollary 17.18 by

finding i, v with ψi−1,v(Im(θ̂T )) 6= 0, where

ψi−1,v : Rλ → R(λ1,...,λi−2,λi−1+λi−v,v,λi+1,... )

is obtained by moving λi − v boxes from the ith row to the (i − 1)th
row.

Let us choose i = 2, v = p. Applying ψi−1,v then involves summing
over the different tableaux T ′ arising from taking un-signed row per-
mutations and then taking the sum of signed column permutations of
tableaux T ′′ arising from T ′ by replacing one 2 in (21) by a 1.

It then suffices to show that there exists a T ′′ with no two numbers
the same in any column and this T ′′ arises a number of times that is not

divisible by p. Consider the T ′′ given as the (
⌊
k
p

⌋
p+p, k−

⌊
k
p

⌋
p+1, 1)-

tableau



18 SOPHIE KRIZ

(22)

2 1 . . . 1 1 . . . 1 2 . . . 2

1 2 . . . 2

3

.

This can arise in two fashions:
1. T ′ arises by moving the first 2 in the first row to the first column

and T ′′ then arises by replacing the first 2 in the second row with a 1.
This yields one positive summand.

2. T ′ arises by moving the first 2 in the first row to any of the first
k + 1 spots of the first row (including the possibility of letting it stay
in the same spot), and T ′′ then arises by replacing this same 2 by a 1,
and switching the 1 and 2 in the first column. This gives k+1 negative
summands.

Thus, the coefficient of the summand T ′′ in the linear combination
is −k. By our assumption, p does not divide k (and thus also does not
divide −k), hence concluding the proof. �
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