
INTERPOLATION OF GENERAL AFFINE GROUPS
AND SEMIDIRECT PRODUCTS OF SYMPLECTIC

GROUPS WITH HEISENBERG GROUPS VIA
REPRESENTATION STABILITY

SOPHIE KRIZ

Abstract. Using methods of representation stability, we con-
struct (non-semisimple) pre-Tannakian categories which could be
interpreted as interpolation tensor categories of certain represen-
tations of groups of affine transformations. We also discuss an
analogous construction for symplectic groups with their canonical
actions on Heisenberg groups.

1. Introduction

The general linear group GLn(C) acts on the vector space Cn. The
resulting semidirect product is the general affine group GAn(C). P.
Deligne and J. S. Milne [2, 3] defined pre-Tannakian categories, i.e.
symmetric tensor (abelian) categories, linear over C, with finite dimen-
sional Hom-spaces, and such that all objects have strong dual, which
can be interpreted as the categories of finite dimensional algebraic rep-
resentations of GLc(C) for c /∈ Z.

Every finite dimensional algebraic representation W of GLn(C) also
determines a representation W̃ of GAn(C) where Cn acts trivially.
However, such representations can have non-trivial extensions: For ex-
ample, GAn(C) acts on Cn+1 by

(1)

(A, (a1, . . . , an)
T ) · (x0, . . . , xn)T =

=


x0

A ·

 x1
...
xn

+ x0 ·

 a1
...
an




which is an extension of the trivial representation by the representation

corresponding to W̃ where W is the vector representation of GLn(C).
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The purpose of this paper is to propose, in some sense, an “interpola-

tion” of the category of finite extensions of the representations W̃ of
GAc for c /∈ Z.

For the symplectic group Sp2n(C), the situation is analogous. The
stabilizer of the vector (1, 0, . . . , 0)T ∈ Cn+1 in the standard repre-
sentation of Sp2n+2(C) is a semidirect product of Sp2n(C) with the
Heisenberg group

H2n = {(b|a, c) | b ∈ C, a, c ∈ Cn}

with the product

(b|a, c) · (y|x, z) = (b+ y + aT · z − xT · c | a+ x1, c+ z).

The embedding H2n ⊆ Sp2n+2(C) is given by

(b|a, c) 7→


1 aT b cT

0 I c 0
0 0 1 0
0 0 −a I

 .

Again for a finite dimensional algebraic representation W of Sp2n(C),
we can define a representation W̃ of Sp2n(C) ⋊ H2n by letting H2n

act trivially. Again, we have non-trivial extensions. For example, the
basic representation V of Sp2n+2(C), considered as a representation of
Sp2n(C) ⋊ H2n, has a composition series with trivial representation 1

at the top and bottom and W̃ for the basic representation of Sp2n(C)
in the middle.

In fact, we also have a non-trivial 2-dimensional representation of
H2n where (b|a, c) acts by (

1 b
0 1

)
.

Again, we propose a pre-Tannakian interpolation of the category of

finite extensions of the representations W̃ of Spc(C)⋊Hc for c /∈ Z.

What does this have to do with representation stability? The ba-
sic concept are FI-modules, which are functors from the category FI
whose objects are finite sets (equivalently the sets [n] = {1, . . . , n}) and
morphisms are injections to C-vector spaces. The C-linear abelian cat-
egory FI-Mod of FI-modules (and natural transformations) has been
studied extensively, see e.g. [1, 5, 6, 8, 11, 10, 13, 14, 15, 17, 18]. One
passes to the quotient FI-Modgen of FI-Mod by the Serre subcategory
of torsion modules consisting of torsion elements (i.e those which are
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sent to 0 by one of the morphisms of FI). The category FI-Modgen is
a useful tool for capturing phenomena of representation stability [1].

Using Schur-Weyl duality, A. Snowden [19], Chapter 6, noted that
the category of FI-modules corresponds to the category of polynomial
GL∞-equivariant C[x1, x2, . . . ]-modules. Thinking of these as “coher-
ent sheaves on A∞,” he further observed that generic FI-modules cor-
respond to “GL∞-equivariant coherent sheaves” on A∞ ∖ {0} which
correspond to representations of the stabilizer group of one point, i.e.
GA∞.

This was the motivation for our investigation, but to obtain the
“interpolation” (in particular, to interpret the “dimension” c), the cat-
egory of FI-modules has to be modified.

We begin by noting that there are two immediately visible tensor cat-
egory structures on FI-Mod, FI-Modgen. One is the level-wise struc-
ture, i.e. for FI-modules M , N ,

(2) (M ⊗N)[n] =M [n]⊗C N [n]

This structure was investigated for example in [1, 8, 11, 18]. The tensor
structure ⊗ is most easily understood by the fact ([19], Exercise 5.29)
that

M 7→ colim
n
M [n]

gives an equivalence between FI-Modgen and smooth (finitely gener-
ated) representations of the countably infinite symmetric group Σ∞, by
which we mean the group of those permutations on N = {1, 2, . . . } that
move only finitely many elements non-trivially, where smooth means
that the stabilizer of any element contains a subgroup of the form
Σ∞−n, which means the stabilizer of [n]. (In this note, we shall use
Σ to denote a symmetric group, to avoid confusion with the notation
for Specht modules.) Now smooth Σ∞-representations have a tensor
product (the tensor product of representations over C) to which the
tensor product in FI-Modgen given by (2) corresponds.

While the resulting tensor category of smooth Σ∞-representations is
not rigid (i.e. does not have strong duality), it embeds naturally into
any of the categories Rep(Σt) of P. Deligne [2], which are semisimple
for t /∈ N0. The embedding is defined as follows: Morphisms from
[m] to [n] in Rep(Σt) can be identified with the free C-vector spaces
on equivalence relations on [m] ⨿ [n] (see [9] for more detail). Then
morphisms of smooth Σ∞-representations

V ⊗m → V ⊗n

where V = CN is the “standard” representations of Σ∞ correspond
to the free vector space on those equivalence relations whose every
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equivalence class has a non-empty intersection with [m]. Thus, for
values t /∈ N0, we obtain an embedding of FI-Modgen with the tensor
product ⊗ into the semisimple pre-Tannakian category Rep(Σt).

Another, for our purposes more relevant, tensor category structure
on FI-Mod, FI-Modgen, which can be called theDay product and which
we will denote by ⊠, where for FI-modules M , N , the FI-module
M ⊠N is defined by taking the FI×FI-module (Mm⊗Nn)m,n∈N2

0
and

applying the left Kan extension along the functor

FI × FI → FI

given by disjoint union. The significance of this tensor structure is that
under Schur-Weyl duality, it corresponds to ⊗ of representations.

The question we investigate in the present paper is fully embedding
FI-Modgen into a pre-Tannakian category.

The basic idea is that we can easily embed the pseudo-abelian enve-
lope of the category of (Day) tensor powers X⊠n of the “basic” object
into the category (FI±c )

Op whose objects are pairs (m,n) ∈ N2
0 and

morphisms, for (m,n), (p, q) ∈ N2
0, are

Mor(FI±c )Op((m,n), (p, q)) = CMorFI([n]⨿ [p], [m]⨿ [q]).

When composing, one encounters “circles,” which are replaced by mul-
tiplication by a given constant c. This is a variant (by replacing bi-
jections with injections) of the category Rep(GLc) considered by P.
Deligne and J. S. Milne in [3], Subsections 1.26, 1.27, and later by P.
Deligne in [2], Section 10. While this is a tensor embedding, the target
category is not abelian. The main purpose of this paper is to show that
one does in fact have a (non-semisimple) rigid pre-Tannakian category
FI±c -Modgen of generic FI±c -modules into which FI-Modgen (with the
Day product) embeds as a full tensor subcategory. In addition, we also
identify the simple objects.

Theorem 1. The simple objects Yλ,µ of the generic category of FI±c -
modules are indexed by pairs of Young diagrams λ, µ. Further, the
fusion rules of tensor products of these simple generic FI±c -modules
exactly correspond to the fusion rules of tensor products of the simple
objects Yλ,µ in Rep(GLc−1).

The symplectic story is largely, analogous, with a few notable differ-
ences. We begin with the symplectic (or twisted) analogue QBc of the
Brauer category, which, by P. Deligne [2], Section 9, has a semisimple
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representation category with self-dual simple objects Yλ. There is a
commutative algebra

C = Y∅ ⊕ Y(1) ⊕ Y(2) ⊕ . . .

in this tensor category, and we call its finite dimensional represen-
tations QIc-modules. The suitably defined category QIc-Modgen of
generic QIc-modules is our proposed interpolation category of Spc⋊Hc-
representations for c /∈ Z. The important difference is that since the
simple objects are self-dual, there is no need for a “±”-construction.
The symplectic variant of Theorem 1 is

Theorem 2. The simple objects Yλ of the generic category of QI±c -
modules are indexed by Young diagrams λ. Further, the fusion rules
of tensor products of these simple generic QIc-modules exactly corre-
spond to the fusion rules of tensor products of the simple objects Yλ in
Rep(Spc−2), (i.e. the Newell-Littlewood rules).

The present paper is organized as follows: In Section 2, we describe
the category FI±c and discuss the structure of FI±c -modules. The main
goal of this section is to define generic FI±c -modules. In Section 3, we
give the construction of the symmetric tensor structure of the Day
product in the category of FI±c -modules and prove that it carries over
to a symmetric tensor structure in generic FI±c -modules. In Section 4,
we describe the simple generic FI±c -modules, show that the category of
generic FI±c -modules has strong duality, and prove Theorem 1 as well
as the exactness of ⊠ in generic FI±c -modules. In Section 5, we discuss
the symplectic analogue.

Acknowledgement: I am thankful to Professor P. Deligne and Pro-
fessor A. Snowden for comments and suggestions.

2. The Category of FI±c -Modules

Fix a value c ∈ C. Let us consider the category FI±c defined by
taking

Obj(FI±c ) = N2
0

and for pairs (m,n), (p, q) ∈ Obj(FI±c ), the morphisms

(3) MorFI±c
((m,n), (p, q)) = CMorFI([m]⨿ [q], [p]⨿ [n]).

In particular, by an expansion in FI±c we shall mean a morphism of
the form (3) given by a disjoint union of an injection

[m] ↪→ [p]
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and an bijection

[q]
∼= // [n].

Composition will depend on the fixed value of c ∈ C. To describe
the composition in FI±c , we first give a graphical representation of the
morphisms

(m,n) → (p, q)

freely generating (3) in FI±c , following the diagrammatic expressions
of morphisms of the Rep(GLc) described by P. Deligne in [2], Section
10.1:

On the left, we have m points labelled with the sign “+”, and n points
labelled with the sign “-,” (representing the source of the morphism),
and on the right, we have p and q points labelled “+” and “-,” re-
spectively (representing the target). The morphism then corresponds
to a perfect pairing (or matching) of the disjoint union of the set of
m points labelled “+” on the left, the set of q points labelled “-” on
the right, a subset of the set of n points labelled “-” on the left, and a
subset of the set of p points labelled “+” on the right, such that every
point is paired with either a point of the same sign on the opposite side,
or a point of opposite sign on the same side. For example, Figures 1
and 2 show an example of the graphical representation of a generating
morphism (2, 5) → (4, 3). Figure 1 displays the injection, while Figure
2 shows the corresponding morphism in FI±c .

Composition in FI±c is then described by defining it for free generating
morphisms of (3) by placing two diagrams (as in Figure 2) next to each
other, aligning the points corresponding to the intermediate pairs, and
composing as in [2], Section 10.1: the lines and segments of the pairing
are connected and a closed circuit is deleted and the obtained diagram is
multiplied by c to form the final morphism of FI±c forming the original
morphisms’ composition. We then may extend composition C-linearly
to define it for all composable morphisms FI±c .

It is formal to verify that FI±c defined this way then indeed forms
a category. We note that while FI±c , (FI

±
c )

Op pre-additive categories
linear over C, adding direct sums and taking a pseudoabelian envelope
does not make an abelian category.

Definition 3. We define FI±c -modules to be functors from FI±c to
vector spaces over C

(4) FI±c → C-Vect.
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−
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target

m

q
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target

source

p

n

Figure 1. An injection [m]⨿ [q] → [p]⨿ [n], for
m = 2, n = 5, p = 4, q = 3

+

−

source

source

m

n

+

−

target

target

p

q

Figure 2. A generator of MorFI±c
((m,n), (p, q)), for

m = 2, n = 5, p = 4, q = 3
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(Recall that, in this paper, we are restricting attention to finitely
generated FI±c -modules.)

For a pair (m,n) ∈ N0, let us denote its endomorphism algebra in
FI±c by

Σc
m,n := EndFI±c

((m,n)).

For c ∈ C ∖ Z, the C-algebra Σc
m,n is semisimple (see [2], Section 10),

and the irreducible Σc
m,n-representations are indexed by pairs of Young

diagrams λ and µ such that m−n = |λ|− |µ|. Write Yλ,µ(m,n) for the
simple Σc

m,n-representation corresponding to λ, µ. This follows from
the decomposition of the tensor of copies of the basic object and its
dual

(5) X⊗m ⊗ (X∨)⊗n

in Rep(GLc) into simple objects Yλ,µ. The dimension of Yλ,µ(m,n) as
a Σc

m,n-representation is the multiplicity of Yλ,µ in (5):

dim(Yλ,µ(m,n)) = dim(HomRep(GLc)(Yλ,µ, X
⊗m ⊗ (X∨)⊗n).

An FI±c -algebra F then determines, at each pair (m,n), a Σc
m,n-

representation F (m,n). Note that we have

dim(Σc
m,n) = |MorFI([m+ n], [m+ n])| = (m+ n)!.

However, Σc
m,n is not equal to the free representation of the symmetric

group on m + n elements, since its algebra structure is different and
depends on c.

Similarly as for classical FI-modules, FI±c -modules form a category
by taking morphisms between two functors of the form (4) to be natural
transformations. This category, which we denote FI±c -Mod, is clearly a
C-additive category, by taking for FI±c -modules F,G : FI±c → C-Vect,
for (m,n) ∈ N2

0

(F ⊕G)(m,n) = F (m,n)⊕G(m,n)

(the proof that this definition forms a FI±c -module is analogous to the
proof for the similar statement for FI-modules).

In the category of FI-modules, one often uses the representable ob-
jects m. Analogously, for an element (m,n) ∈ N2

0, we may consider the
corresponding representable FI±c -module

(m,n) : FI±c → C-Vect
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defined by sending a pair (p, q) ∈ N2
0 to the free C-vector space

(m,n)(p, q) =MorFI±c
((m,n), (p, q)) =

CMorFI([m]⨿ [q], [p]⨿ [n]).

Following the definition of torsion FI-modules, we can make the
following definition of torsion FI±c -modules:

Definition 4. For an FI±c -module F : FI±c → C-Vect, for a pair
(m,n) ∈ N2

0, an element x ∈ F (m,n) is called torsion if there exists a
pair (p, q) ∈ N2

0 and an expansion f ∈MorFI±c
((m,n), (p, q)) such that

(F (f))(x) = 0.

At each pair (m,n) ∈ N2
0, the set of torsion elements of F (m,n) forms

a C-subspace of F (m,n), and sending (m,n) to this subspace defines a
functor (4), and thus an FI±c -module, which we denote TF . We say
that F is a torsion FI±c -module if TF = F .

We can take the category of torsion FI±c -modules, which we shall
denote by FI±c -Modtor to be the full subcategory of FI±c -modules on
these objects.

Proposition 5. The category of torsion FI±c -modules FI±c -Modtor forms
a Serre subcategory of FI±c -Mod.

□

Therefore, we can define the category FI±c -Modgen of generic FI±c -
modules as the Serre quotient of FI±c -Mod by FI±c -Modtor.

3. Symmetric Monoidal Structure - the “Day Product”

In this section, we will explicitly describe a symmetric tensor cate-
gory structure on FI±c -modules which we call the Day product, defined
as an analogue of the Day product on FI-Mod. For FI±c -modules

F,G : FI±c → C-Vect,

we can first define the functor

F⊠G : FI±c × FI±c → C-Vect
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(defined by taking F⊠G((m,n), (p, q)) = F (m,n)⊗CG(p, q)). We then
define their Day product F ⊠G as the left Kan extension

FI±c × FI±c C-Vect

FI±c

F⊠G

⨿
F⊠G

where the vertical map

⨿ : FI±c × FI±c → FI±c

is defined by taking coordinate-wise addition

(m,n)⨿ (p, q) = (m+ p, n+ q).

Recall that, for x ∈ N2
0, F ⊠ G(x) is defined as the coequalizer of two

functors

ϕ, ψ :
⊕

α:a→a′,β:b→b′,θ:a′+b′→x

F (a)⊗C G(b) →
⊕

θ:a+b→x

F (a)⊗C G(b)

(all sums are over choices of morphisms in FI±c ), where ϕ is defined by
sending a direct summand F (a) ⊗C G(b) of the source corresponding
to morphisms α : a → a′, β : b → b′, θ : a′ + b′ → x in FI±c to the
summand F (a′)⊗CG(b

′) of the target corresponding to θ by the linear
map F (a′)⊗G(b′), and ψ is defined by sending such a summand of the
source to the summand F (a) ⊗ G(b) corresponding to θ ◦ (α + β) by
the identity.

This construction parallels the “Day product” of FI-modules already
mentioned in the Introduction. In fact, the reader may use the above
paragraphs as a review of the Day product of FI-modules by replacing
FI±c by CFI. We also note that by using the characterization of FI-
modules as modules over the twisted commutative algebra C (see [16]
and [19], Exercise 2.8), the Day product of FI-modules M , N can also
be described as

M ⊛C N.

We then have a functor

Φ : FI-Mod → FI±c -Mod

given by left Kan extension along the inclusion

CFI ↪→ FI±c ,

which is then automatically a tensor functor with respect to the Day
product ⊠.



11

Note that for an FI-module M , we have in fact

Φ(M)(p, q) =

{
0 if p < q
Mp−q ⊗CΣp−q HomFI±c

((p− q, 0), (p, q)) if p ≥ q

which implies:

Proposition 6. The functor

ΦFI-Mod → FI±c -Mod

is exact.

□

Every FI-module is a quotient of a (finite) direct sum of repre-
sentable objects and, moreover,

(6) m⊠ n ∼= m+ n.

Analogously, we have the following facts in FI±c -modules:

Proposition 7. For pairs a0, b0 ∈ N2
0, we have

a0 ⊠ b0 ∼= (a0 + b0).

□

Proposition 8. Every (finitely generated) FI±c -module is, by defini-
tion, a quotient of a direct sum of (finitely many) objects of the form
(mi, ni).

□

Note that, by Propositions 7 and 8, (0, 0) is the unit of the symmetric

monoidal structure on FI±c -modules.

Denote by Tor⊠i , the ith left derived functor of ⊠ (in FI-Mod or
FI±c -Mod). (Note that both abelian categories clearly have enough
projectives.)

Lemma 9. Let M , N be FI-modules (resp. FI±c -modules) where M
is torsion. Then for every i ≥ 0, Tor⊠i (M,N) is torsion.

Proof. By considering a projective resolution of N , it suffices to prove
the statement for i = 0. For i = 0, the statement follows from the fact
that taking the Day product of an expansion and an identity morphism
still gives an expansion.

□
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By Lemma 9, the Day tensor product ⊠ passes to a tensor structure
on FI-Modgen, FI±c -Modgen and Φ induces a ⊠-tensor functor

Φgen : FI-Modgen → FI±c -Modgen,

which is exact by Proposition 6.

In the category FI-Mod, we can further decompose

m =
⊕
|λ|=m

Pλ

(see [19]) where Pλ is the subobject generated by the Specht module
Sλ as a Σm-representation (called the principal projective). Denoting,
for a Young diagram λ = (λ1, λ2, . . . , λk), the Young diagram

(7) λ = (λ1, λ1, λ2, . . . , λk)

one defines the Spechtral module Sλ as the submodule of Pλ generated
by the Specht module Sλ (see the paragraph of [19] before Proposition
2.7). One then has a short exact sequence on FI-Modgen

(8) 0 → Sλ → Pλ → Q→ 0

where Q is an extension of Spechtral modules Sλ′ with |λ′| < |λ|.

A. Snowden ([19], Proposition 5.10) proved that Sλ are all the non-
isomorphic simple objects of FI-Modgen. The Spechtral FI-modules
satisfy the Littlewood-Richardson rule with respect to the Day product
in FI-Modgen:

Proposition 10. For Young diagrams

Sλ1 ⊠ Sλ2
∼=

⊕
λ

κλ1,λ2

λ Sλ

where κλ1,λ2

λ denote the Littlewood-Richardson numbers.

Proof. By the Pieri rule, this statement is equivalent to the statement
that

(Sλ ⊗LR Sµ)
Σn =

⊕
m+ℓ=n

SΣm
λ ⊗LR S

Σℓ
µ

(as Σ|λ|+|µ|−n-representation, the superscripts denoting fixed points).
Since we have assumed that the ground field is C, we can dualize to
obtain an equivalent statement involving cofixed points, which holds
for all representations V , W (instead of simple Sλ, Sµ), since

(9)
IndΣM×ΣL

ΣN
((V ⊗W )⊗CΣn C) =⊕

m+ℓ=n Ind
ΣM−m×ΣL−ℓ

ΣN−n
((V ⊗CΣm C)⊗ (W ⊗CΣℓ

C))
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for all L,M,N with N = L+M . This statement follows from the fact
that, for a bijection

f : [M ]⨿ [L] → N,

the bijection obtained by restricting away from elements that f sends
to a certain choice of n elements, is exactly equivalent to restricting f
away from some m elements of [M ] and some ℓ elements of [L] for some
choice of m, ℓ with m+ ℓ = n.

□

We can deduce the following

Proposition 11. The functor ⊠ in FI-Modgen is exact in each vari-
able.

Proof. The principal projectives Pλ are flat with respect to the Day
product ⊠ in FI-Modgen. Therefore, we can define its left derived
functors, which we will denote by Torgeni .

Now
Torgeni (Sλ,M) = 0 for i > 0

for every M ∈ Obj(FI-Modgen) follows by induction on |λ| from the
short exact sequence (8). The long exact sequence in Torgeni implies
the statement of the Proposition.

□

We will prove analogous statements about the category FI±c -Modgen

in the next Section.

4. Simple Generic FI±c -Modules and Strong Duality

Proposition 12. The objects (m,n) are strongly dualizable in FI±c -Modgen,
and one has

(m,n)∨ = (n,m).

Proof. The unit and counit

η : (0, 0) → (m,n)⊠ (n,m) ∼= (m+ n, n+m)

ϵ : (m,n)⊠ (n,m) ∼= (m+ n, n+m) → (0, 0)

are represented by

σ : [m]⨿ [n] → [n]⨿ [m]

where σ is the shuffle switching [m] and [n], see Figure 3.
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Figure 3. The (co)unit of duality of (m,n)∨ = (n,m)
for m = 2, n = 3

One of the triangle identities is represented by Figure 4 below, the
other is symmetrical.

□

For every pair of Young diagrams

λ = (λ1, λ2, . . . , λi),

µ = (µ1, µ2, . . . , µj),

define the principal projective generic FI±c -module Pλ,µ as the sub-FI
±
c -

module of (|λ|, |µ|) generated (in FI±c -Modgen) by Yλ,µ(|λ|, |µ|).

Proposition 13. For a pair (m,n) ∈ N0

(m,n) =
⊕

|λ|=m,|µ|=n

Pλ,µ
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Figure 4. Triangle identity for (m,n)∨ = (n,m) for
m = 2, n = 3
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where the direct sum runs over all Young diagrams λ, µ with |λ| = m,
|µ| = n.

□

For N ∈ N0, denote

(10) λ+N = (N − |λ|, λ1, λ2, . . . , λi).
(Note that the Young diagram λ defined in (7) is λ+|λ|+λ1

.)

Let us now define the FI±c -module Yλ,µ as the quotient of the sub-
FI±c -module of Pλ,µ generated (in FI±c -Modgen) by

(11) Yλ+
|λ|+λ1

,µ(|λ|+ λ1, |µ|)

by the submodule generated by all Y?,µ′(|?|, |µ′|) with |µ′| < |µ|.
This is analogous to the definition of the “Spechtral FI-module” Sλ

corresponding to a Young diagram λ as the submodule generated by
Sλ+

|λ|+λ1

of the principal projective FI-module Pλ in [19] before Propo-

sition 2.7. The reason we need to consider subquotients is the duality,
which we discuss in more detail below. In our present setting, Propo-
sition 2.7 of [19] has the following analogue:

Proposition 14. For a pair (m,n) ∈ N2
0 with m ≥ |λ| + λ1, n ≥ |µ|,

we have

(12) Yλ,µ(m,n) = Yλ+
m,µ(m,n).

Proof. Let m ≥ |λ| + λ1, n ≥ |µ|. By the Pieri rule, Pλ,µ(m,n) then
contains a copy of

(13) Yλ+
m−n+|µ|,µ

(m,n)

along with Σc
m,n-representations of the form

Yλ′,µ′(m,n)

where λ′ = λ
+

m′ , with |λ| < |λ|, or |µ′| < |µ|. Thus, by the structure
maps of FI±c , (11) can only map to (13), as desired.

□

In particular, in generic FI±c -modules, we have short exact sequences

(14) 0 → Y(1),∅ → (1, 0) → (0, 0) → 0

(15) 0 → (0, 0) → (0, 1) → Y∅,(1) → 0.

We also note that by (14), using the long exact sequence for Torgen,
Y(1),∅ is flat.
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Lemma 15. In a tensor abelian category, if we have short exact se-
quences

(16) 0 // A // B
f // C // 0

(17) 0 // C ′ f ′
// B′ // A′ // 0

where f ′ is strongly dual to f and the tensor product of any of the
exact sequences (16), (17) with any term of the other is exact, then A′

is strongly dual to A.

Proof. The unit of duality η : 1 → A⊗ A′ is defined by the diagram

0

C ⊗ C ′

1 B ⊗B′ C ⊗B′

0 A⊗ A′ B ⊗ A′ C ⊗ A′ 0

0

η

The counit of adjunction is symmetrical. One triangle identity follows
from the commuting diagram

A A⊗ A′ ⊗ A

B A⊗B′ ⊗B A⊗ A′ ⊗B A

B ⊗B′ ⊗B B

1⊗η

1⊗η ϵ⊗1

1⊗η
ϵ⊗1

ϵ⊗1

and one of the triangle identity for B and B′. The other is symmetrical.
□

By applying Lemma 15 to the short exact sequences (14) and (15),
we obtain the following
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Corollary 16. Y(1),∅ and Y∅,(1) are strongly dual in FI±c -Modgen.

□

In fact, we have

Lemma 17. For all Young diagrams λ, Yλ,∅, Y∅,λ of FI±c -Modgen are
strongly dual to each other (and hence flat).

Proof. Tensoring with a strongly dualizable object A in a symmetric
tensor category is exact because A⊗? is both a left and a right adjoint.
We can then obtain the claim by applying Lemma 15 to the short exact
sequence of the form

0 → Yλ,∅ → Pλ,∅ → Q→ 0

where Q is an extension of Yλ′,∅ with |λ′| < |λ|, going by induction on
|λ| (using (8)), using the exactness of the symmetric monoidal functor
Φgen.

□

We moreover have the following

Theorem 18. The generic FI±c -modules Yλ,µ are exactly the simple ob-
jects of FI±c -Modgen, and every finitely generated generic FI±c -module
has a composition series with associated graded pieces isomorphic to a
Yλ,µ for some λ, µ.

Proof. As objects of FI±c -Modgen, the Yλ,µ must be simple, since at
each pair (m,n), the corresponding Σc

m,n-representation is simple. We
shall follow a proof analogous to the well-know analogue for classical
generic FI-modules given, for example in [19].

To prove the claim that every finitely generated generic FI±c -module
has a finite length filtration whose associated graded pieces are of the
form Yλ,µ, we will follow the terminology of [19].

For a Young diagram λ = (λ1, . . . , λn), recall that its amplitude is
defined to be the sum λ2 + λ3 + · · · + λn. For pairs (m,n) ∈ N2

0, we
consider the amplitude of a Σc

m,n-representation V to be the maximum
amplitude of Young diagrams λ such that the simple Yλ,µ(m,n) Σ

c
m,n-

representation is a summand of V . We additionally define its coampli-
tude to be the maximal total number of boxes |µ| of Young diagrams µ
such that the simple Yλ,µ(m,n) Σc

m,n-representation is a summand of
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V . For an FI±c -module, we can then define its amplitude, resp. coam-
plitude, as the supremum of the amplitudes, resp. coamplitudes, of
the Σc

m,n-representations they give at each pair (m,n) ∈ N2
0. Similarly

as for FI-modules, every finitely generated FI±c -module has a finite
amplitude. Since at each degree, the Σc

m,n-representations Yλ,µ(m,n)
are defined only for Young diagrams λ, µ such that

|λ| − |µ| = m− n,

we therefore know that the coamplitude of every finitely generated
FI±c -module is also finite.
This implies that for every finitely generated generic FI±c -moduleM

there exists a finite length filtration

(18) 0 = F0M ⊂ F1M ⊂ F2M ⊂ · · · ⊂ FN−1M ⊂ FNM =M

such that for every 1 ≤ n ≤ N , the FnM/Fn−1M has constant am-
plitude and co-amplitude. Similarly as in [19], one then argues that
FnM/Fn−1M is an extension of Yλ,µ with given |λ|, |µ|, and torsion
FI±c -modules.
Refining the filtration, we obtain a filtration in FI±c -Modgen where

the associated graded pieces are of the form Yλ,µ, as desired.
□

Our next goal is to describe the “fusion rules” for the generic FI±c -
modules Yλ,µ, and prove their strong dualizability. The fusion rules of
Spechtral FI-modules with respect to the Day product ⊠ are described
in Proposition 10.

The analogous statement for FI±c -modules, completing the proof of
Theorem 1, is the following

Theorem 19. The generic simple FI±c -modules Yλ,µ are strongly du-
alizable with strong dual Yµ,λ. In fact, there is a tensor functor

Ξ : Rep(GLc−1) → FI±c -Modgen

(with respect to the Day product on the right hand side) such that

Ξ(Yλ,µ) = Yλ,µ.

Consequently, the category FI±c -Modgen of finitely generated generic
FI±c -modules has strong duality and ⊠ is exact in each variable.

Proof. By Corollary 16, Y(1),∅ is strongly dualizable and has dimension
c− 1 (by additivity of dimensions in short exact sequences of strongly
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dualizable objects), and its strong dual is Y∅,(1). This already defines
a tensor functor

(19) Ξ : Rep(GLc−1) → FI±c -Modgen,

which maps

Ξ(X) = Y(1),∅

Ξ(X∨) = Y∅,(1).

Moreover, from the case of FI-Modgen (Proposition 10), we already
know that Yλ1,∅, Yλ2,∅ fuse according to the Littlewood-Richardson rule
(and in particular are strongly dualizable). So what remains to prove
is that the image of Yλ,µ under (19) is Yλ,µ.
To show that, note that Yλ,∅ ⊗ Y∅,µ contains Yλ,µ plus summands

of the form Yλ′,µ′ , |λ′| < |λ|, |µ′| < |µ|. Thus, if we can show that
Yλ,∅ ⊠ Y∅,µ has, in each degree, the exact same summands as

(20)
N⊕
i=1

Yλi,µi

where

Yλ,∅ ⊗ Y∅,µ =
N⊕
i=1

Yλi,µi
,

then we can argue by induction. Now (20) can be seen by induction
from studying

(21) Yλ,µ ⊠ P(1),∅.

Indeed, one sees, by definition, that in degree (m+ 1, n), (21) has the
Σc

m+1,n-representation

(22)
N⊕
i=1

Yλ+,µ(m+ 1, n),

where λ+ and µ are obtained from λ+ and µ (where Yλ+,µ(m,n) is the
summand of Yλ,µ in degree (m,n)) by the Pieri rule, adding one square
to some row to λ+ or subtracting a square from some row of µ, while
still obtaining a Young diagram.

The summands where we add a square to the first row of λ+ match
a copy of Yλ,µ again, while the others match the precise copies of

N ′⊕
i=1

Yλ′
i,µ

′
i
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where

Yλ,µ ⊗ Y(1),∅ =
N ′⊕
i=1

Yλ′
i,µ

′
i

(using, again, the Pieri rule). This is, of course, the right number, by
exactness and the short exact sequence (14).

Since the Yλ,µ are strongly dualizable, they are flat, and hence ⊠ is
exact on FI±c -Modgen using Theorem 18 and the long exact sequence
in Torgen.

□

5. The Symplectic Case

Consider the C-linear twisted Brauer category QBc, defined as fol-
lows: Take

Obj(QBc) = N0

and, for m,n ∈ N0, take the space of morphisms HomQBc(m,n) from
m to n to be the quotient of the free C-vector space on the data

(23) (m,n, ϕ : S → T, ϕS, ϕT )

where S ⊆ [m], T ⊆ [n] are subsets, and

ϕ : S
∼= // T

is a bijection, and there are some decompositions

[m]∖ S = S1 ⨿ S2, [n]∖ T = T1 ⨿ T2

and

ϕS : S1

∼= // S2

ϕT : T1
∼= // T2

are bijections, by the following relations: The data (23) is equivalent
to

−(m,n, ϕ : S → T, ϕ′
S, ϕT )

where, if for some x ∈ S1, we have ϕS(x) = y, we take

S ′
1 = (S1 ∖ {x})⨿ {y}
S ′
2 = (S2 ∖ {y})⨿ {x}

and the new bijection
ϕ′
S : S ′

1 → S ′
2
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Figure 5. An example of a generator of
MorQBc(m,n), for m = 6, n = 4

is defined by putting

ϕ′
S(y) = x

ϕ′
S(z) = ϕS(z) for z ∈ S1 ∖ {x} = S ′

1 ∖ {y},
and we have a similar relation

(m,n, ϕ : S → T, ϕS, ϕT ) ∼ −(m,n, ϕ : S → T, ϕS, ϕ
′
T )

where ϕ′
T is, in an analogous way, ϕT after switching an element of the

original T1 and T2.
For example, we have, for n even, the dimension (as a C-vector space)

of HomQBc(0, n) is equal to the number of pairings on [n], which can
be calculated as the product of odd positive integers less than n:

(24) dim(HomQBc(0, n)) = (n− 1) · (n− 3) . . . 3 · 1 =
n!

2
n
2 · (n

2
)!

Note that the data of a generator of HomQBc(m,n) (for m, n ∈ N0

such thatm+n is even) described above can be represented graphically
as follows: For a given choice of the data (23), we draw a column of
m dots on the left and n dots on the right, connecting dots in S to
dots in T according to ϕ. We then draw arrows from elements of S1

(resp. T1) to elements of S2 (resp. T2) according to ϕ′
S (resp. ϕ′

T ). For
example, see Figure 5. In this graphical representation, again, note
that switching the direction of an arrow is the same as multiplying the
diagram by −1.
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= c ∈ C =MorQBc(0, 0)

Figure 6. An example of the composition of an
element of HomQBc(0, 4) and an element of

HomQBc(4, 0)

Composition in QBc, for generating elements of HomQBc(ℓ,m) and
HomQBc(m,n), can then be defined by placing their corresponding di-
agrams side by side, identifying both sets of dots corresponding to
[m], and composing the connections and pairings. If a loop arises, we
reverse arrows until all arrows have compatible directions, delete the
loop, and multiply the resulting generator by c and −1 to the number
of arrows we reversed. For example, Figure 6 shows the composition
of a generating element of HomQBc(0, 4) with a generating element of
HomQBc(4, 0) which is c (identifying C with HomQBc(0, 0) by identify-
ing 1 ∈ C with the generating element of HomQBc(0, 0) corresponding
to the empty diagram), since there is a single loop an no sign, since
two arrows can be reversed to resolve the disagreements in the arrows’
directions.

Definition 20. We define a QBc-module to be a (finitely generated)
functor from QBc to the category of C-vector spaces

(25) QBc → C-Vect.

Denote by QBc-Mod the category with objects QBc-modules and mor-
phisms natural transformations.

Comment: Recall that we may also consider the non-twisted Brauer
category Bc, which is defined by taking the same objects

Obj(Bc) = N0

and (using the above notation) taking the space of morphisms from a
m ∈ N0 to an n ∈ N0 to be the quotient of the free C-vector space on
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the data (23) by the relations

(m,n, ϕ : S → T, ϕS, ϕT ) ∼ (m,n, ϕ : S → T, ϕ′
S, ϕT ) ∼

∼ (m,n, ϕ : S → T, ϕS, ϕ
′
T )

for ϕ′
S (resp. ϕ′

T ) obtained from ϕS (resp. ϕT ) by switching an element
of S1 and S2 (resp. T1 and T2), as defined above.
The generating morphism of HomBc(m,n) corresponding to the data

(23) can, again, be expressed diagrammatically by drawing a column
of m points on the left representing [m], and a column of n points on
the right representing [n], and connecting every point with the one it
is paired with (we now do not give the connections between elements
of the same column a direction). Composition in Bc is then defined as
the C-linear extension of composition of diagrams performed exactly
as in the Brauer algebra. The non-twisted Brauer category appears in
the description of the interpolation of the orthogonal group Rep0(Oc)
given in [2], Section 9, where the objects of the category are tensor
powers of a basic object X and

HomRep0(Oc)(X
⊗m
0 , X⊗n

0 ) = HomBc(m,n).

Analogously as in Definition 20, we can define Bc-modules as (finitely
generated) functors

Bc → C-Vect.
We, in fact, have an equivalence of categories

QBc-Mod⊠ sVect ∼= B−c-Mod⊠ sV ect

(the operator ⊠ used as in, for example, [4]) defined by sending

M ⊠ V 7→M ⊠ (V ⊗ C(0,1)).

In particular, considering the Young diagram (n), we will have that,
as a C-vector space,
(26) Y(n)(n) = C,
on which the generators of EndQBc(n) without any pairings of elements
in the same copy of [n] (which form a copy of the symmetric group
Σn ⊆ EndQBc(n)) act trivially, while any generator of EndQBc(n) in-
volving a pairing of two elements of the same copy of [n] (i.e. whose
corresponding diagram has a connection between points in the same
column) acts by 0.

One has

(27) Y(n)(k) = Y(n)(n)⊗EndQBc (n)
HomQBc(n, k).

In particular, Y(n)(k) = 0 unless k ≥ n and k − n is even.
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Now the category of QBc-modules has a symmetric tensor category
structure which we call the Day product, described, for QBc-modules

F,G : QBc → C-Vect
as the left Kan extension

QBc ×QBc C-Vect

QBc

F⊗G

⨿
F⊗G

where the vertical arrow is the functor

⨿ : QBc ×QBc → QBc

(m,n) 7→ m+ n

and the horrizontal arrow is the functor

F⊗G : QBc ×QBc → C-Vect
(m,n) 7→ F (m)⊗C N(n).

Definition 21. We define a QBc-algebra to be an algebra with respect
to the Day product in the category of QBc-modules, meaning a QBc-
module F with a given multiplication morphism (in the category QBc-
Mod)

F ⊗ F → F

(satisfying associativity).

Note that by (27), we have a natural commutative associative unital
pairing

(28) Y(m) ⊗ Y(n) → Y(m+n).

Thus, we have a QBc-algebra

(29) C = Y∅ ⊕ Y(1) ⊕ Y(2) ⊕ . . . .

To mirror the classical case of FI-modules, we begin by defining
QIc-modules in the following way:

Definition 22. Define a QIc-module M to be a module over the QBc-
algebra C, i.e. we are given the data of a multiplication morphism (in
the category of QBc-modules)

C⊗M →M

with the usual axioms.
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= ∈ HomQIc(4, 5)

= 0 ∈ HomQIc(3, 1)

Figure 7. Examples of morphisms in QIc

By explicitly considering the construction of the Day product C⊗M ,
we can give a more a more elementary diagrammatic description of QIc-
modules.

Let QIc be the category defined as follows: The objects are

Obj(QIc) = N0

and for m,n ∈ N0, define the space of morphisms in QIc from m to n
to be, as a C-vector space,

(30) HomQIc(m,n) =
⊕
k≥0

HomQBc(m+ k, n)⊗EndQBc (k)
C

where C = Y(k)(k) as in (26).
A generator (30) is graphically described by drawing a column of m

black dots under a column of k white dots on the left and n left dots
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◦ =

= =

Figure 8. An example of a composition a generator
HomQIc(2, 2) and a generator of HomQIc(2, 4)

on the right, connected by a diagram representing a QBc-morphism.
The identifications mean that the order of white dots does not matter
and that if we connect two white dots by a self-arrow, we get 0 (see
Figure 7).

To compose two such diagrams, we compose the same way as in
QBc, and then group the white dots together in the top of the column
corresponding to the source (see Figure 8).

Given the category QIc, it is then natural to define a QIc-module as
a functor from QIc to C-vector spaces. These definitions are, in fact
equivalent.
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Proposition 23. The category of QIc-modules (as defined in Defini-
tion 22) is equivalent to the category of functors

QIc → C-Vect

and natural transformations.

□

Again, there is a notion of a Day product on QIc-modules, which can
be interpreted equivalently both as left Kan extensions over diagrams
similarly as in our definition of the Day product of QBc-modules with
QBc replaced by QIc, or as the QBc-module Day product over C (con-
sidering QIc-modules as objects of QBc-Mod which are modules over
C).

Definition 24. For m ∈ N0 = Obj(QIc), define the corresponding
representable QIc-module

m : QIc → C-Vect

by taking, for n ∈ N0 = Obj(QIc),

m(n) = HomQIc(m,n)

(with the action of morphisms being given by composition).

Analogously to Proposition 7, we have

Proposition 25. For m,n ∈ N0 = Obj(QIc), we have that

m⊗ n ∼= m+ n.

□

Example: We have 0 = C. Omitting the white dots in the genera-
tors’ graphical representations, 0(m) for m ∈ N0 = Obj(QIc) can be
described as free on generators of the form described in Figure 9, up
to permutation and taking all arrows to be pointed upwards.

In particular, considering m ∈ N0 = Obj(QIc), dim(0(m)) is the
number of possible pairings on a subset of [m], which is (recalling the
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k

m− k

Figure 9. The generators of 0 corresponding to
generators HomQIc(0,m) with k white dots for k ≤ m
such that m− k is even (where the indicated k dots

correspond to the subset of [m] which was connected to
white dots in the source)

computation (24))

(31)

⌊m
2
⌋∑

i=0

(
m

2i

)
· (2i− 1) · (2i− 3) · · · · · 3 · 1

=

⌊m
2
⌋∑

i=0

(
m

2i

)
· (2i)!

2i · (i)!
.

Now let us consider 1. The free generators of 1(m) are, up to per-
mutation, of the form described in Figure 10. Considering

m ∈ N0 = Obj(QIc),

we then have that

dim(1(m)) =

⌊m
2
⌋∑

i=0

(
m

2i

)
· (2i)!

2i · (i)!
+m ·

⌊m−1
2

⌋∑
i=1

(
m− 1

2i

)
(2i)!

2i · (i)!
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k

m− k − 1

,

k

m− k

Figure 10. The generators of 1(m) on the left
correspond to generators of HomQIc(1,m) with k white
dots for k + 1 ≤ m such that m− k − 1 is even (where
the indicated k dots correspond to the subset of [m]

which was connected to white dots in the source). The
generators of 1(m) on the right correspond to

generators of HomQIc(1,m) with k + 1 white dots for
k ≤ m such that m− k is even where one of the white

dots is connected to the point in the source.

Similarly as for FI-modules, we have a notion of torsionQIc-modules.
An expansion is a generating morphism in HomQIc(m,n) given by a
bijection

[m+ k] → [n] ∈ HomQBc(m+ k, n).

Definition 26. We say that an QIc-module M is torsion if for every
m ∈ N0, for every x ∈M(m), there exists an n ∈ N0 and an expansion
f ∈ HomQIc(m,n) such that

M(f)(x) = 0 ∈M(n).

Denote the full subcategory of torsion QIc-modules by QIc-Modtor.

Similarly as for FI-modules, QIc-Modtor forms a Serre subcategory
of QIc-Mod. Therefore we can make the following
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Definition 27. Define generic QIc-modules to be the quotient category
of QIc-Mod by QIc-Modtor.

Similarly as in Lemma 9 in the case of FI-modules and FI±c -modules,
if M is a torsion QIc-module and N is any QIc-module, then M ⊗N is
torsion and thus (by considering a free resolution of N), Tor⊗i (M,N) is
torsion for all i ≥ 0. Consequently, ⊗ passes to a symmetric monoidal
tensor product on QIc-Modgen.

Example: Recalling formula (29), the commutative QBc-algebra C
has an ideal

I = Y(1) ⊕ Y(2) ⊕ Y(3) ⊕ . . . .

The quotient C/I is torsion, and thus, the inclusion

ι : I
⊆ // C

is an isomorphism in QIc-Modgen, and hence, so is

ιn : In
⊆ // C

for every n ≥ 1. (Note that

In = Y(n) ⊕ Y(n+1) ⊕ Y(n+2) ⊕ . . . .)

Also, note that the generators pictured on the right of Figure 10 give
an inclusion

(32) κ : 0 ↪→ 1

and thus a short exact sequence in QIc-Modgen

(33) 0 // 0
κ // 1 // Q // 0.

On the other hand, we have a surjection

(34) Q↠ I

by sending the generator on the left of Figure 10 to the generators of
Figure 9 obtained by erasing the line (with k replaced by k + 1).

By the observation in the above Example, in QIc-Modgen, corre-
sponds to an epimorphism

(35) Q↠ 0.

Thus, we have a short exact sequence in QIc-Modgen of the form

(36) 0 → Y(1) → Q→ 0 → 0.
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−

Figure 11. An example of a generator of Y(1)(7),
considering Y(1) as the kernel of (35) (where in both

terms we omit the connections between two white dots
in the source with the two separated white dots in the
target, similarly as for the left generator in Figure 10)

The C-vector spaces Y(1)(n) can also be described directly, consisting
of linear combinations of generators on the left of Figure 10 whose
coefficients, for each fixed configuration of ordered self-arrows, add up
to 0 (see Figure 11).

Next, note that in QBc-Mod, the representable object determined by
2 ∈ Obj(QBc) contains Y∅ as a unique direct summand. Using Propo-
sition 25, QIc-Modgen, (given by self-arrows), this gives morphisms

0
η // 1⊗ 1, 1⊗ 1

ϵ // 0,

which makes 1 its own dual, η being anti-symmetric.

Proposition 28. In QIc-Modgen, m is strongly dualizable and

m∨ ∼= m.

Proof. The above observation proves the statement for m = 1. For
general m, it then follows from Proposition 25.

□
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Observing also that the morphism (35) composed with the second
morphism (33) is the dual of κ, one can use Lemma 15 to conclude the
following

Lemma 29. In QIc-Modgen, Y(1) is strongly dualizable and one has

Y ∨
(1)

∼= Y(1).

□

Note that additivity of dimensions gives

dim(Y(1)) = dim(V )− 2 · dim(1) = c− 2.

By [2], Chapter 9, we have

Yλ ⊗ Yµ =
⊕
ν

Nλ,µ,ν · Yν

where Nλ,µ,ν are the Newell-Littlewood numbers [12].

Now, for a Young diagram λ = (λ1, λ2, . . . , λk), let us further define
QIc-modules Yλ by

(37) Yλ =
⊕

m≥|λ|+λ1

Yλ+
m
,

recalling the notation (10), where the QIc-module is determined by
composition with the diagrammatic description of the generators of
every Yλ+

m
(n), as in the above Example. Again, because of the compo-

sition rules described in Figure 8, since there is no QIc-morphism that
composes with a diagram with n free dots to give a diagram with fewer
than n free dots. Thus, (37) defines a QIc-module.
In particular, we have

1 = Y∅.

For a given n, one can now form the Serre subcategory

QIc-Mod(n) ⊆ QIc-Mod

consisting of those QIc-modules, which, as QBc-modules,a re sums of
Yλ where the amplitude |λ| − λ1 is ≤ m. Considering the successive
images of a QIc-module in the quotient category

QIc-Mod/QIc-Mod(n),

one obtains the following analogue of Theorem 18 and Proposition 5.10
of [19]:
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Theorem 30. The Yλ for Young diagrams form a complete system of
non-isomorphic simple objects in QIc-Modgen.

□

Theorem 31. There is a tensor functor

Ξq : Rep(Spc−2) → QIc-Modgen

such that

(38) Ξq(Yλ) = Yλ.

In particular, the simple objects Yλ are self-dual, and the category
QIc-Modgen of generic QIc-modules has strong duality.

Proof. Analogous to the proof of Theorem 19. By Lemma 15 and the
universality of Rep(Spt) with respect to C-linear categories with an
associative, commutative, unital tensor product such that End(1) = C,
with a self-dual object where the unit

η : 0 → 1⊗ 1

is antisymmetric, (which follows from Proposition 9.4 of [2]), we obtain
the tensor functor Ξq.

Thus, all that remains to prove is (38). This follows again from
identifying the correct QBc-simple summands of Yλ⊗1, similarly as in
the proof of Theorem 15.

Specifically, calculating

Yλ ⊗ 1,

by the Newell-Littlewood analogue of the Pieri rule applied to the QBc-
summand of Yλ, contains summands Yλ′ where λ′ is obtained from λ+n
by adding or subtracting one square. Adding or subtracting a square
from the first row gives terms that belong to one of two copies of Yλ,
which correspond to the two copies of the unit 0 in 1. Adding or
subtracting a square from another row corresponds to applying the
Newell-Littlewood variant of the Pieri rule to λ, as needed.

□
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