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Abstract. We give counterexamples to the evenness conjecture
for homotopical equivariant cobordism. To this end, we prove a
completion theorem for certain complex cobordism modules which
does not involve higher derived functors. A key step in the proof
is provided by a certain new relation between Mackey and Borel
cohomology.

1. Introduction

In 2018, B. Uribe [42] called attention to the evenness conjecture
[37] for G-equivariant complex cobordism for a finite (or more gener-
ally compact Lie) group G. This statement concerns the equivariant
cobordism groups of G-equivariant manifolds M whose tangent bundle,
after adding a finite-dimensional real bundle (with trivial G-action) has
a given structure of a G-equivariant complex bundle. The conjecture
stated that the G-equivariant complex cobordism groups form a flat
module over the non-equivariant complex cobordism ring MU∗, which
is concentrated in even degrees. (Recall that MU∗ is isomorphic to the
Lazard ring placed in even degrees, by the classical result of Milnor
and Novikov [32, 34, 35].)

The conjecture was disproved by Samperton [38] and Ángel, Sam-
perton, Segovia, Uribe [1] by a highly surprising geometric calculation
showing that failures of the evenness conjecture can be produced from
cobordism of surfaces when the group G has non-zero Bogomolov mul-
tiplier (see [6]). Therefore, these counterexamples also automatically
give examples to the Noether problem over C, [33].

There is a variant of G-equivariant complex cobordism known as sta-
ble or homotopical cobordism (MUG)∗. For formal geometrical reasons,
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equivariant cobordism (ΩG)∗ can be made into (at least a Z-graded)
generalized homology theory, and homotopical (or stable) G-equivariant

cobordism is formed by taking the colimit of (Ω̃G)|V |S
V where SV is the

1-point compactification of a complex representation V (in this paper,
our convention is to always use |V | to denote the real dimension of a
representation V , i.e., in this case, |V | = 2 ·dimC(V )). Thus, we obtain
a map

(1) (ΩG)∗ → (MUG)∗.

Homotopical cobordism (MUG)∗ was first considered by tom Dieck
[40, 41] and its characterization as a localization of the ring

(2)
⊕
V

Ω̃G
∗ (S

V ).

was formally stated and proved by Bröcker and Hook [7].
A homotopical variant of the evenness conjecture, i.e. the statement

that (MUG)∗ is a flat MU∗-module concentrated in even degrees, has
also been around since the 1970’s, and has been proved for abelian
(compact Lie) groups by Löffler in [30] and Comezaña in [31], Chapter
XXVIII.

Our main result is

Theorem A. Let G be the p-Sylow subgroup G ⊂ GL4(Fp) for any
prime p > 2. Then the G-equivariant homotopical complex cobordism
groups (MUG)∗ do not form a flat MU∗-module concentrated in even
degrees.

Notably, there is no direct implication between Theorem A and the
results of [1, 38]. While Theorem A does disprove the evenness con-
jecture for the ring (2), [1, 38] disprove it for its V = 0 part, which is
a stronger result. On the other hand, no implication in the opposite
direction is known either, since, a priori, Bogomolov multipliers could
disappear in the stabilization process.

In fact, the p-Sylow subgroup G ⊆ GL4(Fp) has Bogomolov multi-
plier 0. (Due to the fact that it has p, p2−1, p3+p2−2p, p3−p2−p+1
conjugacy classes of sizes 1, p, p2, p3, respectively, it is of type Φ31 or Φ32

according to the classification of James [21], and thus has Bogomolov
multiplier 0 by the results of Chen and Ma [8].)

As far as we know, however, the Noether problem remains open for
G. This prompts the following
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Question: Does a positive solution to the Noether problem over C for
a finite group G imply (any version of) the evenness conjecture for
stable G-equivariant complex cobordism?

Theorem A is proved by very different methods than those of [1, 38].
Our strategy is to prove a suitable completion theorem (Theorem B
below), i.e. a theorem linking generalized equivariant cohomology to a
suitable completion of non-equivariant generalized cohomology.

Equivariant completion theorems for complex cobordism are known
(see Greenlees and May [17] for finite extensions of tori and recently
La Vecchia [26] for every compact Lie group). Our new contribution
(Theorem B below) is to prove, using a different method, for suitable
modules over (MUG)∗, a completion theorem without higher derived
functors. The key condition on the module (Assumption A of Section
6) is the existence of an upper bound on the length of differentials in
the Atiyah-Hirzebruch spectral sequence of a G-space. This applies in
particular to Morava K-theory which allows us to deduce Theorem A
from the results of I. Kriz and Lee [22, 23].

The key step toward proving Theorem B is to show that, given suit-
able “orientability” assumptions, Borel cohomology is, in fact, a lo-
calization of ordinary equivariant cohomology by inverting a “weak
orientation class” eV . This is precisely stated in Theorem C below.
Filtering by “eV -suspensions” of the Postnikov-Whitehead tower gives
a direct system of spectral sequences, from which our completion the-
orem arises by taking colimits; this can be done when differentials are
limited in length.

Theorem C, in turn, is a result of a discussion of “weak orienta-
tions” of equivariant cohomology over a finite group, which is stated in
Theorem D, and in its most basic form, is proved on chain level.

The present paper is organized as follows: In Section 2 below, we
state Theorems B, C, D precisely and outline the proof in more techni-
cal terms. We prove Theorem D in Section 3. In Section 4, we restate
Theorem C in more detail (Theorem 1, Corollaries 2, 3), and give a
proof. Section 5 contains some background material on equivariant
Whitehead towers of ring and module spectra. In Section 6, we give
a proof of Theorem B (and a counterexample to its statement after
omitting Assumption A). In Section 7, we prove Theorem A.

2. The main steps in the proof of Theorem A

A basic method for studying equivariant spectra is to use comple-
tion theorems. A completion theorem for equivariant K-theory was
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proved by Atiyah and Segal [2]. A completion theorem for MUG was
proved by Greenlees-May [17] (recently extended by La Vecchia [26]).
A completion theorem for HM is false (which will be important to our
discussion).

A key step in the proof of Theorem A is the following completion
theorem. We formulate a technical assumption (Section 6, Assumption
A) on a G-spectrum, which guarantees convergence.

Theorem B. Let E be a G-equivariant commutative ring spectrum for
a finite group G such that for some faithful real G-representation V ,
there exists a unit of the RO(G)-graded E-coefficient ring

(3) ẽV ∈ E|V |−V .

If E satisfies Assumption A (see Section 6), then there exists a de-
creasing ring filtration F i on the Z-graded coefficient ring E∗ such that
F 0E∗ = E∗(= EG

∗ ), F
1E∗ is the augmentation ideal

Ker(E∗ = EG
∗ → E{e}

∗ ),

and
F (EG+, E)∗ ∼= lim

n
E∗/F

nE∗.

For any E for which a unit (3) exists, an analogous statement also
holds for E-module spectra which satisfy Assumption A.

We will show that Theorem B applies to the MUG-module spectrum
MUG ∧MU K(n), which can be applied to reducing Theorem A to a
known statement about Morava K(n)-theory.

Note that Theorem B does not immediately follow from the comple-
tion theorems [17, 26], since those theorems contain potentially higher
derived terms. Its main feature is the absence of higher derived func-
tors, which is key for our application.

As already mentioned, the ordinary cohomology spectrum HM fails
the assumptions of Theorem B. It satisfies, however, a weaker property
that is in fact a key step in the proof of Theorem B:

Theorem C. Let M be a Mackey module over a Green functor R.
Then there exists an orientable faithful G-equivariant representation V
and a class

eV ∈ HR|V |−V

such that
e−1
V HM ∼ F (EG+, HM(G/{e})).

The following more specific statement, which is needed in the proof,
is also of independent interest:
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Theorem D. Suppose V is an orientable finite-dimensional faithful
G-representation and G is a finite group.

(1) If |V | = n, then

HG
n (S

V ;Z) = Z,
where Z denotes the constant G-Mackey functor (i.e. restric-
tions are IdZ).

(2) Let M be a Mackey functor where the G-action on M(G/{e})
is trivial, and let m > 1. Then we have

H̃G
m|V |(S

mV ;M) = M(G/{e}).

In some sense, Theorems C and D together give an analogue of the
main result of [7] with ΩG replaced by ordinary G-equivariant coho-
mology.

3. Proof of Theorem D

We shall begin with a proof of Theorem D, which is done entirely on
the chain level.

For a CW-complexX, we denote by C∗(X) the cellular chain complex
of X. If X is a G-CW-complex, then C∗(X) becomes a chain complex
of Z[G]-modules (where Z[G] denotes the group ring of G), i.e. each
Ck(G) gets a Z-linear G-action. We denote by OG the orbit category

of G. A G-coefficient system is a functor OOp
G → Ab (the category

of abelian groups). Likewise, a G-co-coefficient system is a functor
OG → Ab. For a G-CW complex X, let

CG,∗(X)(G/H) := C∗(X
H)

denote the cellular coefficient-system-valued chain complex of X. On
the other hand, let

C∗
G(X)(G/H) := HomZ(CG,∗(X)(G/H),Z)

denote the dual of CG,∗(X). Since HomZ is contravariant in the first
variable, C∗

G(X) is a chain complex of co-coefficient systems. (In this
paper, we identify chain and cochain complexes by reversing the sign
of the grading.)

A Mackey functor is a pair consisting of a coefficient system and a
co-coefficient system which agree on objects. There is a compatibility
condition. (For details, see [9, 25].)
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Proof of Theorem D. First, we shall prove (1). By definition, we have

HG
n (S

V ;Z) = Hn(CG,∗(S
V )⊗OG

Z).
Now, for any subgroup {e} ̸= H ⊆ G, V H ⊊ V , since V is faithful.
Thus, dim(V H) < dim(V ). So, no top (i.e. n-dimensional) cell of SV

can be contained in such a V H , by invariance of domain. So, every top
cell must have isotropy {e} and thus be free. Therefore, Cn(S

V ) must
be of the form of a free Z[G]-module, so we can write

Cn(S
V ) = (Z[G])m,

for some m. In fact,

(CG,n(S
V ))(G/H) = Z[G]m

for H = {e} and is 0 else. Therefore,

CG,n(S
V )⊗OG

Z = CG,n(S
V )(G/{e})⊗Z[G] Z = Zm,

since all other CG,n(S
V )(G/H) ⊗Z[G] Z = 0 for {e} ≠ H ⊆ G and

there are no identifications introduced by morphisms of OG coming
from inclusions of subgroups.

Now, so far, we have

Zm = CG,n(S
V )⊗OG

Z

d⊗OG
Z
��

Cn(S
V )

d
��

CG,n−1(S
V )⊗OG

Z Cn−1(S
V )

The next step is to construct horizontal arrows completing the dia-
gram. We shall define, for a functor F : OOp

G → Ab, a map

(4) F ⊗OG
Z → F (G/{e}),

and then use it on F = CG,i(S
V ). We attempt to define this map by

the one induced by

(5) x⊗ ℓ 7→ ℓ ·
∑

f :G/e→G/H

f ∗x.

However, we need to show that this definition would be consistent.
Consistency under composition is immediate. Thus, we need, in par-
ticular, to show for subgroups H ′ ⊆ H, and a map ϕ : G/H ′ → G/H,
for x ∈ F (G/H), the map (5) sends ϕ∗(x)⊗1 ∈ F (G/H ′)⊗OG

Z(G/H ′)
and x⊗ |H|/|H ′| ∈ F (G/H)⊗OG

Z(G/H) to the same element. From
the given definition, it sends each to∑

f :G/e→G/H′

f ∗ ◦ ϕ∗x =
|G/H ′|
|G/H|

·
∑

f :G/e→G/H

f ∗x.
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and
|H|/|H ′| ·

∑
f :G/e→G/H

f ∗x,

respectively, which are equal since |G/H ′| = |H/H ′| · |G/H|.
So, we can define

Ψi : CG,i(S
V )⊗OG

Z → Ci(S
V )

by (5).
We will show that Ψi is injective. This amounts to considering (4)

when F is the free abelian group FS on the representable functor by a
G-set S:

FS(G/H) = ZMapG(G/H, S).

Then (4) takes the form

η : FS ⊗OG
Z → ZS.

Now, we can assume that S = G/H is an orbit. Let W (H) = N(H)/H
be the Weyl group of H. Then we have a surjective map

Z((G/H)H)⊗ZW (H) Z ↠ ZFG/H ⊗OG
Z.

By composing with η, we get a map

Z((G/H)H)⊗ZW (H) Z → ZG/H.

Then we have (G/H)H = W (H), so this map is

Z → Z(G/H)

1 7→ (1, . . . , 1).

Therefore, the map must be injective. So, η is injective, too. So, in
particular, the Ψk’s must also be injective.

So, we have the commutative diagram

(6)

Zm

d⊗OG
Z
��

Ψn // (Z[G])m

d
��

CG,n−1(S
V )⊗OG

Z
Ψn−1 // Cn−1(S

V )

where the horizontal arrows are injective. By Poincaré duality, we have
that Ker(d) = {µ}, where

µ ∈ Cn(S
V )G = (Z[G]m)G

since V is G-orientable. Moreover, µ is the sum of all the top cells
with appropriate signs, which are G-compatible since V is orientable.
Thus, µ =

∑
g∈G g(µ0) ∈ Z[G]m, for some µ0 ∈ Zm. Then, d◦Ψn(µ0) =

d(µ) = 0. So x ∈ Ker(d⊗OG
Z) if and only if Ψn−1 ◦ (d⊗OG

Z)(x) = 0,
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which happens if and only if d ◦ Ψn(x) = 0. So, Ker(d ⊗OG
Z) =

Ker(d ◦Ψn) = ⟨µ0⟩ ∼= Z. So,
HG

n (S
V ;Z) = Ker(d⊗OG

Z)/Im(d⊗OG
Z) = Z/0 = Z.

This concludes the proof of (1).

Now we will prove (2). Since V is faithful, for |V | = n and m > 1,
the sets of (m ·n)-cells and (m ·n−1)-cells of SmV are both free G-sets
(using the CW-decomposition of a smash product and the fact that a
product of a free G-set with any G-set is free).

Now for a Mackey functor M where M(G/{e}) is G-fixed, we have

(7)
M(G/{e}) −→ M(G/{e})[G]

x 7→
∑

g∈G gx

is injective, and thus, (7) can be used to define injective Ψmn, Ψmn−1

so that the diagram (6) commutes. Thus, the same argument applies.
□

Comments:

(1) Note that the same argument works with Z replaced by R for
any commutative ring R and an R-oriented representation V ,
which in particular gives new information for R = Z/2, since
every representation is Z/2-orientable.

(2) Note that part (1) of the statement of Theorem D also holds
for a representation V which is not faithful since if H is the
isotropy group, then

HG
n (S

V ;R) ∼= HG/H
n (SV ;R).

Similarly, part (2) of the statement remains valid when we re-
place M(G/{e}) with M(G/H).

4. Proof of Theorem C

In this section, we will state and prove a more precise version of
Theorem C.

Let A denote the universal Mackey functor, i.e. the Burnside ring
Green functor, where A (G/H) is the Burnside ring of H (the group
completion of the set of isomorphism classes of finite H-sets with re-
spect to disjoint union). For details, see [9, 15]. Note that Mackey
functors are the same as Mackey A -modules, and (commutative) Green
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functors are the same as (commutative) Mackey A -algebras. Thus, for
the purpose of constructing (weak) orientation classes, it suffices to
work with coefficients in A . Also note that we always have an ori-
entable faithful G-representation for a finite group G (e.g. the complex
regular representation). Also, for any G-representation V , 2V is ori-
entable.

By applying Theorem D (2) to M = A , we have

Z ∼= A (G/{e}) = H̃G
m|V |(S

mV ;A ) = HAm|V |−mV .

Then we have

(8) 1 ∈ Z 7→ eV ∈ H̃G
m|V |(S

mV ;A ).

We shall call eV the weak orientation class. We will study the ring
obtained by inverting the generator eV in theRO(G)-graded coefficients
of HA . Clearly, as a spectrum, HA is an E∞-ring spectrum, and thus
in particular a commutative ring spectrum. So, it is possible to invert
eV .

This construction can be entirely described on chain level (see [25],
the end of Section 3).

Theorem 1. Using the notation of (8), for an orientable faithful rep-
resentation V and a Mackey functor M , we have

e−1
V HM = hocolim

m
(HM → Σm|V |−mVHM → Σ2m|V |−2mVHM → . . . )

∼ F (EG+, H(M(G/{e}))).
Here H(M(G/{e})) is considered as a naive G-spectrum, i.e. a non-
equivariant spectrum with a G-action.

Proof. First, for a finite G-set X,

Hk+nm|V |−nmV (X;M) = H̃k+mn|V |(S
nmV ∧X+;M) =

= HG
k+mn|V |(C̃G,∗(S

mV ∧X+)⊗OG
M).

We also have that SnmV ∧X+ is free in degrees k where mn(|V |− 1) <
k ≤ mn|V | and 0 in degrees > mn|V |. Thus, for k > −mn,

HG
k+mn|V |(C̃G,∗(S

mV ∧X+)⊗OG
M) =

= HG
k+mn|V |(C̃∗(S

mV ∧X+)⊗Z[G] M(G/{e})) =

= HG
k+mn|V |((C̃∗(S

mnV )⊗ C∗(X))⊗Z[G] M(G/{e})).

Furthermore, in degrees > mn(|V | − 1), C̃∗(S
mnV ) coincides with

HomZ(R,Z)[mn|V |] = HomZ[G](R,Z[G])[mn|V |]
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for a finite type free Z[G]-resolutionR of Z. Therefore, for k > −mn+1,

(9)
HG

k+mn|V |((C̃∗(S
mnV )⊗ C∗(X))⊗Z[G] M(G/{e})) =

= Hk+mn|V |((C∗(X)⊗HomZ(R,Z))⊗Z[G] M(G/{e})) =
= Hk+mn|V |(HomZ[G](C

∗X ⊗R,M(G/{e})).
Mapping to higher n induces an isomorphism in homology in the given
range.

Now on the level of spectra, we have a map

(10) HM → F (EG+, HM) ∼ F (EG+, HM(G/{e})).

By the fact that

C̃∗(S
mV )⊗HomZ(R,Z) = HomZ(R,Z)[m|V |]

for another finite type free Z[G]-resolution of Z, we have an equivalence

F (EG+, HM(G/{e})) ∼ e−1
V F (EG+, HM(G/{e})),

so (10) induces a map

e−1
V HM → F (EG+, HM(G/{e})),

which, by (9) applied to X = G/H, is an equivalence.
□

Corollary 2. For a finite G-spectrum X, any orientable faithful G-
representation V , and any G-Mackey functor M ,

colimn H
G
k+nm|V |−nmV (X;M) = H−k

G,Borel(DX;M(G/{e})) =
= F (EG+ ∧DX,HM)k

where DX is the Spanier-Whitehead dual of X.

The proof of Theorem 1 also gives the following

Corollary 3. Let M be a Green functor and let, for an orientable
faithful G-representation V ,

eV ∈ H|V |−V (∗;M) = HV−|V |(∗;M) = H̃G
|V |(S

V ;M)

be a class which restricts to a unit in the ring

HV−|V |(G/{e};M) = M(G/{e}).

Then the canonical morphism below is a G-equivalence

e−1
V HM

∼ // F (EG+, HM) = F (EG+, HM(G/{e})).
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5. Whitehead Towers of Ring and Module Equivariant
Spectra

In this section, we treat some preliminary material needed in the
proof of Theorem B. We use the language of triangulated categories and
t-structures (see [3], Section 1.3), and also discuss some multiplicative
properties.

Recall that the derived category of G-spectra is a triangulated cate-
gory (see [3], Section 1.1, [29], Chapter 1). Suppose G is a finite group
and E is a G-spectrum. Then the k-th homotopy groups of E form a
Mackey functor

πk(E)(G/H) = πk(E
H).

This is the “homology theory” associated with a t-structure. Then we
have

πk(τ≥nE) = πkE

for k ≥ n and is 0 for k < n, and

πk(τ<nE) = πkE

for k < n and is 0 for k ≥ n.
We also have a distinguished triangle

τ≥0E → E → τ<0E → τ≥0E[1].

Also, note that, while [τ<kF, τ≥kE] can be non-trivial,

(11) [τ≥kE, τ<kE] = 0,

(where [?, ?] denotes the abelian group of morphisms in our triangulated
category, i.e. the derived category of G-spectra). In addition, for k > ℓ,
we have

(12) τ<kτ<ℓ = τ<ℓ.

Lemma 4. (See also Dugger [10], §4) If E is a ring spectrum, then
τ≥0E is also a ring spectrum and τ≥nE is a τ≥0E-module spectrum (in
this paper, only commutative ring spectra are considered). If E is a ring
spectrum and K is an E-module spectrum, then τ≥nK is a τ≥0E-module
spectrum.
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Proof. In the derived category of G-spectra, we have a diagram

(13)

τ≥0E ∧ τ≥0E

0

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

µ0

''OO
OOO

OOO
OOO

O
// E ∧ E

ν
��
E

��
τ<0E

by (12), where ν denotes the operation of E. Thus, µ0 lifts to a map

µ : τ≥0E ∧ τ≥0E → τ≥0E.

Note that µ is unique. This is because if there is another such lift µ′,
then we have the diagram

τ≥0E ∧ τ≥0E

µ−µ′
''OO

OOO
OOO

OOO
O

//0
τ<0E[−1]

��
τ≥0E

��
E,

by the distinguished triangle

τ<0E[−1] → τ≥0E → E → τ<0E

and the fact that [τ≥0E ∧ τ≥0E, τ<0E[−1]] = 0. The associativity dia-
gram

(14)

τ≥0E ∧ τ≥0E ∧ τ≥0E //

��

τ≥0E ∧ τ≥0E

��
τ≥0E ∧ τ≥0E // τ≥0E

commutes by a similar reason using the diagram

τ≥0E ∧ τ≥0E ∧ τ≥0E

))

0

//

��

τ≥0E ∧ τ≥0E

��

τ<0E[−1]

''OO
OOO

OOO
OOO

O

τ≥0E ∧ τ≥0E // τ≥0E.

The cases of the unit and commutativity are analogous.



13

The case of τ≥nE is analogous.
The argument for modules precisely mimics the proof of Lemma 4

with one E-coordinates replaced by K. □

Suppose that V is an orientable faithful representation of G.

Lemma 5. Any morphism of G-spectra

ẽV : S0 → SV−|V | ∧ E

lifts to a morphism of G-spectra

S0 → (SV−|V | ∧ τ≥0E).

Proof. We have a distinguished triangle

(15) SV−|V |∧ τ≥0E → SV−|V |∧E → SV−|V |∧ τ<0E → SV−|V |τ≥0E[1].

Then we have

SV−|V | ∧ τ≥0E

��

S0 ẽV //

φ &&MM
MMM

MMM
MMM

SV−|V | ∧ E

��

SV−|V | ∧ τ<0E.

Then φ = 0, by (11), since SV−|V |∧ τ<0E only has cells in degrees ≤ 0.
So, by the long exact sequence in homotopy classes corresponding to

(15), we get a lifting

SV−|V | ∧ τ≥0E

��

S0

88

ẽV // SV−|V | ∧ E.

□

Remark: J. P. C. Greenlees [12] pointed out that if G is a (finite)
group acting freely on a sphere S(V ) and aV : S0 → SV is the map
defined by sending the non-base point to the point at infinity, we can
write

(16) F (EG+, HM) ≃ HM∧
(aV )

which, in view of Corollary 3, leads to the curious formula

(17) e−1
V HM ≃ F (EG+, HM) ≃ HM∧

(aV ).
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The right hand side of (16) is more precisely defined to be the homotopy
limit over n of the mapping spectrum of the homotopy fiber of

anV : S0 → SnV ,

which is S(nV )+, into HM , so (16) follows from the fact that

EG+ = hocolim
n

S(nV )+.

On the chain level, since C∗S(nV ) is a chain complex of free Z[G]-
modules, we obtain a chain map

C∗(S(nV )) → C∗(EG) = C∗(S(∞V ))

and hence a map

(18) C∗(EG) → C∗(S(nV ))

which is, in fact, (using this model of EG) an isomorphism in degrees
> −n|V |, and thus will be an isomorphism after taking limits. On the

other hand, the chain complex C̃∗S
nV is Z[G]-free in degrees > 0 and

we have also constructed a map

(19) C̃∗(S
nV )[−nV ] → C∗(EG)

which then becomes an equivalence after taking (homotopy) colimits.
To see why in (17) we have an equivalence between a homotopy limit

and homotopy colimit, recall that for a general chain complex C, we
have chain maps

(20) τ≥mC → C → C≥m

where C≥m is the “stupid filtration,” i.e. taking terms of degree ≥
m and 0 elsewhere, while τ≥mC is the “Whitehead filtration” which
induces an isomorphism in homology in degrees ≥ m. We will discuss
the Whitehead filtration in more detail in the next section. In (20),
C becomes a quasi-isomorphism when taking the homotopy colimit of
the left hand term τ≥mC as well as the homotopy limit of the right
hand term C≥m with m → −∞. In the current setting, (19) represents
(up to quasi-isomorphism) the Whitehead filtration τ≥−n|V |+1C

∗(EG)
while (20) represents the “stupid filtration” C∗(EG)≥−n|V |+1.

6. Proof of Theorem B

We shall now restate Theorem B in more detail and give a proof.
First, let us state our assumption. Let L be a G-spectrum and let X
be a finite G-CW-spectrum. Then we can consider a G-equivariant
Atiyah-Hirzebruch spectral sequence that can arise either from the
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CW-filtration on X (with cells of the form G/H+ ∧ Sn) or from the
Postnikov-Whitehead filtration on L (taking ordinary (co)homology
with Mackey coefficients πnL). These spectral sequences are essen-
tially the same (by considering another variant using both filtrations
simultaneously); this is treated in [16], Appendix B. One notes a shift
in the indexing, as the E2-page of the cell-based Atiyah-Hirzebruch
spectral sequence becomes the E1-page of the Postnikov-Whitehead
version.

Assumption A: There exists a faithful finite-dimensional G-represen-
tation V and an orientation class

ẽV ∈ Ẽ|V |(S
V )

such that for every N ∈ N and every class u in the E2-term of the L-

Atiyah-Hirzebruch spectral sequence for L̃∗S
NV there exists an r0 ∈ N

such that for each ℓ ∈ N, either ẽN(ℓ−1)
V u is a permanent cycle or there

exists an r ≤ r0 such that drẽ
N(ℓ−1)
V u ̸= 0 in the Atiyah-Hirzebruch

spectral sequence for L̃∗S
ℓNV .

Theorem 6. Suppose there exists an ẽV ∈ Ẽ|V |(S
V ) = E|V |−V (∗) such

that

(21) (ν ∧ SV−|V |) ◦ (E ∧ ẽV ) : E
∼ // E ∧ SV−|V |

is an equivalence. If L = E satisfies Assumption A, then there exists
a decreasing filtration F i on πG

∗ E such that

(a)

lim
i
πG
∗ E/F iπG

∗ E
∼= πG

∗ F (EG+, E).

(b)

F 0πG
∗ E = πG

∗ E

and F 1πG
∗ E is the augmentation ideal of πG

∗ E (i.e. the kernel

of the restriction πG
∗ E → π

{e}
∗ E).

(c) F is a filtration of rings (i.e. F i · F j ⊆ F i+j).

Suppose K is an E-module spectrum. If L = K satisfies Assumption
A (without necessarily assuming Assumption A for L = E), then there
exists a decreasing filtration F i on πG

∗ K such that

(d)

lim
i
πG
∗ K/F iπG

∗ K
∼= πG

∗ F (EG+, K).

(e)

F 0πG
∗ K = πG

∗ K
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(f) If E also satisfies Assumption A, F is a filtration of E-modules
(i.e.

F i(π∗E) · F j(π∗K) ⊆ F i+j(π∗K)).

We will first discuss the ring case. Observe that we have a homotopy
decreasing filtration

(22) · · · → τ≥n+1E → τ≥nE → τ≥n−1E → . . .

Its homotopy limit is 0 because, by taking cofibers of the canonical
maps to E, we obtain a sequence

→ τ<n+1E → τ<nE → τ<n−1E → . . .

whose homotopy limit is E. Put

(0)F
i = τ<iE.

Then by applying ẽV to the filtration (22) repeatedly we get a sequence
of filtrations

...

��

...

��

...

��

τ≥n+1E

��

ẽV // (τ≥n+1E) ∧ SV−|V | ẽV //

��

(τ≥n+1E) ∧ S2(V−|V |) → . . .

��

τ≥nE

��

ẽV // (τ≥nE) ∧ SV−|V |

��

ẽV // (τ≥nE) ∧ S2(V−|V |) → . . .

��

τ≥n−1E

��

ẽV // (τ≥n−1E) ∧ SV−|V | ẽV //

��

(τ≥n−1E) ∧ S2(V−|V |) → . . .

��
...

...
...

Now each vertical homotopy filtration individually has homotopy
limit 0, since again by taking cofibers of the canonical maps into E =
E ∧ Sj(V−|V |) (see (21)), we obtain a sequence

(j)F
i = (τ<iE) ∧ Sj(V−|V |)

whose homotopy limit in i is E.

Lemma 7. We have

(23)
(∞)F

i = hocolimj((τ<iE) ∧ Sj(V−|V |))

∼ F (EG+, τ<iE).
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Proof. The statement is true with τ<iE replaced by τ≥kτ<iE by Theo-
rem 1. We have

τ<iE = hocolim
k→−∞

τ≥kτ<iE.

Thus, we are done if we can conclude

(24) F (EG+, τ<iE) = hocolim
k→−∞

F (EG+, τ≥kτ<iE).

However, this follows from the fact that homotopy groups in each de-
gree on the right hand side of (24) are eventually constant, since EG+

is of finite type. □

Proof of Theorem 6. Denote by (j)E the spectral sequence in homotopy
groups based on the homotopy filtrations (j)F . Then by Assumption
A,

(∞)E = colim
j

(j)E

for a suitable representation V . In particular, (∞)E converges alge-
braically.

By Lemma 7, however, (∞)E converges conditionally to π∗F (EG+, E),
and thus converges strongly to π∗F (EG+, E) (see [5]).

In other words,

(25) πG
n F (EG+, E) = lim

i
Im(πG

n F (EG+, E) → πG
n ((∞)F

i)).

On the other hand, Im(πG
n F (EG+, E) → πG

n ((∞)F
i)) is an extension

of finitely many terms (∞)E
∞
p,q and thus is equal to

(26) colim
j

(Im(πG
nE → πG

n ((j)F ))) = Im(πG
nE → πG

n ((∞)F )).

The multiplicativity on the level of spectral sequences follows from the
arguments of Blumberg-Mandell [4], Section 4. See also Dugger [10], §4.
The paper [18] by Hedenlund, Krause, Nikolaus contains a treatment
in the language of ∞-categories.

This concludes the proof of (a), (b), (c). The proof of (d), (e) is
analogous by replacing E by K in formulas (23), (24), (25), (26). In
(f), Assumption A is in effect for both E, K, so we can again use the
applicable results of [4, 10, 18].

□

Example: Now we will present a counterexample to the statement of
Theorem 6 when we omit Assumption A. Let G = Z/2. By the results
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of Löffler [30] and Comezaña [31], the coefficient ring (MUZ/2)∗ is a flat
MU∗-module concentrated in even degrees. Hence

(MUZ/2 ∧MU HZ/2)Z/2∗

is concentrated in even degrees, while

(27) F (EZ/2+,MUZ/2 ∧MU HZ/2)∗ = H∗(BZ/2;Z/2) = Z/2[a],
where the degree of a is 1. In particular, (27) is non-zero in odd degrees
and hence the conclusion of Theorem 6 is false.

To explain precisely what is happening, we have ([39], Theorem 1,
[19])

(MUZ/2)∗ = MU∗[bi,j, qj|i, j ∈ N0]/ ∼
where, writing u = b0,0, the relations are

q0 = 0
b0,1 = 1, b0,j = 0 for all j ≥ 2

qj − cj = uqj+1

bi,j − ai,j = ubi,j+1.

Here we write
x+F y =

∑
i,j≥0

ai,jx
iyj

ck =
∑
i+j=k

ai,j.

(so [2]Fx =
∑

j≥0 cjx
j), where F is the universal formal group law.

Hence,

(MUZ/2 ∧MU HZ/2)∗ = Z/2[u, qj, bi,j|i ≥ 1, j ≥ 0]/ ∼
where the relations are

q0 = 0, qj = uqj+1

bi,j = ubi,j+1.

We also have (for example by the arguments of [16], Theorem 22.5)

(28)
F (EZ/2+,MUZ/2 ∧MU HZ/2) = (MUZ/2 ∧MU HZ/2)∧u =

= holim
s

(MUZ/2 ∧MU HZ/2)/us

The generators bi,j, i ≥ 1 are uniquely divisible by u, and thus will
not contribute to (28); for this reason, we shall ignore them. (This
does not apply to the generators qj which are infinitely u-divisible, but
not uniquely.) Factoring the bi,j out (which we could also do on the
spectral level), we obtain the ring

R = Z/2[u, qj|j ≥ 0]/(q0 = 0, uqj+1 = qj)



19

which additively is

(29) Z/2[u]⊕ Z/2{qj|j > 0}.

(We have degrees |u| = −2, |qj| = 2j.)
Non-equivariantly, we just have Z/2 in degree 0, so on the Mackey

functor level, we have (29) corresponds to

(30) Z/2⊕ Φ{uj|j ≥ 0} ⊕ Φ{qj|j > 0}

where Φ is the Mackey functor given by

Φ(Z/2/Z/2) = Z/2, Φ(Z/2/{e}) = 0.

Let α be the real sign representation, V = 2α. We will use the grad-
ing of the shifted Atiyah-Hirzebruch spectral sequence (j)E based on
the Postnikov-Whitehead filtration as described in [16], Appendix B.
Recalling that the τ≥s filtration is decreasing, if we want to write our
spectral sequence homologically (so the total degree is the dimension
degree), we therefore have the cofiber of τ≥s+1 → τ≥s in filtration degree
−s.

Thus, in (j)E, (30) gives (HZ/2 ∧ S2jα−2j)ℓ in homological filtration

degree (0, ℓ) and (HΦ ∧ S2jα−2j)ℓ in filtration degree (−2s, 4s + ℓ) for
s ∈ Z. We have ([20], Section 6)

(31)

(HZ/2 ∧ S2jα−2j)ℓ =

{
Z/2, if − 2j ≤ ℓ ≤ 0

0, else

(HΦ ∧ S2jα−2j)ℓ =

{
Z/2, if ℓ = −2j

0, else

(note that HΦ is α-periodic since HΦ{e} = 0). Thus, the Atiyah-
Hirzebruch spectral sequence (indexed using the Postnikov tower) for
j > 0 is

E1
−2s,4s−2j = Z/2, for s ̸= 0 ∈ Z

E1
0,q = Z/2, for 2− 2j ≤ q ≤ 0 or q = −2j

E1
p,q = 0 else.

(Note: The exception E1
0,1−2j = 0 arises from a d0 differential.) Know-

ing the answer forces differentials

d2j−2s : E2j−2s
0,1−2s → E2j−2s

2s−2j,2j−4s,
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for 1 ≤ s ≤ j. In the case of j = 3, E1
p,q looks like

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-6)

(-4,2)

(-2,-2)

(2,-10)

where q is the vertical axis and p is the horizontal one.
We see that in fact the colimit (∞)F has

E1
0,ℓ = Z/2 for ℓ ≤ 0

E1
p,q = 0 else

which collapses to H(BZ/2;Z/2). E1
p,q looks like

(0,0)

(0,-1)

(0,-2)

(0,-3)

(0,-4)

(0,-5)
...

Due to the increasing lengths of differentials in this example, colimit
of a sequence of spectral sequences does not commute with abutment.

Comment: The Example well illuminates the fact that Theorem B
without Assumption A only fails due to the fact that the passage from

(j)F to (∞)F fails to preserve convergence and abutment. The odd-
degree elements in the above example seem like a derived functor of
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the process. Thus, we expect that some version of Theorem B with-
out Assumption A holds where higher derived functors are taken into
account, but we do not pursue that here.

7. The Proof of Theorem A

To prove Theorem A, the main step in the following

Proposition 8. The MUG-module spectrum MUG ∧MU K(n) satisfies
Assumption A for any prime p and any natural number n ≥ 1.

Proof. It is well know (see [11]) that, up to weak equivalence, a G-
space X can be modelled as a (finite) homotopy colimit of a diagram
of G-spaces of the form

(32) G+ ∧N(H) (EW (H)+ ∧XH)

where H runs through conjugacy classes of subgroups of G. For a
G-representation sphere

(33) X = SV ,

we have
XH = SV H

.

Applying K̃(n)∗ to the space (32) (in the sense of taking orbits and

then applying the non-equivariant K̃(n)∗) then gives

(34) K̃(n)∗(EW (H)+ ∧W (H) S
V H

).

If V is (say) a complexG-representation, then (34) is further isomorphic
to

(35) K(n)∗BW (H)[|V H |]
which is a finitely generated K(n)∗-module by [36]. Hence (and also di-
rectly by the proof in [36]), the Atiyah-Hirzebruch spectral sequence for
(35) collapses to a suitable finite Er-term, with finitely many surviving
filtration degrees.

To relate the Atiyah-Hirzebruch spectral sequence for the realiza-
tion of the finite homotopy colimit to the Atiyah-Hirzebruch spectral
sequence of its terms (35), we note that if we choose V to be a suffi-
ciently high multiple of the complex regular representation C[G], the
dimensions (and hence the filtration degrees) |V H |, |V H′ | for H ′ prop-
erly subconjugate to H are sufficiently far apart that the differentials
in the Atiyah-Hirzebruch spectral sequence (35) happen first in the
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Atiyah-Hirzebruch spectral sequence of the homotopy colimit, and we
are left with differentials between two of the terms (35) from H to a
properly subconjugate group H ′ (here we are considering and grading
as in the equivariant Atiyah-Hirzebruch spectral sequence from a cell
filtration).

When replacing V by its ℓ-multiple, the distance between the fil-
tration degree of the two terms (35) for H,H ′ increases. While it is
possible in this situation for a class to support differentials of length
increasing with ℓ (as in the Example above), for a map of spectral se-
quence E → E ′, a class cannot be the target of a longer differential in
E ′ than in E.

Observe that in the Example, under the comparison map induced by
the inclusion

Smα ⊂ // Sm′α

for m′ > m, the image of a class is hit by the same length differential
as in the source, while in the periodicity comparison map, classes in
the target of the periodicity map support longer differentials than in
the source.

More generally, to put the terms (35) into the same dimension in the
Atiyah-Hirzebruch spectral sequence for SmV and Sm′V for m < m′,
we need to obtain a comparison map which raises dimension by

(m′ −m)V − (m′ −m)|V H |.

This can be accomplished by expressing

(m′−m)V −(m′−m)|V H | = (m′−m)(V −V H)+(m′−m)(V H−|V H |),

using the inclusion of fixed points

S0 → SV−V H

(note that V − V H is a true G-representation), composed with the
(V H − |V H |)-dimensional periodicity class (after restricting to N(H)).

Now if we were computing the K̃(n)∗-Atiyah-Hirzebruch spectral
sequence, we could argue that since the K(n)∗-dimension of the sum of
all the terms (35) is finite, only finitely many lengths of differentials are
possible (by counting the possible targets), and hence our conclusion
follows.

Instead of K(n), however, we are considering L = K(n) ∧MU MUG.
By complex orientation, (35) is then replaced by

(36) (MUH ∧MU K(n)∗)⊗K(n)∗ K(n)∗(BW (H))[|V H |].
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While MUH ∧MU K(n)∗ is infinite-dimensional, under the specification
made above, the target of Atiyah-Hirzebruch spectral sequence differ-
entials of a class

u = x⊗ u′

for x ∈ MUH ∧MU K(n)∗ can only be of the form

y ⊗ w

where y is a restriction of x to a subconjugate group, which still leaves
only finitely many choices of possible targets, and thus, our argument
applies.

□

Then Theorem A results as follows:

Proof of Theorem A. We will proceed by contradiction. Assume that
the G-equivariant coefficients (MUG)∗ form a flat MU∗-module con-
centrated in even degrees. Consider the ring spectrum MUG and the
MUG-module spectrum K(n)∧MU MUG, where K(n) denotes Morava
K-theory. (This can be formed since MUG is an E∞-algebra over the
pushforward of the E∞-ring spectrum MU , over which K(n) is an E∞-
module.) We then obtain by our flatness assumption that

(K(n) ∧MU MUG)∗ = K(n)∗ ⊗MU∗ (MUG)∗

is concentrated in even degrees.
On the other hand, by Proposition 8, K(n) ∧MU MUG satisfies As-

sumption A, and hence, we can apply Theorem 6 (d), to conclude that
there exists a suitable completion satisfying

((K(n) ∧MU MUG)∗)
∧ ∼= K(n)∗BG

Therefore, K(n)∗BG is also concentrated in even degrees. However,
this is a contradiction with the results of [22, 23], which state that
K(2)∗BG contains non-zero elements in odd degrees for G the p-Sylow
subgroup of GL4(Fp) for p > 2.

□
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