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Abstract. We give counterexamples to the evenness conjecture
for homotopical equivariant cobordism. To this end, we prove a
completion theorem for certain complex cobordism modules which
does not involve higher derived functors. A key step in the proof
is provided by a certain new relation between Mackey and Borel
cohomology.

1. Introduction

G-Equivariant stable homotopy theory [25] for G a finite or compact
Lie group mainly studies G-spectra indexed over the complete universe,
which represent fully stable G-equivariant generalized homology and
cohomology theories with duality. AllG-spectra considered in his paper
will be indexed over the complete universe unless specified otherwise.
Just as non-equivariantly, the most important equivariant spectra are
ordinary homology HM [24], KG-theory, and stable complex cobordism
MUG, represented by the G-equivariant complex Thom spectrum (see,
e.g. [6, 25, 33]).

A conjecture dating back to the 1970s stated that the coefficient
ring (MUG)∗ is a free module over the non-equivariant cobordism co-
efficient ring MU∗ on even-dimensional generators. It has been proved
for abelian (compact Lie) groups by Löffler in [26] and Comezaña in
[27], Chapter XXVIII. The main result of this paper shows that, in
general, this conjecture is, in fact, false:

Theorem A. Let G be the p-Sylow subgroup P ⊂ GL4(Fp) for any
prime p > 2. Then the coefficients (MUG)∗ of the G-equivariant com-
plex Thom spectrum do not form a flat MU∗-module concentrated in
even degrees.
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To give some background, let us denote by (ΩG)∗ the G-equivariant
complex cobordism ring of manifolds [32]. Then there is a map

(1) (ΩG)∗ → (MUG)∗,

which is not in general an isomorphism due to lack of G-equivariant
transversality [35]. A geometric complement of Theorem A, i.e. a
counterexample to the a version of the evenness conjecture [29, 34] for
the geometric complex cobordism ring (ΩG)∗, was recently announced
by Samperton and Uribe [30]. They observed that all their counterex-
amples have non-zero Bogomolov multiplier (cf. [5]). Thus, by [5],
their groups also do provide a class of counterexamples to the Noether
problem over C (asking if, for a faithful finite group G-representation
V , the fixed point field K(V )G, where K(V ) is the field of rational
functions on V , is also isomorphic to a field of rational functions on a
vector space).

The p-Sylow subgroup ofGL4(Fp), on the other hand, has Bogomolov
multiplier 0. (Due to the fact that it has p, p2 − 1, p3 + p2 − 2p, p3 −
p2−p+1 conjugacy classes of sizes 1, p, p2, p3, respectively, it is of type
Φ31 or Φ32 according to the classification of James [18], and thus has
Bogomolov multiplier 0 by the results of Chen and Ma [7].)

There is no immediate direct implication either way between the
geometric and homotopical evenness conjectures. Bröcker and Hook
[6] proved that (MUG)∗ is a localization of a ring of the form

(2)
⊕
V

Ω̃G
∗ (SV ).

Thus, the p-Sylow subgroups P of GL4(Fp) also give counterexamples
to the evenness conjecture for (2), which, however, is a stronger state-
ment than the evenness conjecture of ΩG

∗ . The Noether problem for the
group P , as far as I know, is still open. This motivates the following

Question: Does a positive solution to the Noether problem over C for
a finite group G imply (any version of) the evenness conjecture for
G-equivariant complex cobordism?

A basic method for studying equivariant spectra is to use comple-
tion theorems. A completion theorem for equivariant K-theory was
proved by Atiyah and Segal [1]. A completion theorem for MUG was
proved by Greenlees-May [14] (recently extended by La Vecchia [23]).
A completion theorem for HM is false (which will be important to our
discussion).

A key step in the proof of Theorem A is the following completion
theorem. We formulate an assumption (Section 5, Assumption A) on
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a G-spectrum, requiring that the length of all its Atiyah-Hirzebruch
spectral sequence differentials be uniformly bounded.

Theorem B. Let E be a G-equivariant commutative ring spectrum for
a finite group G such that for some faithful real G-representation V ,
there exists a unit of the RO(G)-graded E-coefficient ring

(3) ẽV ∈ E|V |−V .
It E satisfies Assumption A (see Section 5), then there exists a de-
creasing ring filtration F i on the Z-graded coefficient ring E∗ such that

F 0E∗ = E
{e}
∗ , F 1E∗ is the augmentation ideal

Ker(E∗ = EG
∗ → E{e}∗ ),

and
F (EG+, E)∗ ∼= lim

n
E∗/F

nE∗.

For any E for which a unit (3) exists, an analogous statement also
holds for E-module spectra which statisfy Assumption A.

We will show that Theorem B applies to the MUG-module spectrum
MUG ∧MU K(n), which can be applied to reducing Theorem A to a
known statement about Morava K(n)-theory.

Note that Theorem B does not immediately follow from the comple-
tion theorems [14, 23]. Its main feature is the absence of higher derived
functors, which is key for our application.

As already mentioned, the ordinary cohomology spectrum HM fails
the assumptions of Theorem B. It satisfies, however, a weaker property
that is in fact a key step in the proof of Theorem B:

Theorem C. Let M be a Mackey module over a Green functor R.
Then there exists an orientable faithful G-equivariant representation V
and a class

eV ∈ HR|V |−V
such that

e−1
V HM ∼ F (EG+, HM(G/{e})).

The following more specific statement, which is needed in the proof,
is also of independent interest:

Theorem D. Suppose V is an orientable finite-dimensional faithful
G-representation and G is a finite group.

(1) If |V | = n, then

HG
n (SV ;Z) = Z.
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(2) Let M be a Mackey functor where the G-action on MG/{e} is
trivial, and let m > 1. Then we have

H̃G
m|V |(S

mV ;M) = MG/{e}.

In some sense, Theorems C and D together give an analogue of the
main result of [6] with ΩG replaced by ordinary G-equivariant coho-
mology.

The present paper is organized by proving the above theorems in
reverse order: We prove Theorem D in Section 2. In Section 3, we re-
state Theorem C in more detail (Theorem 1, Corollaries 2, 3), and give
a proof. Section 4 contains some background material on equivariant
Whitehead towers of ring and module spectra. In Section 5, we give
a proof of Theorem B and a counterexample for its statement after
omitting Assumption A. In Section 6, we prove Theorem A.

2. Proof of Theorem D

We shall begin with a proof of Theorem D, which is done entirely on
the chain level.

For a CW-complexX, we denote by C∗(X) the cellular chain complex
of X. We denote by OG the orbit category of G. A G-coefficient system
is a functor OOp

G → Ab (the category of abelian groups). Likewise, a
G-co-coefficient system is a functor OG → Ab. The category of finite
G-sets and G-maps will be denoted by “f.G-Sets.” For a G-CW complex
X, let

CG(X)(G/H) := CG(XH)

denote the cellular coefficient-system-valued chain complex of X. On
the other hand, let

C∗G(X)(G/H) := HomAb(CG(X)(G/H),Z)

denote the dual of CG(X). Since HomAb is contravariant in the first
variable, C∗G(X) is a co-coefficient system.

A Mackey functor is a pair consisting of a coefficient system and a
co-coefficient system which agree on objects. There is a compatibility
condition. (For details, see [8, 22].)
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Proof of Theorem D. First, we shall prove (1). By definition, we have
that

HG
n (SV ;Z) = Hn(CG(SV )⊗OG

Z).

Now, for any subgroup {e} 6= H ⊆ G, V H ( V , since V is faithful.
Thus, dim(V H) < dim(V ). So, no top (i.e. n-dimensional) cell of SV

can be contained in such a V H , by invariance of domain. So, every top
cell must have isotropy {e} and thus be free. Therefore, Cn(SV ) must
be of the form of a free Z[G]-module, so we can write

Cn(SV ) = (Z[G])m,

for some m, where Z[G] denotes the group ring of G. In fact,

(CG(SV )n)(G/H) = Z[G]m

for H = {e} and is 0 else. Therefore,

CG(SV )n ⊗OG
Z = C0(SV )n(G/{e})⊗Z[G] Z = Zm,

since all other C0(SV )n(G/H)⊗Z[G] Z = 0 for {e} 6= H ⊆ G and there
are no identifications introduced by morphisms of OG coming from
inclusions of subgroups.

Now, so far, we have

Zm = Cn(SV )⊗OG
Z

d⊗OG
Z
��

Cn(SV )

d
��

Cn−1(SV )⊗OG
Z Cn−1(SV )

The next step is to construct horizontal arrows completing the dia-
gram. We shall define, for a functor F : OOp

G → Ab, a map

(4) F ⊗OOp
G

Z→ F (G/{e}),

and then use it on F = CG(SV )i. We attempt to define this map by
the one induced by

(5) x⊗ ` 7→ ` ·
∑

f :G/e→G/H

f ∗x.

However, we need to show that this definition would be consistent.
Consistency under composition is immediate. Thus, we need, in par-
ticular, to show for subgroups H ′ ⊆ H, and a map φ : G/H ′ → G/H,
for x ∈ F (G/H), the map (5) sends φ∗(x)⊗1 ∈ F (G/H ′)⊗OOp

G
Z(G/H ′)
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and x⊗ |H|/|H ′| ∈ F (G/H)⊗OOp
G

Z(G/H) to the same element. From

the given definition, it sends each to∑
f :G/e→G/H′

f ∗ ◦ φ∗x =
|G/H ′|
|G/H|

·
∑

f :G/e→G/H

f ∗x.

and

|H|/|H ′| ·
∑

f :G/e→G/H

f ∗x,

respectively, which are equal since |G/H ′| = |H/H ′| · |G/H|.
So, we can define

Ψi : Ci(S
V )⊗OOp

G
Z→ Ci(S

V )

by (5).
We will show that Ψi is injective. This amounts to considering (4)

when F is the free abelian group FS on the representable functor by a
G-set S:

FS(G/H) = ZMapG(G/H, S).

Then (4) takes the form

η : ZFS ⊗OOp
G

Z→ ZS.

Now, we can assume that S = G/H is an orbit. Let W (H) = N(H)/H
be the Weyl group of H. Then we have a surjective map

Z(G/HH)⊗ZW (H) Z � ZFG/H ⊗OG
Z.

By composing with η, we get a map

Z(G/HH)⊗ZW (H) Z→ ZG/H.

Then we have (G/H)H = W (H), so this map is

Z→ Z(G/H)

1 7→ (1, . . . , 1).

Therefore, the map must be injective. So, η is injective, too. So, in
particular, the Ψk’s must also be injective.

So, we have the commutative diagram

(6)

Zm

d⊗OG
Z
��

Ψn // (Z[G])m

d
��

Cn−1(SV )⊗OG
Z

Ψn−1 // Cn−1(SV )
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where the horizontal arrows are injective. By Poincaré duality, we have
that Ker(d) = {µ}, where

µ ∈ Cn(SV )G = (Z[G]m)G

since V is G-orientable. Moreover, µ is the sum of all the top cells
with appropriate signs, which are G-compatible since V is orientable.
Thus, µ =

∑
g∈G g(µ0) ∈ Z[G]m, for some µ0 ∈ Zm. Then, d◦Ψn(µ0) =

d(µ) = 0. So x ∈ Ker(d⊗OG
Z) if and only if Ψn−1 ◦ (d⊗OG

Z)(x) = 0,
which happens if and only if d ◦ Ψn(x) = 0. So, Ker(d ⊗OG

Z) =
Ker(d ◦Ψn) = 〈µ0〉 ∼= Z. So,

HG
n (SV ;Z) = Ker(d⊗OG

Z)/im(d⊗OG
Z) = Z/0 = Z.

This concludes the proof of (1).

Now we will prove (2). Since V is faithful, for |V | = n and k > 1,
the sets of (k ·n)-cells and (k ·n− 1)-cells of SmV are both free G-sets.

Now for a Mackey functor M where M(G/{e}) is G-fixed, then

(7)
M(G/{e}) −→M(G/{e})[G]

x 7→
∑

g∈G gx

is injective, and thus, (7) can be used to construct injective Ψkn, Ψkn−1

so that the diagram (6) commutes. Thus, the same argument applies.
�

Comments:

(1) Note that the same argument works with Z replaced by R for
any commutative ring R and an R-oriented representation V ,
which in particular gives new information for R = Z/2, since
every representation is Z/2-orientable.

(2) Note that part (1) of the statement of Theorem D also holds
for a representation V which is not faithful since if H is the
isotropy group, then

HG
n (SV ;R) ∼= HG/H

n (SV ;R).

Similarly, part (2) of the statement remains valid when we re-
place MG/{e} with MG/H .
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3. Proof of Theorem C

In this section, we will state and prove a more precise version of
Theorem C.

Let A denote the universal Mackey functor, i.e. the Burnside ring
Green functor, where A (G/H) is the Burnside ring of H (the group
completion of {isomorphism classes of finite H-sets} with respect to∐

). For details, see [8, 12].
By applying Theorem D (2) to M = A , we have

Z ∼= AG/{e} = H̃G
k|V |(S

kV ; A ) = HAk|V |−kV .

Then we have

(8) 1 ∈ Z 7→ eV ∈ H̃G
k|V |(S

kV ; A ).

We shall call eV the weak orientation class. We will study the ring
obtained by inverting the generator eV in theRO(G)-graded coefficients
of HA . Clearly, as a spectrum, HA is an E∞-ring spectrum, and thus
in particular a commutative ring spectrum. So, it is possible to invert
eV .

This construction can be entirely described on chain level (see [22]).

Theorem 1. Using the notation of (8), for a faithful representation V
and a Mackey functor M , we have

e−1
V HM = hocolim

m
(HM → Σm|V |−mVHM → Σ2m|V |−2mVHM → . . . )

∼ F (EG+, H(M(G/{e}))).
Here H(M(G/{e})) is considered as a naive G-spectrum, i.e. a non-
equivariant spectrum with a G-action.

Proof. First, for a finite G-set X,

Hk+nm|V |−nmV (X;M) = H̃k+mn|V |(S
nmV ∧X+;M) =

= HG
k+mn|V |(C̃G(SmV ∧X+)⊗OG

M).

We also have that SnmV ∧X+ is free in degrees k where mn(|V |− 1) <
k ≤ mn|V | and 0 in degrees > mn|V |. Thus, for k > −mn,

HG
k+mn|V |(C̃G(SmV ∧X+)⊗OG

M) =

= HG
k+mn|V |(C̃(SmV ∧X+)⊗Z[G] M(G/{e})) =

= HG
k+mn|V |((C̃(SmnV )⊗ C(X))⊗Z[G] M(G/{e})).

Furthermore, in degrees > mn(|V | − 1), C̃(SmnV ) coincides with

HomZ(R,Z)[mn|V |] = HomZ[G](R,Z[G])[mn|V |]
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for a finite type free Z[G]-resolutionR of Z. Therefore, for k > −mn+1,

(9)
HG
k+mn|V |((C̃(SmnV )⊗ C(X))⊗Z[G] M(G/{e})) =

= Hk+mn|V |((C(X)⊗HomZ(R,Z))⊗Z[G] M(G/{e})) =
= Hk+mn|V |(HomZ[G](C

∗X ⊗R,M(G/{e})).

Mapping to higher n induces an isomorphism in homology in the given
range.

Now on the level of spectra, we have a map

(10) HM → F (EG+, HM) ∼ F (EG+, HM(G/{e})).

By the fact that

C̃(SmV )⊗HomZ(R,Z) = HomZ(R′,Z)[m|V |]

for another finite type free Z[G]-resolution of Z, we have an equivalence

F (EG+,M(G/{e})) ∼ e−1
V F (EG+,M(G/{e})),

so (10) induces a map

e−1
V HM → F (EG+,M(G/{e})),

which, by (9) applied to X = G/H, is an equivalence.
�

Corollary 2. For a finite G-spectrum X,

colimnH
G
k+nm|V |−nmV (X;M) = H−kG,Borel(DX;M(G/{e})) =

= F (EG+ ∧DX,HM)k

where DX is the Spanier-Whitehead dual of X.

The proof of Theorem 1 also gives the following

Corollary 3. Let M be a Green functor and let

eV ∈ H|V |−V (∗;M) = HV−|V |(∗;M)

be a class which restricts to a unit in the ring

HV−|V |(G/{e};M) = M(G/{e}).

Then the canonical morphism below is a G-equivalence

e−1
V HM

∼ // F (EG+, HM) = F (EG+, HM(G/{e})).
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4. Whitehead Towers of Ring and Module Equivariant
Spectra

In this section, we treat some preliminary material needed in the
proof of Theorem B. We use the language of triangulated categories
and t-structures [2], and also discuss some multiplicative properties.

Recall that the derived category of G-spectra is a triangulated cate-
gory [2, 25]. Suppose G is a finite group and E is a G-spectrum. Then
the k-th homotopy groups of E form a Mackey functor

πk(E)(G/H) = πk(E
H).

This is the “homology theory” associated with a t-structure. Then we
have

πk(τ≥nE) = πkE

for k ≥ n and is 0 for k < n, and

πk(τ<nE) = πkE

for k < n and is 0 for k ≥ n.
We also have a distinguished triangle

τ≥0E → E → τ<0E → τ≥0E[1].

Also, note that, while [τ<kF, τ≥kE] can be non-trivial,

(11) [τ≥kE, τ<kF ] = 0,

(where [?, ?] denotes the abelian group of morphisms in our triangulated
category, i.e. the derived category of G-spectra). In addition, for k > `,
we have

(12) τ<kτ<` = τ<`.

Lemma 4. (See also Dugger [9], §4) If E is a ring spectrum, then τ≥0E
is also a ring spectrum and τ≥nE is a τ≥0E-module spectrum (in this
paper, only commutative ring spectra are considered). If E is a ring
spectrum and K is an E-module spectrum, then τ≥nK is a τ≥0E-module
spectrum.
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Proof. In the derived category of G-spectra, we have a diagram

(13)

τ≥0E ∧ τ≥0E

0

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

µ0

''OO
OOO

OOO
OOO

O
// E ∧ E

ν
��
E

��
E<0

by (12), where ν denotes the operation of E. Thus, µ0 lifts to a map

µ : τ≥0E ∧ τ≥0E → τ≥0E.

Note that µ is unique. This is because if there is another such lift µ′,
then we have the diagram

τ≥0E ∧ τ≥0E

µ−µ′ ''OO
OOO

OOO
OOO

O
//0
τ<0E[−1]

��
τ≥0E

��
E,

by the distinguished triangle

τ<0E[−1]→ τ≥0E → E → τ<0E

and the fact that [τ≥0E ∧ τ≥0E, τ<0E[−1]] = 0. The associativity dia-
gram

(14)

τ≥0E ∧ τ≥0E ∧ τ≥0E //

��

τ≥0E ∧ τ≥0E

��
τ≥0E ∧ τ≥0E // τ≥0E

commutes by a similar reason using the diagram

τ≥0E ∧ τ≥0E ∧ τ≥0E

))

0

//

��

τ≥0E ∧ τ≥0E

��

τ<0E[−1]

''OO
OOO

OOO
OOO

O

τ≥0E ∧ τ≥0E // τ≥0E.

The cases of the unit and commutativity are analogous.
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The case of τ≥nE is analogous.
The argument for modules precisely mimics the proof of Lemma 4

with one E-coordinates replaced by K. �

Suppose that V is an orientable faithful representation of G.

Lemma 5. Any morphism of G-spectra

ẽV : S0 → SV−|V | ∧ E
lifts to a morphism of G-spectra

S0 → (SV−|V | ∧ τ≥0E).

Proof. We have a distinguished triangle

(15) SV−|V | ∧ τ≥0E → SV−|V | ∧E → SV−|V | ∧ τ<0E → SV−|V |τ≥E[1].

Then we have

SV−|V | ∧ τ≥0E

��

S0 ẽV //

ϕ &&MM
MMM

MMM
MMM

SV−|V | ∧ E

��

SV−|V | ∧ τ<0E.

Then ϕ = 0, by (11), since SV−|V |∧ τ<0E only has cells in degrees ≤ 0.
So, by the long exact sequence in homotopy classes corresponding to

(15), we get a lifting

SV−|V | ∧ τ≥0E

��

S0

88

ẽV // SV−|V | ∧ E.
�

Remark: J. P. C. Greenlees pointed out that if G is a (finite) group
acting freely on a sphere S(V ) and aV : S0 → SV is the map defined
by sending the non-base point to the point at infinity, we can write

(16) F (EG+, HM) ' HM∧
(aV )

which, in view of Corollary 3, leads to the curious formula

(17) e−1
V HM ' F (EG+, HM) ' HM∧

(aV ).
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The right hand side of (16) is more precisely defined to be the homotopy
limit over n of the mapping spectrum of the homotopy fiber of

anV : S0 → SnV ,

which is S(nV )+, into HM , so (16) follows from the fact that

EG+ = hocolim
n

S(nV )+.

On the chain level, since C∗S(nV ) is a chain complex of free Z[G]-
modules, we obtain a chain map

C∗(S(nV ))→ C∗(EG) = C∗(S(∞V ))

and hence a map

(18) C∗(EG)→ C∗(S(nV ))

which is, in fact, (using this model of EG) an isomorphism in degrees
> −n|V |, and thus will be an isomorphism after taking limits. On the

other hand, the chain complex C̃∗S
nV is Z[G]-free in degrees > 0 and

we have also constructed a map

(19) C̃∗(S
nV )[−nV ]→ C∗(EG)

which then becomes an equivalence after taking (homotopy) colimits.
To see why in (17) we have an equivalence between a homotopy limit

and homotopy colimit, recall that for a general chain complex C, we
have chain maps

(20) τ≥mC → C → C≥m

where C≥m is the “stupid filtration,” i.e. taking terms of degree ≥
m and 0 elsewhere, while τ≥mC is the “Whitehead filtration” which
induces an isomorphism in homology in degrees ≥ m. We will discuss
the Whitehead filtration in more detail in the next section. In (20),
C becomes a quasi-isomorphism when taking the homotopy colimit of
the left hand term τ≥mC as well as the homotopy limit of the right
hand term C≥m with m→ −∞. In the current setting, (19) represents
(up to quasi-isomorphism) the Whitehead filtration τ≥−n|V |+1C

∗(EG)
while (20) represents the “stupid filtration” C∗(EG)≥−n|V |+1.

5. Proof of Theorem B

We shall now restate Theorem B in more detail and give a proof.
First, let us state our assumption. Let L be a G-spectrum.
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Assumption A: There exists an r < ∞ such that for every G-space
X, the equivariant Atiyah-Hirzebruch spectral sequence converging to
L∗X collapses to Er.

Theorem 6. Suppose there exists an ẽV ∈ Ẽ|V |(SV ) = E|V |−V (∗) such
that

(ν ∧ SV−|V |) ◦ (E ∧ ẽV ) : E
∼ // E ∧ SV−|V |

is an equivalence. If L = E satisfies Assumption A, then there exists
a decreasing filtration F i on πG∗ E such that

(1)

lim
i
πG∗ E/π

G
∗ F

iE ∼= πG∗ F (EG+, E).

(2)

F 0πG∗ E = πG∗ E

and F 1πG∗ E is the augmentation ideal of πG∗ E (i.e. the kernel

of the restriction πG∗ E → π
{e}
∗ E).

(3) F is a filtration of rings (i.e. F i · F j ⊆ F i+j).

Suppose K is an E-module spectrum. If L = K satisfies Assumption
A (without necessarily assuming Assumption A for L = E), then there
exists a decreasing filtration F i on πG∗ K such that

(4)

lim
i
πG∗ K/π

G
∗ F

iK ∼= πG∗ F (EG+, K).

(5)

F 0πG∗ K = πG∗ K

(6) F is a filtration of E-modules (i.e.

F i(π∗E) · F j(π∗K) ⊆ F i+j(π∗K)).

We will first discuss the ring case. Observe that we have a homotopy
decreasing filtration

(21) · · · → τ≥n+1E → τ≥nE → τ≥n−1E → . . .

Its homotopy limit is 0 because, by taking cofibers of the canonical
maps to E, we obtain a sequence

→ τ<n+1E → τ<nE → τ<n−1E → . . .

whose homotopy limit is E. Put

(0)F
i = τ<iE.
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Then by applying ẽV to the filtration (21) repeatedly we get a sequence
of filtrations

...

��

...

��

...

��

τ≥n+1E

��

ẽV // (τ≥n+1E) ∧ SV−|V | ẽV //

��

(τ≥n+1E) ∧ S2(V−|V |) → . . .

��

τ≥nE

��

ẽV // (τ≥nE) ∧ SV−|V |

��

ẽV // (τ≥nE) ∧ S2(V−|V |) → . . .

��

τ≥n−1E

��

ẽV // (τ≥n−1E) ∧ SV−|V | ẽV //

��

(τ≥n−1E) ∧ S2(V−|V |) → . . .

��
...

...
...

Now each vertical homotopy filtration individually has homotopy
limit 0, since again by taking cofibers of the canonical maps into E =
E ∧ Sj(V−|V |), we obtain a sequence

(j)F
i = (τ<iE) ∧ Sj(V−|V |)

whose homotopy limit in i is E.

Lemma 7. We have

(∞)F
i = hocolim

j
((τ<iE) ∧ Sj(V−|V |))

∼ F (EG+, τ<iE).

Proof. This follows from the fact that EG is a G-CW-complex of finite
type. Thus, the canonical map from the left to the right induces an
isomorphism of homotopy groups by Theorem 1. �

Proof of Theorem 6. Denote by (j)E the spectral sequence in homotopy
groups based on the homotopy filtrations (j)F (which is a shift of the
regrading of the equivariant Atiyah-Hirzebruch spectral sequence for
SV following the argument of [13], Appendix B). Then (j)E collapses
to some (j)E

r
∗,∗ for the same r by Assumption A, and hence (∞)E also

collapses to Er.
By Lemma 7, however, (∞)E converges conditionally to π∗F (EG+, E),

and thus converges strongly to π∗F (EG+, E) (see [4]).
In other words,

πGn F (EG+, E) = lim
i

Im(πGn F (EG+, E)→ πGn ((∞)F
i)).
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On the other hand, Im(πGn F (EG+, E) → πGn ((∞)F
i)) is an extension

of finitely many terms (∞)E
∞
p,q and thus is equal to

colim
j

(Im(πGnE → πGn ((j)F ))) = Im(πGnE → πGn ((∞)F )).

The multiplicativity on the level of spectral sequences follows from the
arguments of Blumberg-Mandell [3], Section 4. See also Dugger [9], §4.
The paper [15] by Hedenlund, Krause, Nikolaus contains a treatment
in the language of ∞-categories.

This concludes the proof of (1), (2), (3). The proof of (4), (5), (6) is
analogous by replacing E by K in Lemma 7.

�

Example: Now we will present a counterexample to the statement of
Theorem 6 when we omit Assumption A. Let G = Z/2. By the results
of Löffler [26] and Comezaña [27], the coefficient ring (MUZ/2)∗ is a flat
MU∗-module concentrated in even degrees. Hence

(MUZ/2 ∧MU HZ/2)Z/2∗

is concentrated in even degrees, while

(22) F (EZ/2+,MUZ/2 ∧MU HZ/2)∗ = H∗(BZ/2;Z/2) = Z/2[a],

where the degree of a is 1. In particular, (22) is non-zero in odd degrees
and hence the conclusion of Theorem 6 is false.

To explain precisely what is happening, we have ([31, 16])

(MUZ/2)∗ = MU∗[bi,j, qj|i, j ∈ N0]/ ∼
where, writing u = b0,0, the relations are

q0 = 0
b0,1 = 1, b0,j = 0 for all j ≥ 2

qj − cj = uqj+1

bi,j − ai,j = ubi,j+1.

Here we write

x+F y =
∑
i,j≥0

ai,jx
iyj

ck =
∑
i+j=k

ai,j.

(so [2]Fx =
∑

j≥0 cjx
j), where F is the universal formal group law.

Hence,

(MUZ/2 ∧MU HZ/2)∗ = Z/2[u, qj, bi,j|i ≥ 1, j ≥ 0]/ ∼
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where the relations are

q0 = 0, qj = uqj+1

bi,j = ubi,j+1.

We also have (for example by the arguments of [13])

(23)
F (EZ/2+,MUZ/2 ∧MU HZ/2) = (MUZ/2 ∧MU HZ/2)∧u =

= holim
s

(MUZ/2 ∧MU HZ/2)/us

The generators bi,j, i ≥ 1 are uniquely divisible by u, and thus will
not contribute to (23); for this reason, we shall ignore them. Factoring
them out (which we could also do on the spectral level), we obtain the
ring

R = Z/2[u, qi,j|j ≥ 0]/(q0 = 0, uqj+1 = qj)

which additively is

(24) Z/2[u]⊕ Z/2{qj|j > 0}.
(We have degrees |u| = −2, |qj| = 2j.)

Non-equivariantly, we just have Z/2 in degree 0, so on the Mackey
functor level, we have (24) corresponds to

Z/2⊕ Φ{uj|j ≥ 0} ⊕ Φ{qj|j > 0}

where Φ is the Mackey functor given by

Φ(Z/2/Z/2) = Z/2, Φ(Z/2/{e}) = 0.

Let α be the real sign representation. We have ([17], Section 6)

(25)

(HZ/2 ∧ S2jα−2j)` =

{
Z/2, if − 2j ≤ ` ≤ 0

1, else

(HΦ ∧ S2jα−2j)` =

{
Z/2, if ` = −2j

1, else

(note that HΦ is α-periodic since HΦ{e} = 0). Thus, the spectral
sequence corresponding to (j)F has

E−2j,2`
2 = Z/2, for ` ∈ Z

E0,`
2 = Z/2, for − 2j ≤ ` ≤ 0

Ep,q
2 = 0 else.

Since it converges to (24), we have

d2s : E0,2s−1−2j
2

∼= // E2s−2j
2
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for 1 ≤ s ≤ j. In the case of j = 3, Ep,q
2 looks like

where q is the vertical axis and p is the horizontal one.
We see that in fact the colimit (∞)F has

E0,`
2 = Z/2 for ` ≤ 0

Ep,q
2 = 0 else

which collapses to H(BZ/2;Z/2). Ep,q
2 looks like

Due to the increasing lengths of differentials in this example, colimit
of a sequence of spectral sequences does not commute with abutment.

Comment: The Example well illuminates the fact that Theorem B
without Assumption A only fails due to the fact that the passage from

(j)F to (∞)F fails to preserve convergence and abutment. The odd-
degree elements in the above example seem like a derived functor of
the process. Thus, we expect that some verion of Theorem B with-
out Assumption A holds where higher derived functors are taken into
account, but we do not pursue that here.
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6. The Proof of Theorem A

To prove Theorem A, the main step in the following

Proposition 8. The MUG-module spectrum MUG ∧MU K(n) satisfies
Assumption A.

First, let us state a general observation about lengths of differentials:

Lemma 9. Let E be a G-spectrum and let

(26) X → Y → Z

be a cofibration sequence for G-spaces. If the E-Atiyah-Hirzebruch (ho-
mological or cohomological) spectral sequence for X,Z collapse to Er,
resp Es, then the E-Atiyah-Hirzebruch spectral sequence for Y collapses
to Er+s.

Proof. For any spectral sequence associated to a homological exact cou-
ple (D,E), the maximum length of a differential is equal to the max-
imum difference p2 − p1 where p1 ≤ p2 and there exists an element
x ∈ Dp2 which is in the image of Dp1 but not in the image of Dp2−1.

To prove the statement of the Lemma, we can assume that (Y,X)
is a CW-pair where the filtration is induced by the skeletal filtration.
Considering, say, the cohomological spectral sequence, the non-trivial
case is an element of D supported by a cell of Xp. If the element extends
to Xp′ but not Xp′+1, but does extend to Yp′+1, then this determines
an element y of the Z-Atiyah-Hirzebruch spectral sequence supported
by a (p′ + 1)-cell. Therefore, the target of a differential on x will be
supported by a Z-cell and hence the target of a differential of y.

�

Now we also have the following

Lemma 10. Assumption A holds for a G-spectrum E if it holds for
the W (H)-spectra EH for every H ⊆ G and every free W (H)-space Y .

Proof. This is by Lemma 9 using isotropy separation (see, e.g. [21],
Propositions 4,5). �
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Finally, we claim

Lemma 11. Let L be a G-equivariant module over the associative ring
spectrum K(n) (with trivial G-action) where G is a finite p-group.
Then there exists a constant r such that for a free G-CW complex X,
the L-cohomology Atiyah-Hirzebruch spectral sequence collapses to the
Er-term and is 0 in filtration degrees p > r.

Proof. First, we consider the case L = K(n). Considering an extension
of the form

1→ H → G→ Z/p→ 1,

we obtain a fibration sequence

(27) X ×H EH // X ×G EG
f // BZ/p

Ravenel [28] proves that the periodicity element x ∈ H2(BZ/p) in the
cohomological Serre spectral sequence corresponding to (27) satisfies
xp

n
= 0.

Considering the fact that the Serre spectral sequence is obtained
from the fibration f−1Bn where Bn is the cellular filtration of the base,
and further considering the cellular filtration of the pre-image of each
cell, we can reduce the statement for X ×G EG to the above stated
result of [28] and to the same statement for X ×H EH. This gives the
required result by induction.

Now recall that if V is any Z/p-representation in characteristic p,
and we put recursively

Vi+1 = Vi/(Vi)
G,

then there exists a constant N only dependent of G such that VN = 0.
(It suffices to prove this for G = Z/p, and to prove the constant is
uniform for V finite dimensional. In this case, extend scalars to Fp and
consider the Jordan decomposition of the generator; the eigenvalue is 1
and all Jordan blocks are well-known to decompose into Jordan blocks
of size ≤ p as representations.)

Now for a general L, the L-Atiyah-Hirzebruch spectral sequence for
X gives a module over the K(n)-cohomology Atiyah-Hirzebruch spec-
tral sequence. On the level of E2-terms, further, from the above results,
we see that it is generated by the corresponding K(n)-E2-term in fil-
tration degrees ≤ N . Thus, the result follows from the statement for
K(n).

�
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We derive the Proposition as follows:

Proof of Proposition 8. By Lemma 10, this is reduced to the case of
free G-spaces X. Due to duality, it does not matter whether we work
in homology or cohomology.

Now the standard transfer argument reduces the statement too the
case when G is a p-group (by replacing G by its p-Sylow subgroup).
Now note that (MUG ∧MU K(n))H , as a naive W (H)-spectrum (over
the trivial universe) is a module over the fixed spectrum K(n). Thus,
the Proposition follows from Lemma 11.

�

Then Theorem A results as follows:

Proof of Theorem A. We will proceed by contradiction. Assume that
the P -equivariant coefficients (MUP )∗ form a flat MU∗-module con-
centrated in even degrees. Consider the ring spectrum MUP and the
MUP -module spectrum K(n) ∧MU MUP , where K(n) denotes Morava
K-theory. (This can be formed since MUP is an E∞-algebra over the
pushforward of the E∞-ring spectrum MU , over which K(n) is an E∞-
module.) We then obtain by our flatness assumption that

(K(n) ∧MU MUP )∗ = K(n)∗ ⊗MU∗ (MUP )∗

is concentrated in even degrees.
On the other hand, by Propostion 8, K(n) ∧MU MUP satisfies As-

sumption A, and hence, we can apply Theorem 6, to obtain there exists
a suitable completion satisfying

((K(n) ∧MU MUP )∗)
∧ ∼= K(n)∗MU

Therefore, K(n)∗MU is also concentrated in even degrees. However,
this is a contradiction with the results of [19, 20], which state that
K(2)∗MU contains non-zero elements in odd degrees for G the p-Sylow
subgroup of GL4(Fp) for p > 2.

�
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