
THE DELANNOY TREE CATEGORY

SOPHIE KRIZ

Abstract. We consider an ordered counterpart to the arboreal
categories constructed by Harman, Snowden, and Nekrasov. Our
construction was inspired by the relationship of the Delannoy cat-
egory of Harman, Snowden, and Snyder with the category Rep(St)
of Deligne. In the tree case, however, the relationship is more
complicated, which we also study.

1. introduction

In this paper, we describe a “Delannoy analogue” of the arboreal
categories introduced by N. Harman, I. Nekrasov, and A. Snowden in
[3]. We define a Fräıssé class T≤ of ordered planar trees, and consider
the oligomorphic group of automorphisms of the universal real ordered
tree T ≤ (its Fräıssé limit). We construct a regular measure, in the
sense of [4], on the oligomorphic group Aut(T ≤) of order-preserving
automorphisms of the tree valued in {±1}. Thus, we obtain

Theorem 1. The category Rep(Aut(T ≤), µ≤) is a semisimple pre-
Tannakian category over fields of every characteristic.

The oligomorphic group Aut(T ≤) is a subgroup of the oligomorphic
group corresponding the Fräıssé class T of (unordered) trees considered
in [3], but adding up the measures of the orbits of the Delannoy group
contained in an orbit of [3], we do not obtain a measure. We obtain
therefore an example of a measure on a oligomorphic subgroup not
inducing a measure of a larger oligomorphic group.

On the other hand, the Fräıssé limit T ≤ is a countable totally or-
dered set with (x < y ⇒ ∃z x < z < y), and therefore Aut(T ≤) is the
subgroup of the oligomorphic group Aut(≤) of permutations preserving
the order.

It follows from the universal property of the Delannoy category [6],
Theorem 4.9, that there is a tensor functor from the Delannoy category
[5] to the arboreal Delannoy category:

D → Rep(Aut(T ≤), µ≤).

However, we can also prove the following more precise statement:
1
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Proposition 2. Let C be an orbit of Aut(≤), and let

C = C1 ⨿ · · · ⨿ Ck

where C1, . . . , Ck are orbits of Aut(T ≤). Then

k∑
i=1

µ≤(Ci) = µ(C)

where µ denotes the regular Delannoy measure.

In other words, comparison with the Delannoy category behaves
“correctly.”

We also prove the following uniqueness result:

Theorem 3. The measure µ≤ on Aut(T ≤) is the only regular measure
valued in a field of characteristic not 2.

We also study isomorphism classes of the simple objects of the cat-
egory Rep(Aut(T ≤), µ≤). However, unlike the case of the Delannoy
category [5] or [6], we are unable to determine the simple objects com-
pletely. Every ordered planar tree gives rise to an object. Following
[1] (Remark 3.9 (ii)), we can consider its simple summands which oc-
cur via smaller trees. We call such summands singular. Among the
non-singular (i.e. “top” summands) there is a collection of simple sum-
mands analogous to those occurring in the Delannoy category [5], which
occurs with multiplicity one and which we call regular. However, even
in the case of the tree with two leaves, we will see that there are 30 ad-
ditional non-isomorphic simple summands of categorical dimensions 1,
−1, which fall into neither of the above types. We call such summands
residual. At the present time, we do not understand this well.

Nevertheless, we are able to prove the following

Theorem 4. Every simple object in Rep(Aut(T ≤), µ≤) has dimension
±1.

The present paper is organized as follows: In Section 2, we define the
Fräıssé class of ordered planar trees. In Section 3, we define a regular
measure µ≤ on this class (proving Theorem 1). In Section 4, we prove
uniqueness of the regular measure µ≤ in characteristic not 2 (proving
Theorem 3). In Section 5, we discuss the comparison of the measure
µ≤ with the unordered arboreal measures [3] and the regular Delannoy
measure [5]. We prove Proposition 2. In Section 6, we discuss the
regular simple objects of Rep(Aut(T ≤), µ≤) and prove Theorem 4. In
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Section 7, we discuss the complete decomposition of the tree with two
leaves into simple summands, including the 30 residual summands.

Remark 1. While revising the present paper, I became aware of the
paper [7] by I. Nekrasov and A. Snowden describing measures on a
different sets of planar trees. The relation between the measures of [7]
and the one described here should be further investigated.

2. The Fräıssé class of ordered trees

In this section, we will describe ordered planar trees using the for-
malism of Fräıssé structures [2].

Definition 5. Define an ordered planar tree to consist of the data of
a a set of vertices S with a well partial ordering ⪯ and a total ordering
≤ such that

(1) For any a, b ∈ S,

(1) a ⪯ b ⇒ a ≤ b

(2) For a, b, c ∈ S such that a ≤ b ≤ c, we then have that

(2) a ⪯ c ⇒ a ⪯ b

such that there is a unique minimal element of S with respect to ⪯,
which we call the root. A leaf is a maximal element with respect to ⪯.
The set of leaves of an ordered planar tree T will be denoted by ℓ(T ).

We visualize this structure by drawing the minimal possible edges
on S such that if a ⪯ b, then there is a path connecting a and b. We
draw this graph in a plane so that if a ⪯ b, then a is lower than b, and
if a ≤ b, then a is to the left of b. Condition (2) then guarantees that
none of these edges cross. An example is pictured in Figure 1.

Definition 6. Call an ordered planar tree reduced if there do not exist
distinct vertices b ̸= c such that b ⪯ c and for every d ̸= b ∈ S,

(3) b ⪯ d ⇒ c ⪯ d.

The condition of being reduced is equivalent to requiring that every
vertex which is not a leaf has degree ≥ 3 except the root, which has
degree ≥ 2.
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a

b c

d e

f⪯

≤

Figure 1. The ordered planar tree structure on
vertices {a, b, c, d, e, f} given by a ≤ b ≤ c ≤ d ≤ e ≤ f
and the minimal partial ordering ⪯ such that a ⪯ b, c, f

and c ⪯ d, e. Leaves are circled.

The structure of an ordered planar tree is not Fräıssé. However, it
can be equivalently characterized by a Fräıssé structure on its totally
ordered set X of leaves. The structure is characterized by two relations

(4) R+, R− ⊆
(
X

3

)
where

(1)

(
X

3

)
= R+ ∪R−

(2) If {a < b < c} ∈ R± and {b < c < d} ∈ R±, then {a < b <
d} ∈ R± and {a < c < d} ∈ R±.

(3) If {a < b < c} ∈ R−, then

{a < c < d} ∈ R± ⇔ {a < b < d} ∈ R±.

(4) If {b < c < d} ∈ R+, then

{a < c < d} ∈ R± ⇔ {a < b < d} ∈ R±.

To prove the equivalence of both structures, one first notes that it is
obvious that the vertices of an ordered planar tree satisfy (1)-(4). On
the other hand, for a relational structure satisfying (1)-(4), we recover
the tree by letting the non-leaf vertices be written as v = inf⪯{a, b} for
a < b and setting

va,c = va,b ⪯ vb,c when {a < b < c} ∈ R−
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vb,c = va,c ⪯ va,b when {a < b < c} ∈ R+

(⪯-equivalent vertices are identified). The axioms (1)-(4) imply consis-
tency on 4 leaves, which is sufficient to conclude that we get an ordered
planar tree.
Let T≤ denote the Fräıssé class of the sets of leaves of ordered trees.

3. Measure

Let T ∈ T≤ be an ordered with non-empty set of vertices S define
the set of its nodes to be

n(T ) = S ∖ ℓ(T )

(i.e. the set of vertices which are not leaves). Then put

(5) µ≤(T ) = (−1)|n(T )|+1.

In particular, the unique ordered tree {∗} with a single vertex has no
nodes, so

µ≤({∗}) = −1.

For the ordered tree where the set of vertices is empty, we take

µ≤(∅) = 1.

To prove the µ≤ defines a measure on T≤, the only non-trivial prop-
erty to check is the following (see Definition 6.4, [4]):

Proposition 7. Consider all possible amalgamations T i, i = 1, . . . n
of reduced ordered planar trees U1, U2 along fixed ordered embeddings

ι1 : ℓ(V) ↪→ ℓ(U1)

ι2 : ℓ(V) ↪→ ℓ(U2)

for some reduced ordered planar tree V. Then

(6)
µ≤(U1) · µ≤(U2)

µ≤(V)
=

n∑
i=1

µ≤(T i)

Proof. Let SU1 , SU2 , and SV be the sets of vertices of U1, U2, and V . We
first claim that we can reduce the statement to the case

(7) |ℓ(U1)∖ ℓ(V)| = 1.

The reason is that, choosing u ∈ ℓ(U1)∖ ℓ(V), we may first describe all
the possible amalgamations of {u}∪ℓ(V) with ℓ(U2) via ℓ(V), and then
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replace ℓ(V) by {u} ∪ ℓ(V), and ℓ(U2) by {u} ∪ ℓ(U2), thus reducing
|ℓ(U1)∖ ℓ(V)| by 1, which allows us to proceed by induction.

Now assuming (7), let {u} = ℓ(U1) ∖ ℓ(V). We shall first assume
that

ℓ(V) ̸= ∅.
Then consider the node

w = sup⪯{x ∈ n(U1) | x ⪯ u}.

Then we have several cases:

Case 1: w is not a node of V . Then consider the vertices v+, v− of V
such that

v− ≺
̸=
w ≺

̸=
v+ ∈ SU1 ,

v− ⪯ x ⪯ v+ ∈ SV ⇒ (x = v− or x = v+).

Then let

(8) {z1 ≺
̸=

. . . ≺
̸=
zk} = {z ∈ SU2 | v− ≺

̸=
z ≺
̸=
v+}.

Further, let

(9) Q = {x ∈ SU2 | ∃1 ≤ i ≤ k zi ⪯ x}

Now we claim that the sum of measures of the amalgamations con-
sidered is µ≤(U2) times an alternating sum of −1 and 1 starting and
ending with −1. The beginning term is

v− ≺
̸=
w ≺

̸=
z1,

which has sign −1, due to w being an additional node. The next term
is

w = z1, u < x for all z1 ⪯ x, x ∈ ℓ(U2),

which has sign +1 due to there not being an additional node. The
alternating sum then proceeds “clockwise” along the forest spanned by
(9), with the last term being

zk ≺
̸=
w ≺

̸=
v+,

which again has sign −1. This case is illustrated in Figure 2, with
k = 1, |Q| = 2. (Note: It is also possible for v− not to exist. This case,
however, proceeds the same way.)
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Case 2: w is a node V . If this case, let v< (resp. v>) be the ≤-largest
(resp. ≤-least) leaf of V with v< < u (resp. v> > u) in U1. We let

Q = {x ∈ SU2 | v< < x < v>}.
This time, the sum of measures of the amalgamation is µ≤(U2) times
an alternating sum of 1 and −1, starting an ending with 1, “moving
clockwise” around the tree spanned by Q. The first term is

u < x for every x ∈ Q

and the last term is

u > x for every x ∈ Q.

(Note: there is also the possibility of v< or v> not existing. However,
the conclusion is the same.)

It remains to consider the case when SV = ∅. In this case, however,
we have µ≤(U2) times an alternating sum moving clockwise around U2,
starting and ending with −1, corresponding to the cases when w is
the root of the amalgamation of degree 2. (Note that then |SU1| =
|ℓ(U1)| = 1, so the µ≤(U1) = −1.)

□

Recall that a measure µ on the orbits of an oligomorphic group is
called regular if it always non-zero, see [4]. By definition, for every
ordered tree T , its measure µ≤(T ) = ±1, and is therefore regular over
any base field. Thus, Theorem 1 follows by Theorem of [4].

4. Uniqueness of Measure

The purpose of this section is to prove Theorem 3.

Proof of Theorem 3. Suppose ν is a regular measure on T≤. We begin
by introducing the following notation (see Figure 3): Let X1 be the
unique ordered planar tree with a single leaf. Let X2 be the unique
ordered planar tree with two leaves.

Let Xn for n ≥ 3 be the ordered planar tree on a set of n leaves
{x1 < · · · < xn} such that, in terms of the Fräıssé structure on the set
of leaves, all {xi < xj < xk} for i < j < k are elements of R+ and R−

R+ = R− =

(
{x1 < · · · < xn}

3

)
.

In other words, graphically, Xn has n leaves and a single node.
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Figure 2. An example of all possible amalgamations
T i in Case 1, where V is the bold tree, U1 is the

minimal tree containing V and the dotted node, branch,
and leaf, and U2 is the minimal tree containing V and

the thin node, branch, and leaf. The sign notes
µ≤(T i) = ±µ≤(U2).
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X1 X2 Xn

. . .

A B

Figure 3. The ordered planar trees Xn, A, B. (For
the sake of graphical space, we do not tilt the diagram
so that the total ordering on all vertices is from left to
right. We take the leaves to be ordered with respect to

≤ from left to right; the orderings ⪯, ≤ are then
determined.)

Let A be the ordered planar tree with tree leaves {x < y < z} such
that, in the Fräıssé structure

R+ = {{x < y < z}} and R− = ∅.

Let B be the ordered planar tree with tree leaves {x < y < z} such
that, in the Fräıssé structure

R+ = ∅ and R− = {{x < y < z}}.

Now let us write

t := ν(X1).

Let us apply (6) to U1 = X1, U2 = X1, V = ∅. There are two possible
amalgamations with two leaves, corresponding to choosing that the
leaf in U1 is (strictly) less than or greater than the leaf in U2, both of
which are isomorphic to X2. There is one possible amalgamation with
one leaf, corresponding to identifying the leaves in U1 and U2, which is
isomorphic to X1. Therefore, (6) gives that

ν(X1)
2 = 2 · ν(X2) + ν(X1),

thus giving

(10) ν(X2) =
t2 − t

2
.

Now let us consider amalgamations with U1 = X2, U2 = X2, V = X1.

(11) ℓ(U1) = {x1 < y1}, ℓ(U2) = {x2 < y2}, ℓ(V) = {z}.
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x1 y1
⨿

x2 y2
=

x1 z y2

+

x1 z y2

+

x1 z y2

⨿
x1 y1 x2 y2

=

x1 x2 z

+

x1 x2 z

+

x1 x2 z

+

x2 x1 z

+

x2 x1 z

+

x2 x1 z

+

x1 = x2 z

Figure 4. Amalgamations of (11) over (12) and (14),
respectively. The leaves identified by the embeddings

ι1, ι2.

First let us consider amalgamations along embeddings

(12)

ι1 : ℓ(V) → ℓ(U1)
z 7→ y1

ι2 : ℓ(V) → ℓ(U2)
z 7→ x2

There are three possible amalgamations of (11) along (12), each of
which has exactly three leaves {x1 < z < y2}, which can either be
taken to be in R+ ∖ (R+ ∩R−), R+ ∩R−, or R− ∖ (R+ ∩R−). These
amalgamations are isomorphic toA, B, and X3, respectively (see Figure
4). Thus, (6) gives

(13)
ν(X2)

2

ν(X1)
= ν(A) + ν(X3) + ν(B).

We may also consider the amalgamation of (11) along embeddings

(14)

ι1 : ℓ(V) → ℓ(U1)
z 7→ y1

ι2 : ℓ(V) → ℓ(U2)
z 7→ y2
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There are three amalgamations with ordered set of leaves {x1 < x2 < z}
and three (isomorphic) amalgamations with ordered set of leaves {x2 <
x1 < z}, again by taking the triplet of leaves to be in R+∖ (R+ ∩R−),
R+ ∩R−, or R− ∖ (R+ ∩R−), (giving ordered planar trees isomorphic
to A, X3, and B, respectively). Finally, there is one amalgamation
with two leaves {x1 = x = 2 < z} coming from further identifying x1
and x2, which is isomorphic to X2. (See Figure 4.) Therefore, we also
obtain the following relation:

(15)
ν(X2)

2

ν(X1)
= 2(ν(A) + ν(X3) + ν(B)) + ν(X2).

Combining this with (13), this gives

ν(X2)
2

ν(X1)
= 2

ν(X2)
2

ν(X1)
+ ν(X1).

Applying (10), this reduces to give

t(t− 1)(t+ 1) = 0,

i.e. t = 0, 1, or −1. Since ν is assumed to be regular, t ̸= 0. If t were
1, the ν(X2) = 0 by (10). Hence,

t = −1,

and therefore ν(X2) = 1.

Claim 1. The measures of the tree with three leaves must be

(16) ν(A) = ν(B) = −1, ν(X3) = 1.

Proof of Claim 1. Let us consider amalgamations of U1 = A, U2 = A,
V = X2. Writing

ℓ(U1) = {a1 < b1 < c1}, ℓ(U2) = {a2 < b2 < c2}, ℓ(V) = {t < u},
consider embeddings

ι1 : ℓ(V) → ℓ(U1)
t 7→ a1
u 7→ b1

ι2 : ℓ(V) → ℓ(U2)
t 7→ a2
u 7→ b2.

There are three possible amalgamations with ordered set of leaves {t <
u < c1 < c2}, and three (isomorphic) possible amalgamations with
ordered set of leaves {t < u < c2 < c1}. The measures of these ordered
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xi xj

ν(A)2

xi xj

ν(A) · ν(X3)

xi xj

ν(A) · ν(B)

Figure 5. Choice of leaves “xi, xj” which satisfy
Condition 1 and, applying Claim 2, (20), compute each

tree’s measure as the indicated product.

planar trees can be reduced to a product of ν(A) and ν(A), ν(X3), or
ν(B), respectively (by Claim 2 below, taking xi and xj as shown in
Figure 5).

There is a single amalgamation with three leaves {t < u < c1 = c2},
which is isomorphic to A. Thus, (6) gives

ν(A)2 = 2 · ν(A) · (ν(A) + ν(X3) + ν(B)) + ν(A).

Combing this with (13), we conclude that ν(A) = −1. By symmetry,
ν(B) = −1. Finally, ν(X3) = 1 follows from (13). □

This fixes the measure of all ordered planar trees with ≤ 3 leaves.
Let T be an ordered planar tree with

(17) ℓ(T ) = {x1 < · · · < xn}, n ≥ 4.

Let 1 ≤ i < j ≤ n.
We introduce the following

Condition 1: j− i ≥ 2 and, letting V be the restriction of T ’s ordered
planar tree structure to leaves ℓ(T ) ∖ {xi, xj}, there does not exist a
pair of vertices a, b of V such that

(18) b ≺
̸=
a, and (for c ∈ SV , c ≺

̸=
a⇒ c ⪯ b)

(when (18) holds, we say that {b ⪯ a} forms an edge of V) and such
that the nodes

y := max ⪯{y ∈ ST | y ≺
̸=
xi}

z := max ⪯{z ∈ ST | z ≺
̸=
xj}
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y
z

xi xk xj

Figure 6. An example of a choice of xi < xj failing
Condition 1. In amalgamations of U2 and U1 over V ,
there is ambiguity of whether y ≺

̸=
z, y = z, or z ≺

̸=
y,

leading to multiple possible amalgamations.

both satisfy

(19) b ≺
̸=
y ≺
̸=
a and b ≺

̸=
z ≺
̸=
a

in T .

Claim 2. Suppose there are i < j such that Condition 1 holds. Let
U1, U2, and V be the restrictions of T ’s ordered planar tree structure
to sets of leaves

ℓ(U1) := ℓ(T )∖ {xi}, ℓ(U2) := ℓ(T )∖ {xj},
ℓ(V) := ℓ(T )∖ {xi, xj}

Then the only amalgamation of U1, U2 along the inclusions ℓ(V) ⊆
ℓ(U1), ℓ(U2) is T itself. Consequently,

(20) ν(T ) =
ν(U1) · ν(U2)

ν(V)
.

Proof of Claim 2. Suppose R is such an amalgamation of U1, U2 over
V . First note that since j − i ≥ 2, there exists a leaf xk ∈ ℓ(V) such
that xi < xj < xk, so xi cannot be identified with xj in R and the order
xi < xj is fixed. Also, note that there exists an xk for k ̸= j such that
y = inf⪯(xi, xk) (otherwise, if y = inf⪯(xi, xj) only for xj, Condition 1
fails). Therefore, y is a vertex y ∈ SU2 . Similarly, z is a vertex z ∈ SU1 .

Now by Condition 1, y and z are on different edges of the tree V , and
therefore there is no ambiguity on how y and z attach in R, making T
the only possible amalgamation. Figure 6 exhibits why Condition 1 is
necessary.

□
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Figure 5 shows three examples of Claim 2.

Claim 3. Let T be an ordered planar tree with (17). Then there exist
1 ≤ i < j ≤ n satisfying Condition 1.

Proof of Claim 3. We begin by considering xi = x1, xj = x3. If there
does not exist an edge {b ⪯ a} of T such that (19) holds, then we
are done. Suppose there does exist an edge {b ⪯ a} such that (19)
holds. Recall that we let ℓ(V) = ℓ(T ) ∖ {x1, x3}. We claim that
then a = x2. First note that then a < x3, since a ̸= x3 (because by
assumption, a ∈ SV) and if a > x3, then we may consider the maximal
node underneath the leaf x2 in T and observe that every possible case
of attaching this node (drawn below) is ruled out by (19) and the
assumption that {b ⪯ a} is an edge of V , since x2 ∈ ℓ(V) ∈ SV :

a

b

x1 x2 x3
a

b

x1 x2 x3
a

b

x1 x2 x3

a

b

x1 x2 x3
a

b

x1 x2 x3

Therefore, we have a < x3. Now we know that there exists an i ̸= 1, 3
such that a ⪯ xi; suppose i ̸= 2. Then we have a < x3 < xi and
a ⪯ xi. By (2), a ⪯ x3, contradicting (19). Hence, a ⪯ x2. Since there
are no other leaves between x1 and x3, a cannot have valency ≥ 3, and
is therefore a leaf, giving

a = x2.

Note, also that there exists an m > 3 such that b ⪯ xm (otherwise b is
a vertex of valency 1). The only possible cases of y and z are then as
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follows:
(21)

x1 a x3 xm

b

y

z

x1 a x3 xm

b

y = z

x1 a x3 xm

b

z
y

Then xi = x2 = a, and xj = xm satisfy Condition 1 in each case (21).
Since m > 3, we have j − i ≥ 2.

□

Therefore, by Claims 2 and 3, the measure of any ordered planar tree
T with ≥ 4 vertices can be computed from the measures of trees with
fewer leaves using formula (20), thus concluding the proof of Theorem
3. □

5. Comparison with unordered arboreal measures

Consider groups H ⊆ G, acting oligomorphically on a set Ξ. If one
has a regular measure µ on open H-orbits, one can ask if it automati-
cally induces a measure IndHG (µ) on open G-orbits, by taking µG of a
G-orbit to be the sum of the measures of the H-orbits it decomposes
into. However, it is possible for such a µG to fail to be a measure, which
occurs in this case.

In this case, we consider the Fräıssé limit T ≤ of T≤. Its graphical
representation, as a tree is isomorphic to the Fräıssé limit of the class
of tree structures T with unbounded valency considered in Remark 3.1
of [3]. Denote this unordered tree by T Therefore we have an inclusion
of oligomorphic groups

Aut(T ≤) ⊆ Aut(T ),

acting on their sets of leaves.
In this case, for an unordered tree T with n nodes (i.e. non-leaf

vertices) of valency d1, . . . , dn ≥ 2, applying Ind
Aut(T ≤)
Aut(T ) (µ≥) to T gives

(22) (−1)n+1

n∑
k=1

dk! ·
∏
i ̸=k

(di − 1)! − (−1)n2e
n∏
i=1

(di − 1)!,
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where e denotes the number of edges in T , with the first term coming
from taking the kth node (of valency dk) to be the root of possible
ordered planar structure on T , and the second term coming from taking
the root to be on an edge of T (the number of choices of ordered planar
structures on T is the factorial of the valency of the root, times the
product of the valencies of all non-root nodes, minus 1). Denoting the
number of leaves of T by ℓ, since

∑n
k=1 dk = 2e − ℓ, we may reduce

(22) to give

(23) (−1)nℓ
n∏
i=1

(di − 1)!

It is easy to see that Ind
Aut(T ≤)
Aut(T ) (µ≥) corresponds to no possible choice

of u, v required in Theorem 3.5 of [3]. In particular, (23) fails to cor-
respond to one of the “primary series” measures of [3], containing the
regular measures (and hence giving semisimple pre-Tannakian cate-
gories). In fact, one easily sees from the measure of a tree with a single
vertex that one would have to put τ = −1/2. The formula (23) then
agrees with Proposition 3.10 of [3] on trees with ≤ 3 leaves, but not
beyond. This is, roughly speaking, due to the possibility of “gluing
planar trees into a planar tree (up to isomorphism) in a non-planar
way.”

Proof of Proposition 2. By [5], all orbits of Aut(≤) are isomorphic to

Cn = {x1 < · · · < xn}.

Recall that

(24) µ(Cn) = (−1)n.

We proceed by induction on n. By definition, the statement is true for
n = 0, 1. Suppose it is true for a given n. Then we need to sum over
all the possibilities for attaching a leaf xn+1 > xn to an ordered planar
tree T with leaves x1 < · · · < xn. Let

w = sup{y ∈ ST | y ⪯ xn+1}.

Then, again, we have an alternating sum where in the top term, the
only vertex z of T with w ≺

̸=
z is a leaf, giving measure −µ≤(T ). In

the next term, w is a node of T directly below a leaf (if n > 1); the
measure of this ordered planar tree is µ≤(T ). The last term, where w
does not exist (i.e. xn+1 is directly above the (new) root of the new
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tree with leaves ℓ(T ) ∪ {xn+1}) has measure −µ≤(T ). Therefore, the
sum is

−µ≤(T ),

as required for (24).
□

6. Simple objects - the regular case

In this section, we discuss the simple objects of the tree Delannoy
category.

Denote the object of Rep(Aut(T ≤), µ≤) corresponding to an or-
dered planar tree T by [T ]. The basic object X := [{∗}] corre-
sponding to the ordered planar tree on a single leaf tensor-generates
Rep(Aut(T ≤), µ≤), with X⊗n equal to a sum of all possible iterated
amalgamations of n single leaves {x1}, . . . , {xn} (over empty trees). In
particular, there is a summand of the form

(25)
⊕

|ℓ(T )|=n

[T ] ⊆ X⊗n,

corresponding to each choice of orderings of the n leaves {x1, . . . , xn}.
(All other terms in X⊗n come from amalgamations where for some
i ̸= j, xi and xj are identified, leading to fewer total leaves). Let us
write

X(n) :=
⊕

|ℓ(T )|=n

[T ],

corresponding to a choice of ordering {x1 < · · · < xn}. This plays the
same role as C (R(n)) in the case of the classical Delannoy category (see
[5]), and, similarly, finding the simple summands of X⊗n reduces to
finding the simple summands of X(n).

Recall that all objects of [T ] by definition are self-dual (see [4]). In
particular, for ordered planar trees S, T , the space of morphisms

(26) Hom([S], [T ])

is the free vector space on generators indexed by amalgamations U of S
and T (over the empty tree) with leaves colored red or black (or both)
if they are the images of leaves of S or T (or both) in the mutually
surjective injections

(27)
ℓ(S) ↪→ ℓ(U)
ℓ(T ) ↪→ ℓ(U).
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IdX

IdX◦ − IdX IdX• − IdX

Figure 7. The three colored amalgamations of {∗}
with itself (red and black leaves are drawn as empty

and filled dots, respectively).

(In our figures, we render “black” leaves as solid and “red” leaves as
empty circles.) In particular, in this convention, red leaves correspond
to the “input” of U as a morphism, and black leaves correspond to its
“output.” The partial trace of such a morphism in (26) matching leaves
x ∈ ℓ(S) and y ∈ ℓ(T ) is 0 unless x and y are sent to the same element
z ∈ ℓ(U), in which case the partial trace is the amalgamation U ′, which
has leaves ℓ(U ′) = ℓ(U) ∖ {z} with the restricted ordered planar tree
structure and colorings as in U , multiplied by

(−1)|n(U)|−|n(U ′)|.

For example, the identity morphism Id[T ] is the colored tree U = T ,
with each leaf colored both black and red. (Note that by definition

tr(IdT ) = µ([T ]) = (−1)|n(T )|.)

In particular, to compose colored amalgamations U ,V , in U ◦ V , the
red leaves of U are matched with the black leaves of V .

In particular, End(X) has dimension 3, generated by the colored
tree with one vertex colored red and black (i.e. IdX), the colored tree
with two leaves with the red leaf to the left of the black leaf, and the
colored tree with two leaves with the black leaf to the right of the red
leaf (see Figure 7). The sum of one of the colored trees with two leaves
with IdX , and −1 times the sum of all three colored trees gives three
disjoint idempotents. We find that

(28) X = X◦ ⊕X• ⊕ 1,

with dim(X•) = dim(X◦) = −1. The decomposition of X here is the
same as the decomposition of the basic object of the Delannoy category
(see [5, 4]).

To study the decomposition of X(n) into simple objects, we consider
the endomorphism algebras

(29) End([T ])
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for a fixed ordered planar tree T with n leaves. We define the standard
idempotents of (29), as follows:

Consider an n-tuple

φ = (φ1, . . . , φn)

of the formal symbols φi ∈ {α, β, ϵ}. Consider an amalgamation U of
T with itself (over the empty tree), with mutually surjective injections

ι1 : ℓ(T ) ↪→ ℓ(U)
ι2 : ℓ(T ) ↪→ ℓ(U)

where leaves in the image of ι1 are colored black, and leaves in the
image of ι2 are colored red. Let

{b1 < · · · < bn}, {r1 < · · · < rn} ⊆ ℓ(U)
denote the (not necessarily disjoint) sets of black and red leaves, re-
spectively. We say U is a term of type φ, if

(1) when φi = α, either bi = ri or bi is directly to the right of ri,
meaning that bi is the minimal leaf with respect to the total
ordering on ℓ(U) such that ri < bi.

(2) when φi = β, either bi = ri or bi is directly to the left of ri,
meaning that bi is the maximal leaf with respect to the total
ordering on ℓ(U) such that bi < ri.

(3) when φi = ϵ, either bi = ri, bi is directly to the left of ri, or bi
is directly to the right or ri.

We then define the standard idempotent ιφ of type φ to be the sum of
all colored amalgamation which are such terms of type φ, multiplied
by the total coefficient

(30) (−1)|{i|φi=ϵ}|.

Equivalently, ιφ can be constructed by replacing the ith leaf with the
“ending of type” φ (see Figure 8), and taking the linear combination
of all possible terms.

For example, the idempotents of End(X) giving the decomposition
(28) are the standard idempotents ια, ιβ, ιϵ, with

Im(ια) = X◦, Im(ιβ) = X•, Im(ιϵ) = 1.

Remarks: 1. The computation that the ιφ are idempotents follows
from the case of a single leaf, and since in all cases of φ, the corre-
sponding pairs of red and black leaves are at worst directly next to



20 SOPHIE KRIZ

+

α

+

β

− − −

ϵ

Figure 8. Endings of type α, β, and ϵ, respectively.

each other. This implies that in any composition of two terms of type
φ, the nodes of T will be preserved, and we may compute the compo-
sition “one leaf at a time” for each i = 1, . . . , n, i.e. we may compute
the composition of the colored ordered planar trees restricted to the
ith black and (not necessarily distinct) ith red leaves, and replace the
ith leaf of the original tree T with the result.

2. Similarly, the above argument also implies that since, in the case
of a single leaf, ια, ιβ, and ιϵ are disjoint, for two distinct choices of
φ, ψ ∈ {α, β, ϵ}n,

ιφ ◦ ιψ = ιψ ◦ ιφ = 0.

3. By examining one i at a time the possible cases (1)-(3) of the
allowed leaves of terms of type φ corresponding to the possibilities of
each φi (and noting that the sign (30) gives a minus sign for each
possibility in case (3)), we see that

(31)
∑

φ∈{α,β,ϵ}n
ιφ = Id[T ].

4. The trace of a standard idempotent ιφ can be computed as

tr(ιφ) = (−1)|{i|φi=ϵ}| · µ(T )

since the only term of type φ that contributes to the trace is the one
where the ith black leaf is equal to the ith red leaf for every i = 1, . . . , n.
(In particular, we can verify that the trace of (31) is indeed µ(T ).)

Definition 8. We call the standard idempotents corresponding to n-
tuples φ where no φi is ϵ the regular idempotents of T .

Theorem 9. The image of a regular idempotent is simple and appears
with multiplicity 1 in [T ].
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Proof. Fix a φ ∈ {α, β}n. It suffices to prove that for any

f ∈ EndRep(Aut(T ≤),µ≤)([T ]),

we have
f ◦ ιφ = ιφ ◦ f = c · ιφ

for a constant c, or
f ◦ ιφ = ιφ ◦ f = 0.

Let f correspond to a colored amalgamation U of T with itself, with
(not necessarily disjoint) sets of black and red leaves

{b1 < · · · < bn}, {r1 < · · · < rn} ⊆ ℓ(U).
First, note that, unless at each i = 1, . . . , n, we have that bi = ri, bi

is directly to the left of ri, or bi is directly to the right of ri, we will
have

f ◦ ιφ = ιφ ◦ f = 0,

since to compose we must glue U to each term of type φ, over identifying
the red (resp. black) leaves of U with the black (resp. red) leaves of the
terms of type φ, and taking the partial trace over the pairs of identified
red and black leaves. For a given term of type φ, this reproduces U ,
multiplied by −1 to the power of the number of i = 1, . . . , n for which,
in the term of type φ, the ith black vertex is not equal to the ith red
vertex (since this will lead to one node being deleted in the partial
trace). Since φ ∈ {α, β}n, the sum of these terms is 0.

Suppose that for every i = 1, . . . , n, we have that bi = ri, or bi is
directly to the left of ri, or bi is directly to the right of ri. Then,
again by the reasoning in Remark 1, it suffices to compose f and ιφ
one leaf at a time, in which case, by considering the possible non-zero
compositions in the case of one black and one red leaf, we find that U
must be a term of type φ for either composition with ιφ to be non-zero.
In that case, the claim follows directly from Remark 1 and the proof

that ιφ are idempotents.
□

Taking the images of the regular idempotents gives 2n simple sum-
mands of multiplicity one in [T ]. For every φ ∈ {α, β}n, let us denote
the image of ιφ in [T ] by [T ] with the subscript corresponding to φ
by replacing every α with ◦ and every β with •, e.g. for T the unique
ordered planar tree with two leaves, the regular simple summands are

[T ]◦◦ = Im(ια,α), [T ]◦• = Im(ια,β)

[T ]•◦ = Im(ιβ,α), [T ]•• = Im(ιβ,β)
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However, [T ] contains other simple summands which lie in the images
of standard idempotents ιφ when φ contains an ϵ coordinate. We make
the following

Definition 10. Call an idempotent ι ∈ End([T ]) a singular simple
idempotent if Im(ι) is simple, and ι is a composition of morphisms

[T ] → [S] → [T ]

for some ordered planar tree S with fewer leaves than T . If an idem-
potent ι ∈ End([T ]) a residual simple idempotent if Im(ι) is simple,
but ι is not a regular idempotent or a singular idempotent.

We will now show that all simple objects (even the images of the
residual simple idempotents) have dimension ±1.

Proof of Theorem 4. For every ordered planar tree T , the endomor-
phism algebra End([T ]) is freely generated as a vector space over the
ground field k by all colored amalgamations of two copies of T . Let us
denote these colored amalgamations by a1, . . . aN . In other words, we
have

End([T ]) = k{a1, . . . , aN}.
All possible compositions of ai, aj have integer coefficients because

the image of the measure is in Z, and therefore we may define a Z-
algebra

(A , ·) := (Z{a1, . . . , aN}, ◦).
We then have

End([T ]) = k ⊗Z A ,

where k is the arbitrary ground field of the category.
We know that for any field k,

A ⊗ k ∼=
∏

Mn(k),

where k denotes the separable closure of k.
Let us consider the idempotents of A , i.e. consider the affine scheme

over Z defined by imposing the equations

(32) (
N∑
j=1

xi,jaj) ◦ (
N∑
j=1

xi,jaj) =
N∑
j=1

xi,jaj.

Call this scheme X. Note that the scheme corresponding in this way
to a matrix algebra Mn(Z) is of the form

G̃r(n) := {(V,W ) | V,W ⊆ An, V ∩W = 0, V ⊕W = An},
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which is a smooth fiber bundle over the ordinary Grassmanian of sub-
spaces of An.

Now X is fibered over Spec(Z) with smooth fibers (by Theorem
13.2 of [4]). It can also be assumed to be flat (since this just means
that its coordinate ring is non-torsion, which could be achieved by
cancelling common denominators in coefficients, introducing at most
finitely many conditions, since it is Noetherian). Thus, X is a smooth
scheme by Lemma 29.34.3 of [8].

Now, we may consider the trace operation as a map of schemes

tr : X → A1

(or, equivalently, an element of tr ∈ OX(X)).
We may also consider the scheme of pairs (or more generally, k-

tuples) of disjoint idempotents. For pairs, we would impose equations
(32) for variables zi,j, yi,j, and

(
N∑
j=1

zi,jaj) ◦ (
N∑
j=1

yi,jaj) = (
N∑
j=1

yi,jaj) ◦ (
N∑
j=1

zi,jaj) = 0,

Denote this scheme by Y . We have a morphism of schemes

Y → X

corresponding to
xi,j 7→ yi,j + zi,j.

Similarly, then we can construct a morphism of schemes

Zk → X

where Zk encodes k-tuples of disjoint idempotents with invertible traces.
The union of the images of these maps corresponds precisely to idem-
potents whose image decomposes non-trivially into idempotents with
non-zero traces. The intersection with each fiber is a closed and open
subscheme. Thus, by the Zariski main theorem, the complements of
all the images of Zk for k > 1 is a closed and open subscheme. Denote
this subscheme of X by X0.

In fact, we can consider this over any (finite type) étale neighborhood
U → Spec(Z). Over small enough étale neighborhoods, X0 corresponds
precisely to simple idempotents.

Since µ≤ is regular, moreover, locally in the étale topology of Spec(Z),
the trace morphism factors as

X0
//

��

Gm

��
X // A1.
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As a smooth component of a smooth scheme X, X0 is also smooth. We
will now show that trace is locally constant on X0.

Consider the module of Kähler differentials ΩOX0
(X0) and the differ-

entiation map

d : OX0(X0) → ΩOX0
(X0).

We shall verify that d(tr) = 0 at every point.
Since X0 is smooth, ΩOX0

(X0) is locally a finitely generated, locally
free OX0(X0)-module. We know that d(tr) = 0 on fibers over geometric
points. Thus, on an étale neighborhood of every geometric point, d(tr)
belongs to the Jacobson radical and thus is 0.

Thus, the function tr is locally constant in the étale topology, and,
since πét1 (Spec(Z)) = 0, there must be a global section over Spec(Z).
Hence, the image must be in {1,−1}. □

7. The decomposition of the tree with two leaves into
simple summands

The occurrence of the residual simple idempotents (not appearing in
the classical Delannoy category) is substantial in trees with more than
one leaf, but we do not understand them well. We will see this effect
by working out the smallest non-trivial example.

Let T be the unique ordered planar tree with two leaves. In this
case,

X(2) = [T ],

X⊗2 = X ⊕ 2 · [T ].

Recall that µ(T ) = 1.
The endomorphism algebra End([T ]) has total dimension 85: For a

colored amalgamation U of T with itself, writing {r1 < r2}, {b1 < b2}
for the red and black sets of leaves of U , there are 11 possibilities
of an ordered planar tree with four leaves for each of the six choices
of orderings of ri, bi with no equalities, there are 3 possibilities of an
ordered planar tree with three leaves for each of the six choices of
orderings of ri, bi where for exactly one pair (i, j) ∈ {1, 2}2, ri = bj,
and finally there is one ordered planar tree with two leaves for when
r1 = b1, r2 = b2.

We have four non-isomorphic regular simple idempotents

ια,α, ια,β, ιβ,α, ιβ,β ∈ End([T ]).
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To count the singular simple idempotents, we note that

(33) Hom(X, [T ])

generated freely by all possible colored amalgamations U of the ordered
planar tree with a single leaf and T (write {r1}, {b1 < b2} ⊆ ℓ(U) for
the single red and two black leaves of U). There is one possibility of U
for the each case

(34) {r1 = b1 < b2} or {b1 < r1 = b2},
(corresponding to the unique ordered planar tree with two leaves), and
there are three possibilities of U for each case

(35) {r1 < b1 < b2} or {b1 < r1 < b2} or {b1 < b2 < r1}
(corresponding to the three possible ordered planar trees with three
leaves). Therefore, the dimension of (33) is 11. On the other hand,

dim(Hom(1, [T ])) = 1,

since the unit corresponds to the empty tree, of which there is only a
single colored amalgamation with T (U = T , with all leaves colored
black). Hence,

dim(Hom(X◦ ⊕X•, [T ])) = 10,

and therefore, by symmetry,

dim(Hom(X◦, [T ])) = dim(Hom(X•, [T ])) = 5.

Thus, we have

(36) 1⊕ 5 · (X◦)⊕ 5 · (X•) ⊆ [T ].

The endomorphism algebra of (36) is the subalgebra of the endomor-
phism algebra of [T ] generated by the singular simple idempotents, and
it has dimension 51.

To see where the summands (36) lie with respect to the standard
(non-regular) idempotents of End([T ]), we may consider compositions
of singular idempotents with the standard idempotents

(37) ια,ϵ, ιβ,ϵ, ιϵ,α, ιϵ,β.

However, again, by the argument in Remark 1, all compositions can
be performed one leaf at a time. To count multiplicities of X◦, X• in
the images of (37), it suffices to compose each of the idempotents (37)
with the basis elements of

(38) Hom(X, [T ]).

We observe that each basis element of (38) (i.e. ordered planar tree
with three leaves, two of which are labeled black and one red) has at
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least one leaf which connects directly with its root. This leaf must be
black and match the ϵ of (37), otherwise the composition is 0. In fact,
the composition is also 0 unless the remaining leaves are

or to match α

or

or to match β

In any case, the composition can only be equal to a tree with one black
leaf connecting to the root and α or β on the other leaf. This implies
that X◦ = Im(ια) or X• = Im(ιβ) lies in the image of each idempotent
(37)

X◦ ⊆ Im(ια,ϵ), X◦ ⊆ Im(ιϵ,α)

X• ⊆ Im(ιβ,ϵ), X• ⊆ Im(ιϵ,β)

with multiplicity one. Therefore, there are three remaining copies of
X•, X◦ in Im(ιϵ,ϵ) each. A similar argument from examining composi-
tions one leaf at a time (or, alternatively, arguing by symmetry) gives
that the single copy of 1 also must be in the image of ιϵ,ϵ:

(39) 1⊕ 3 · (X•)⊕ 3 · (X◦) ⊆ Im(ιϵ,ϵ)

There are still 30 = 85−4−51 remaining unaccounted for dimensions
of the endomorphism algebra of [T ], which must come from residual
simple idempotents.

Lemma 11. When φ ∈ {(α, ϵ), (β, ϵ), (ϵ, α), (ϵ, β)}, then the left ideal
in End([T ]) generated by ιφ has dimension 11.

Assume for the moment that Lemma 11 is true. Then five of the
eleven dimensions correspond to the five copies of X◦ (resp. X•). The
remaining six must correspond to simple summands whose dimensions
add up to 0 (since tr(ιφ) = dim(X◦) = dim(X•) = −1). We therefore
see that no multiplicity greater than 1 is possible, and the six dimen-
sions must correspond to six non-isomorphic simple summands, three
of which have dimension 1 and three of which have dimension −1.

This leaves dimension 85−4−51−24 = 6 of the left ideal of End([T ])
generated by ιϵ,ϵ. The sum of the dimensions of the corresponding
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simple summands is 1 − (1 − 6) = 6, and thus, again, no multiplicity
greater than 1 is possible and we have six new non-isomorphic simple
summands of dimension 1.

Thus, we have proved

Proposition 12. The object [T ] corresponding to the ordered planar
tree T with two leaves has 4 regular non-isomorphic simple summands
of dimension 1 and multiplicity one, two singular non-isomorphic sim-
ple summands X◦, X• of dimension −1 and multiplicity 5 each, one
further singular simple summand X∅ = 1 of dimension 1 and multi-
plicity one, and 30 residual non-isomorphic simple summands, 18 of
which have dimension 1 and 12 of which have dimension −1.

□

Proof of Lemma 11. We will treat the idempotent ιϵ,α (the other cases
are symmetrical). When we compose ιϵ,α with a tree U where each of
the two black leaves, U ◦ ιϵ,α is either also colored red or attached to a
node of multiplicity 3 to which a red leaf is also attached. It is easy to
see that the composition is a (possibly 0) multiple of ιϵ,α.

Now we observe that every other tree generator of End([T ]) has a
black leaf x which is not colored red and is attached to a node to which
another black leaf is attached. It follows then that the leaf x must
match the ϵ ending of ιϵ,α, otherwise the composition is 0.
One possibility is that the other black leaf is attached to the same

node as x, and is also colored red. There are five such trees

, , , , ,

which, when applying ◦ιϵ,α, produce
(40)

−
α

,
−

α

,
−

α

,
−

α

,
−

α

.

The element ιϵ,α together with the generators (40) span a vector space
of dimension 6. Among the remaining trees,

, , ,,
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give 0. Briefly, composing with

(41)
,

creates equal terms with opposite signs; in the case of composing with
the second term of (41), this is due to an alternating sum starting and
ending with −1.

The trees where at least one of the red leaves attaching to the right
branch of the black T tree is on the right, give non-zero outcomes
when composed ◦ιϵ,α due to exceptional terms arising when a red leaf
matches with the black leaf in the second term of (41). In case of the
trees

(42)
, ,

the exceptional summand of the composition with the second term (41)
is

canceling the remaining summand of that composition. Thus, the origi-
nal term (42) survives, and we set three further independent generators
(for a total of 9).

In case of the trees

(43)
, ,

composing with the second term of (41) creates two exceptional sum-
mands depending on which of the red leaves merges with the black one
of the second term of (41). This however means that the construc-
tion of composition with the first term of (41) still cancels (due to the
second term of (41) producing the same term with an opposite sign).

We conclude that while the three trees (43) do not compose to 0
when applying ◦ιϵ,α, they produce only one additional dimension in
the outcome, for a total dimension of 10.

The last tree to consider is
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which, when composed ◦ιϵ,α, produces an additional new element

,

for a total dimension 11. This completes the proof of the Lemma.
□
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