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1. Introduction

In this paper, we give a new formalism for describing C-linear addi-
tive pseudo-abelian categories with bilinear associative, commutative,
unital tensor product and strong duality, generated by a single “basic
object” X of dimension c. We call these quasi-pre-Tannakian (QPT)
categories (see [12]). Among then, the most interesting examples are
semisimple pre-Tannakian categories, which have been investigated ex-
tensively (see e.g. [2, 3, 4, 5, 8, 9, 10, 11, 13, 16]).

The point of considering QPT categories generated by a single object
X is that they are easier to construct; in fact, QPT categories can be
completely described by a universal algebra structure called Tc-algebra,
which we described in [12, 13] (and will review in Section 3).

In this paper, we give a new reformulation of the Tc-algebra formal-
ism for c /∈ N0 and as an application, we prove a rigidity theorem.
In [3], Chapter 10, P. Deligne introduced a semisimple pre-Tannakian
category of “algebraic representations” of GL(c) (see also [4]). In this
paper, we will use a variant of this category which has coproducts, and
which we denote by Rep(GL(c)). Our first main result is

Theorem 1.1. For c ∈ C ∖ Z, there is an equivalence of categories
Φ between the category of Tc-algebras and the category of associative,
commutative, unital algebras in Rep(GL(c)).

As an application, we study deformations of Tc-algebras.

Theorem 1.2. Let c ∈ C∖Z. Let C be a QPT category whose corre-
sponding Rep(GL(c))-algebra A is generated by a Rep(GL(c))-object G
with relations ideal J . Then the C-vector space of infinitesimal defor-
mations of C is the Y∅,∅ part of the dual of the kernel of the differential
A-module homomorphism from A ⊗Sym(G) J to the free A-module on
G.
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This will be made precise in Section 4, see Theorem 4.5. The proof
uses the methods of [7, 17].

Additionally, we investigate conditions for a QPT category C to be
semisimple in terms of the Rep(GL(c))-algebra A. We call an algebra
in Rep(GL(c)) field-like if it has no non-trivial ideal except 0 and it-
self. Further, we define a Rep(GL(c))-algebra A to be étale when the
category of its finitely generated modules in Rep(GL(c)) is semisimple.
We call A locally finite if it has a finite dimensional C-vector space
of summands over each Yλ,µ. We call A finitely presented if it can be
expressed as the quotient of the symmetric algebra on a finite set of
generators over some chosen summands Yλi,µi .

Theorem 1.3. Suppose A is a locally finite field-like Rep(GL(c))-
algebra. Then the quasi-pre-Tannakian category determined by the
Tc-algebra corresponding to A is a semisimple (and therefore, pre-
Tannakian) category if and only if A is étale.

In fact, we prove that these conditions are equivalent to the two cat-
egories being equivalent, which is equivalent to the category of finitely
generated A-modules having strong duality. (See Theorem 5.10 below).

In fact, we prove a finiteness theorem for infinitesimal deformations
of semisimple Tc-algebras:

Theorem 1.4. For a finitely-presented étale Rep(GL(c))-algebra A,
the module of deformations of A is finitely generated.

We will see an example of a Tc-algebra satsifying the conditions
of Theorem 1.4 where this space of deformations is non-trivial (see
Example 5.11).

Conjecture 1.5. Every étale Rep(GL(c))-algebra A is finitely pre-
sented.

To prove Theorem 1.1, we use the category

(1.1) FB±
c = Rep0(GL(c))

defined by P. Deligne [3], Definition 10.2 (we denote it by FB±
c in the

context of the categories considered in [14]). P. Deligne [3], Chapter 10,
also introduced a category Rep1(GL(c)) obtained from Rep0(GL(c)) by
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adding finite direct sums formally and a category Rep(GL(c)) which
is its pseudo-abelian envelope. However, we may also adjoin formal
infinite sums (and morphism matrices with finitely many non-zero en-
tries in each row) to obtain a variant Rep(GL(c)) with infinite direct
sums. (We will need this extension because algebras are typically not
finitely generated additively.) Rep(GL(c)) inherits a tensor product
from Rep0(GL(c)). Further, if we denote by FB±

c -Mod the category
of additive functors from (1.1) to C-vector spaces, we have, essentially,
for formal reasons, an equivalence of tensor categories

(1.2) Rep(GL(c)) ≃ FB±
c -Mod,

where on the right-hand side, the tensor product is the “Day product.”
We then prove Theorem 1.1 by establishing an equivalence of cate-
gories between commutative algebras in the category FB±

c -Mod and
Tc-algebras, which amounts essentially to reinterpreting the axioms.

The remainder of the paper is based on the philosophy of doing
algebraic geometry in the tensor category Rep(GL(c)). We begin to
compare this world to the classical situation and observe some similari-
ties, but also some differences. For example, for general formal reasons,
infinitesimal deformations are controlled by Exalcomm, which can be
interpreted as first Quillen cohomology. On the other hand, unlike the
classical context, the tensor category Rep(GL(c)) is not generated by
the unit object. In such tensor categories, commutative algebras can
encode non-commutative structures, due to the tensor product of sim-
ple objects having several isomorphic summands. For example, when
discussing the semisimplicity of a QPT category generated by a ba-
sic object X, this is equivalent to the semisimplicity of the algebras
End(X⊗n), which are typically not commutative. Accordingly, the
derived cotangent complex behaves somewhat differently than in the
classical case. For example, say over C, an étale algebra, which is the
same as a semisimple algebra, is a finite product of copies of C, so its
derived cotangent complex is 0. This is no longer true in Rep(GL(c)).
Similarly, an étale algebra over C has no deformations (as is the case
for semisimple non-commutative algebras). However, semisimple alge-
bras in Rep(GL(c)) can have deformations, for example, the algebra
corresponding to the category Rep(GL(a)×GL(c−a)) for a, c−a /∈ Z
(Example 5.11). This makes the statement of Theorem 1.4 non-trivial.
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The present paper is organized as follows: In Section 2, we review
the definition of [3], Chapter 10, and explain the equivalence of tensor
categories (1.2). We also discuss the equivalence between the full sub-
category Rep(GL(c))0 ⊆ Rep(GL(c)) on objects of weight 0 with the

category of FB±
c,0-modules where FB±

c,0 ⊆ FB±
c is the full subcategory

on the objects (n, n).
In Section 3, we define Tc-algebras and prove an equivalence of cat-

egories between Tc-algebras (resp. graded Tc-algebras) and commuta-
tive algebras in the category of FB±

c -modules (resp. FB±
c,0-modules),

completing the proof of Theorem 1.1.
In Section 4, we then use Theorem 1.1 to define and calculate the

deformation module of a Tc-algebra using Quillen cohomology in the
category Rep(GL(c)).

In Section 5, we define locally finite, finitely presented, field-like,
and étale Rep(GL(c))-algebras. We use the calculations in Section 4
to conclude Theorem 1.4 and restate and prove the full statement of
Theorem 1.3.

2. The Category of FB±
c -Modules and Rep(GL(c))

The purpose of this section is essentially to review the definitions of
[3], Chapter 10 and to formulate the results in a context close to mak-
ing the connection with Tc-algebras. In Subsection 2.1, we introduce
the category (1.1), and the concept of an FB±

c -module. In Subsec-
tion 2.2, we introduce the “Day product” (or convolution product) on
FB±

c -Mod. Theorem 2.3 below recapitulates the equivalence of tensor
categories (1.2).

2.1. The Category of FB±
c -Modules. We define the category FB±

c

by taking the objects

Obj(FB±
c ) = {(m,n) | m,n ∈ N0},

and morphisms freely generated by bijections

(2.1) HomFB±
c
((m,n), (p, q)) = CMorFB([m]⨿ [q], [p]⨿ [n])

We graphically represent a bijection

(2.2) [m]⨿ [q] → [p]⨿ [n]

corresponding to a generator of by drawing a set of m dots above a set
of n dots on the left, and a set of p dots above a set of q dots on the
right, and drawing lines or curves to connecting elements of the source
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Figure 1. A bijection [m]⨿ [q] → [p]⨿ [n], for m = 2,
n = 4, p = 3, q = 5. The words “source” and “target”

refer to the corresponding morphism of FB±
c .

of (2.2) with their images. A general morphism in FB±
c can then be

described as a linear combination of such diagrams.
Composing two morphisms in FB±

c can then be described by plac-
ing their two corresponding diagrammatic representations side by side,
connecting the corresponding points of the intermediate object with
each other, composing all possible lines and curves, and replacing any
loops in the resulting diagram by a coefficient of c, (as in the diagram-
matic description of composition in the category Rep(GL(c)) given in
[3], Section 10.1). For a generalization of this construction with further
applications, see [14].

Figure 1 shows an example of a bijection [m] ⨿ [q] → [p] ⨿ [n],
and Figure 2 shows the graphical representation of its correspond-
ing morphism of FB±

c . (Note that, in particular, the Hom-space
HomFB±

c
((m,n), (p, q)) is non-zero if and only if m+ q = n+ p.)

We define FB±
c,0 to be the full subcategory of FB±

c on objects

Obj(FB±
c,0) = {(m,m) | m ∈ N0} ⊂ Obj(FB±

c ).

Define FB±
c -modules, resp. FB±

c,0-modules, to be functors

FB±
c → V ect,

resp. functors
FB±

c,0 → V ect.
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Figure 2. A generator of MorFB±
c
((m,n), (p, q)), for

m = 2, n = 4, p = 3, q = 5, corresponding to the
bijection pictured in Figure 1.

We define the category FB±
c -Mod (resp. FB±

c,0-Mod) to be the category

of FB±
c -modules (resp. FB±

c,0-modules) and natural transformations.

2.2. Structure as a Symmetric Tensor Category. The category of
FB±

c -modules has a tensor category structure called the Day product.
The Day product M ⊗N of FB±

c -modules M , N is defined as the left
Kan extension

FB±
c × FB±

c V ect

FB±
c

M⊗N

M⊗N

where the vertical map is

FB±
c × FB±

c → FB±
c

((m,n), (p, q)) 7→ (m+ p, n+ q)

and the horizontal map is

FB±
c × FB±

c → V ect

((m,n), (p, q)) 7→M(m,n)⊗C N(p, q)
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Theorem 2.3. We have an equivalence of tensor categories (1.2). In
particular, the images Yλ,µ of Yλ,µ under this equivalence multiply (with
respect to the Day product) by the Littlewood-Richardson rule. Further,
(1.2) restricts to an equivalence of categories between FB±

c,0-Mod and
the full subcategory Rep(GL(c))0 of Rep(GL(c)) on objects Yλ,µ with
|λ| = |µ|.

Proof. To construct the equivalence (1.2), we send Yλ,µ to the functor

(2.3) (m,n) 7→ HomRep(GL(c))(Yλ,µ, X
⊗m ⊗ (X∨)⊗n)

(where X is the “basic object” [3]). The fact that the tensor product
of GL(c)-representations corresponds to the Day product is due to the
definition of matrix multiplication. The other statements are given by
just reading off the definitions on either side of the correspondence. □

By an FB±
c -algebra (resp. Rep(GL(c))-algebra), we shall mean a

commutative, associative, unital algebra in the symmetric ⊗-category
FB±

c -Mod (resp. Rep(GL(c)). The category of FB±
c -algebras (resp.

Rep(GL(c))) and homomorphisms will be denoted by FB±
c -Alg (resp.

Rep(GL(c))-Alg). Theorem 2.3 therefore has an immediate

Corollary 2.4. We have an equivalence of categories

(2.4) FB±
c -Alg ≃ Rep(GL(c))-Alg.

□

It is interesting to consider the semisimple C-algebra

Σc
m,n := EndFB±

c
((m,n)).

Note that for n = 0, we have

Σc
m,0

∼= CΣm.

One has

dim(Σc
m,n) = (m+ n)!

and Yλ,µ(m,n) with |λ|− |µ| = m−n, |λ| ≤ m, |µ| ≤ n are the distinct
simple Σc

m,n-representations.
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3. T-Algebras and the Proof of Theorem 1.1

In this section, we discuss the category of T-algebras, which are the
universal structures we use to model QPT categories, (i.e. C-linear
pseudo-abelian additive categories with an associative, commutative,
unital tensor product and strong duality, which are generated by a
single basic object). In Subsection 3.1, we define T-algebras and discuss
their correspondence with categories. In Subsection 3.3, we restate and
complete the proof of Theorem 1.1.

3.1. The definition of T-algebras. A category C linear over C with
an associative, commutative, unital tensor product which has strong
duality and is generated by some X ∈ Obj(C ) is equivalent to cer-
tain data, which we call a T-algebra, which describes the categorical
structure given by C on the Hom-spaces

HomC (X
⊗S, X⊗T )

for finite sets S, T .
Concretely, we define as follows:

Definition 3.2. A T -algebra T is a collection of C-vector spaces TS,T
indexed by pairs of finite sets S, T in addition to the following data:

(1) For all finite sets S1, S2, T1, T2 and bijections

ϕ : S2 → S1

ψ : T1 → T2,

a C-linear map

σϕ,ψ : TS1,T1 → TS2,T2

which is functorial with respect to ϕ and ψ.

(2) For all finite sets S, T , for all subsets S ′ ⊆ S,T ′ ⊆ T , and
choices of bijection

ϕ : S ′ → T ′,

a C-linear partial trace map

τϕ : TS,T → TS∖S′,T∖T ′

which are functorial with respect to bijections to and from S ′

and T ′, respectively (acting on ϕ by composition).
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(3) For all finite sets S1, S2, T1, T2, a C-linear product map

π : TS1,T1 ⊗C TS2,T2 → TS1⨿S2,T1⨿T2

which is functorial respect to bijections to S1 and S2 and from
T1 and T2 and a element

1 ∈ T∅,∅

such that π is associative, commutative, and unital with respect
to 1, expressible by requiring that diagrams such as, for example,

TS,T ⊗C T∅,∅

π
&&LL

LLL
LLL

LL
TS,t

Id⊗1oo 1⊗Id //

Id
��

T∅,∅ ⊗C TS,T

π
xxrrr

rrr
rrr

r

TS,T .

commute. We also require that π commutes with the partial
trace maps, meaning for all finite sets S1, S2, T1, T2 and subsets

S ′
i ⊆ Si, T ′

i ⊆ Ti

with bijections
ϕi : S

′
i → T ′

i ,

we have that the diagram

TS1,T1 ⊗C TS2,T2
π //

τϕ1⊗τϕ2
��

TS1⨿S2,T1⨿T2

τϕ1⨿ϕ2

��
TS1∖S′

1,T1∖T ′
1
⊗C TS2∖S′

2,T2∖T ′
2 π

// TS1⨿S2∖(S′
1⨿S′

2),T1⨿T2∖(T ′
1⨿T ′

2)

commutes.

(4) An identity element ι ∈ T{x},{x} such that for every f ∈ T{y},{y},
the product π(ι, f) ∈ T{x,y},{x,y} satisfies

τ{x}→{y}(π(ι, f)) = σId{x},{y}→{x}(f)

and
τ{y}→{x}(π(ι, f)) = σ{x}→{y},Id{x}(f).

Note that on the right hand side of the above identities, the bi-
jections acting on f are bijection on singletons and are only
present for formal indexing reasons. The conditions can be ab-
breviated as

ι ◦ f = f ◦ ι = f,

by considering “composition” to be the appropriate combination
of trace and product. For any n ∈ N0, let us denote by ιn ∈
T{x1,...,xn},{x1,...,xn} the product of n copies of ι.
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For T-algebras, T , S, we define a morphism

f : T → S

as a collection of C-linear maps

fS,T : TS,T → SS,T

for finite sets S, T preserving the T-algebra structure of T and S. We
can therefore form the category T-Alg of T -algebras and their mor-
phisms.

T-algebras are a universal algebra construction and are precisely
equivalent to the data of a C-linear category with associative, com-
mutative, unital tensor product and strong duality generated by single
object X. For such a category C , the Hom-spaces

HomC (X
⊗S, X⊗T )

form a T-algebra which we shall denote by CS,T , and for a T-algebra
T , we can construct the category CT by taking

Obj(CT ) = {X⊗m ⊗ (X∨)⊗n | m,n ∈ N0}

and

HomCT (X
⊗m ⊗ (X∨)⊗n, X⊗p ⊗ (X∨)⊗q) = T[m]⨿[q],[n]⨿[p].

For a pair m,n ∈ N0, for a T-algebra T , let us denote

Tm,n = T[m],[n],

which is a Σm × Σn-representation by functoriality. Let us call a T -
algebra graded if for finite sets S, T , if |S| ≠ |T |,

TS,T ∼= T|S|,|T | = 0.

Define, also, a Tc-algebra to be a T-algebra T such that T∅,∅ = C
and the trace of the identity element is

τId{x}(ι) = c.

Let Tc-Alg denote the full subcategory of T-Alg of Tc-algebras, and let
Tc-Alg

gr denote the full subcategory of graded T-Alg of Tc-algebras.
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3.3. The Proof of Theorem 1.1. Using the notation introduced in
Subsection 3.1, we may now restate Theorem 1.1 more explicitly:

Theorem 3.4. For a Tc-algebra T , there is a natural FB±
c -algebra

MT such that for every (m,n) ∈ N2
0,

(3.1) MT (m,n) = Tm,n.
On the other hand, for an FB±

c -module M, there exists a natural Tc-
algebra T (M) such that for finite sets S, T

(3.2) T (M)S,T = M(|S|, |T |).
This defines an equivalence of categories

(3.3) Tc-Alg → FB±
c -Alg.

Given this theorem, denote the composition of (3.3) with (2.4) by

(3.4) Φ : Tc-Alg → Rep(GL(c))-Alg.

This Φ is then the claimed equivalence of categories in Theorem 1.1.
Denote by Ψ the inverse (up to natural isomorphism) functor

Ψ : Rep(GL(c))-Alg → Tc-Alg.

We also have the following

Corollary 3.5. Restricting (3.3) to the full subcategory of graded Tc-
algebras gives an equivalence of categories

Tc-Alg
gr → FB±

c,0-Alg.

□

Proof of Theorem 3.4. Suppose we are given a Tc-algebra T . To give
(3.1) the FB±

c -algebra, we must describe a functorial map

MT (f) : MT (m,n) → MT (p, q)

corresponding to a given morphism

(3.5) f ∈ HomFB±
c
((m,n), (p, q)).

We shall define MT (f) only for the generating morphisms f which
correspond to bijections

ϕf : [m]⨿ [q] → [p]⨿ [n],

and extend C-linearly to define MT (f) for every f in (3.5). First, we
will factor f as a composition FB±

c morphisms fθ, fη, and fζ which
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will correspond to performing partial trace, the action of a bijection,
and product with identity elements, respectively.

By definition, ϕf restricts to bijections

(3.6) [m]∖ ϕ−1
f ([n])

∼= // [p]∖ ϕf ([q]),

(3.7) [q]∖ ϕ−1
f ([p])

∼= // [n]∖ ϕf ([m]).

Let us define

a = |[m]∖ ϕ−1
f ([n])| = |[p]∖ ϕf ([q])|

b = |[q]∖ ϕ−1
f ([p])| = |[n]∖ ϕf ([m])|.

We can define a bijection

θ : [m]⨿ [b] → [a]⨿ [n]

given as the disjoint union of the restriction

ϕf |ϕ−1
f (n) : [m] ∩ ϕ−1

f ([n]) → [n] ∩ ϕf ([m])

and the identity on the rest of the source, identifying [a] with [m] ∖
ϕ−1
f ([n]) and [b] with [n]∖ ϕf ([m]).
We can define a bijection

η : [a]⨿ [b] → [a]⨿ [b]

given as the disjoint union of the bijections (3.6) and (3.7), where in the
source of η we identify [a] with [m]∖ϕ−1

f ([n]) and [b] with [q]∖ϕ−1
f ([p]),

and in the target of η we identify [a] with [p] ∖ ϕf ([q]) and [b] with
[n]∖ ϕf ([m]).

Finally, we can define a bijection

ζ : [a]⨿ [q] → [p]⨿ [b]

given by the disjoint union of the restriction

ϕf |ϕ−1
f (p) : [q] ∩ ϕ

−1
f ([p]) → [p] ∩ ϕf ([q])

and the identity on the rest of source, identifying [a] with [p]∖ ϕf ([q])
and [b] with [q]∖ ϕ−1

f ([p]).
Denote by

fθ ∈ HomFB±
c
((m,n), (a, b))

fη ∈ HomFB±
c
((a, b), (a, b))

and
fζ ∈ HomFB±

c
((a, b), (p, q))

the corresponding morphisms of FB±
c . We then have

f = fζ ◦ fη ◦ fθ,
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Figure 3. The decomposition of the generator of
MorFB±

c
((m,n), (p, q)), for m = 2, n = 4, p = 3, q = 5

in Figure 2, which gives a = 1 and b = 3.

as morphisms of FB±
c . Figure 3 shows the graphical representations of

fθ, fη, and fζ for the example of f given in Figure 2.
We then define

MT (fθ) : MT (m,n) = Tm,n → Ta,b = MT (a, b)

as the partial trace matching the coordinates corresponding to the el-
ements of [m] and [n] matched by fθ. More concretely, we take

MT (fθ) = τϕf |[m]∩ϕ−1([n])

along the bijection

ϕf |[m]∩ϕ−1([n]) : [m] ∩ ϕ−1
f ([n]) → [n] ∩ ϕf ([m])

again identifying [a] with [m]∖ ϕ−1
f ([n]) and [b] with [n]∖ ϕf ([m]).

We define

MT (fη) : MT (a, b) = Ta,b → Ta,b = MT (a, b)

as the action of the bijection, permuting the coordinates of the source
and target according to fη. More concretely, we take

MT (fη) = σϕ−1
f |[p]∖ϕf ([q]),ϕ

−1
f |[n]∖ϕf ([m])
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along the bijection

ϕ−1
f |[m]∖ϕ−1

f ([n]) : [a] → [a]

identifying [a] with [p]∖ϕf ([q]) in the source identifying [a] with [m]∖
ϕ−1
f ([n]) in the target, and the bijection

ϕ−1
f |[n]∖ϕf ([m]) : [b] → [b]

identifying [b] with [n]∖ ϕf ([m]) in the source and identifying [b] with
[q]∖ ϕ−1

f ([p]) in the target.
Finally, we define

MT (fζ) : MT (a, b) = Ta,b → Ta,b = MT (p, q)

as taking the product with copies of the identity element, permuted
into the places corresponding to the elements of [p] and [q] matched by
fζ . More concretely, we take

MT (fζ) = σα,β(π(ϕf |[m]∩ϕ−1([n]), ι
|ϕf ([q])∩[p]|))

where α denotes the order-preserving permutation of the last |ϕf ([q])∩
[p]| coordinates (the original source of the identity elements after the
product) into the order where there is an order-preserving bijection
of the total set of source coordinates with [p] sending these coordi-
nates to the subset ϕf ([q]) ∩ [p] ⊆ [p], and similarly β denotes the
order-preserving permutation of the last |ϕf ([q])∩ [p]| = |ϕ−1

f ([p])∩ [q]|
coordinates (the original target of the identity elements after the prod-
uct) into the order where there is an order-preserving bijection of the
total set of target coordinates with [q] sending these coordinates to the
subset ϕ−1

f ([p]) ∩ [q].
We therefore define

MT (f) = MT (fζ) ◦MT (fη) ◦MT (fθ).

Figure 4 shows the action of MT (f) on an element x ∈ MT (m,n) =
Tm,n in the case of the example pictured in Figures 2 and 3.

The commutation of the trace and product maps and their functorial-
ity guarantee that MT defined in this way indeed forms a FB±

c -algebra

MT : FB±
c → V ect.

The T-algebra product determines a product

π : MT (m1, n1)⊗C MT (m2, n2) → MT (m1 +m2, n1 + n2),

which induces a map of FB±
c -algebras from the Day product MT ⊗

MT to MT . Associativity and commutativity are guaranteed by the
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x

Figure 4. The image MT (f)(x) ∈ MT (p, q) = Tp,q of
an element x ∈ MT (m,n) = Tm,n for the generator f of
MorFB±

c
((m,n), (p, q)) for m = 2, n = 4, p = 3, q = 5

shown in Figure 2

associativity and commutativity of π. Hence, we have defined a functor

(3.8)
Tc-Alg → FB±

c -Alg

T 7→ MT .

To prove that the functor (3.8) is in fact an equivalence of categories,
we must construct an inverse functor

FB±
c -Alg → Tc-Alg

M 7→ T (M)

satisfying (3.2). This construction is done precisely symmetrically to
the construction of (3.8) above: Partial traces, functoriality, and the
product with identity all correspond exactly to morphisms of FB±

c ,
and their compatibility is proved by the consistency of the category
FB±

c . Again, an associative, commutative, unital multiplication map

M⊗M → M
determines the product π on T (M). The functor defined in this way
will be, by definition, an inverse functor to (3.8).

□

4. Deformation Theory for T-Algberas

The goal of this section is to use the equivalence of categories be-
tween Tc-algebras and algebras in Rep(GL(c)) to give a description
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of the module of deformations of a Tc-algebras (see Theorem 4.5, be-
low). In Subsection 4.1 we describe some algebraic background in the
category Rep(GL(c)). In Subsection 4.4, we define deformations and
state Theorem 4.5, making an explicit algebraic claim about the mod-
ule of deformations of any algebra in Rep(GL(c)). In Subsection 4.6,
we prove Theorem 4.5 using calculations in Quillen cohomology.

4.1. Elements, ideals, and modules for a Rep(GL(c))-algebra.
In particular, for any algebra A in Rep(GL(c)), we may write a de-
composition

(4.1) A =
⊕
(λ,µ)

⊕
i∈Iλ,µ

Yλ,µ

where the first sum runs over all pairs of Young diagrams λ and µ, and
the second sum of copies of Yλ,µ is indexed by a (possible infinite) set
Iλ,µ.

Example: Consider the category Rep(GL(c)), which is an example of
a C-linear category with associative, commutative, unital tensor prod-
uct and strong duality, generated by a basic object X (which has cat-
egorical dimension c). We may therefore consider its corresponding
Tc-algebra T Rep(GL(c)) defined by

T Rep(GL(c))

S,T = HomRep(GL(c))(X
⊗S, X⊗T )

In this case, the Tc-algebra is graded and in fact

(4.2) dim(T Rep(GL(c))

S,T ) =

{
(|S|)! if |S| = |T |
0 if |S| ≠ |T |.

We have in particular,

dim(T Rep(GL(c))

∅,∅ ) = 1.

Since the only terms of a decomposition (4.1) which will generate non-
trivial elements in the Tc-algebra at the pair of finite sets (∅, ∅) (since

dim(Yλ,µ(0, 0)) ̸= 0

only if λ = µ = ∅). Therefore, the decomposition of Φ(T Rep(GL(c)))
must contain a copy of Y∅,∅.
Note now that for every n,

dim(Y∅,∅(n, n)) = dim((0, 0)(n, n)) = n!,

exactly matching the dimensions of (4.2).



17

Therefore, the Tc-algebra corresponding to the category Rep(GL(c))
is decomposed (in the sense of (4.1)) as

Φ(T Rep(GL(c))) = Y∅,∅.

For a general Rep(GL(c))-algebra A i, given the decomposition (4.1),
let us write

(4.3) A(λ, µ) :=
⊕
i∈Iλ,µ

Yλ,µ = C⊕Iλ,µ ⊗C Yλ,µ

(where C⊕Iλ,µ =
⊕

i∈Iλ,µ C). We refer to vectors in the C-vector space

(4.4)
⊕
λ,µ

C⊕Iλ,µ

as the “elements” of A. We further refer to vectors in the C-vector
space C⊕Iλ,µ as the “homogeneous elements of type (λ, µ)” in A.

We also define modules and ideals for an algebra A in Rep(GL(c))
in the usual way:

Definition 4.2. For a Rep(GL(c))-algebra A, we may consider an
A-module in Rep(GL(c)) to be an object M with the structure of a
multiplication map

A⊗M → M
satisfying associativity and unitality.

Definition 4.3. We define an ideal J in an algebra A over the cate-
gory Rep(GL(c)) as a submodule of A which is closed under the product,
meaning that we are given the data of a product

J ⊗A → A,

and the images of the compositions of inclusions and multiplication

J ⊗A⊆⊗IdA// A⊗A // A

A⊗ J IdA⊗⊆// A⊗A // A
are contained in J .
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For an ideal J in an algebra A over Rep(GL(c)) which is not equal
to A, by Zorn’s Lemma, there exists an ideal J ′ ⊊ A which is maximal
with respect to inclusion. We then call such an ideal J in A maximal.

For a Rep(GL(c))-algebra A and a set of generators G = {gi | i ∈ I}
(for some indexing set I) where we give each gi a chosen type Yλi,µi for
pairs of Young diagrams λi, µi, we may also define the free A-module
AG as the object of Rep(GL(c))

(4.5) AG :=
⊕
i∈I

A⊗ Yλi,µi

with multiplication given by multiplication on the first tensor factor of
A in each summand.

On the other hand, for a set of generators G = {gi | i ∈ I} (for some
indexing set I) where each element gi is of a chosen type Yλi,µi , we can
define the symmetric algebra on G in Rep(GL(c)) as

Sym(G) := Sym(
⊕
i∈I

Yλi,µi).

For any Rep(GL(c))-algebra A, there then exists a set of generators
G such that we can write A as the quotient

(4.6) A = Sym(G)/J

for an ideal J in Sym(G). We call G and J a choice of a set of
generators and an ideal of relations for A.

4.4. Deformations of a Tc-algebras. We shall investigate deforma-
tions of Tc-algebras by using a version of Quillen cohomology for their
corresponding algebras over Rep(GL(c)). We define Quillen homology
and cohomolgoy for algebras over Rep(GL(c)) entirely analogously to
its definition for commutative rings, which is explicitly described, for
example, in [17].

Specifically, the deformations of an algebra A in Rep(GL(c)), and
therefore its corresponding Tc-algebra and QPT category, will then be
classified by

ExcalcommY∅,∅(A,A) = H1
Y∅,∅

(A,A),

where for the remainder of this paper we consider Y∅,∅ to be an algebra
by recalling that Y∅,∅ is the unit with respect to tensor in Rep(GL(c))
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and taking the algebra structure

Y∅,∅ ⊗ Y∅,∅ = Y∅,∅
Id // Y∅,∅

(note that, as in the above Example, this is the Tc-algebra correspond-
ing to the category Rep(GL(c)) itself).

We claim the following

Theorem 4.5. For an Rep(GL(c))-algebra A, let us write

A = Sym(G)/J ,
for a set of generators G and an ideal of relations J . Then the module
of infinitesimal deformations of A is

(4.7) HomA(Ker(d : A⊗Sym(G) J → AG),A).

Recall that (similarly as classically), d in (4.7) is a map ofA-modules:
Suppose v ∈ J , u ∈ A. Then

d(uv) = u · (dv) + (du) · v,
but the second term is 0 ∈ A, since v ∈ J .

4.6. The Proof of Theorem 4.5. For a Rep(GL(c))-algebra A, con-
sider a choice of a set of generators G and an ideal of relations J giving
an expression (4.6) for A. Let us write

(4.8) B := Sym(G).
By definition, we have a surjection in Rep(GL(c)) mapping

B → A,
with kernel J . On the other hand, we have an inclusion

Y∅,∅ → B
(taking Y∅,∅ to be the 0th degree of the symmetric algebra (4.8)).

To prove Theorem 4.5, it suffices to calculate

(4.9) H1
Y∅,∅

(A,A).

Let us begin by recalling the notation of Kähler differentials, taking,
for a Rep(GL(c)) algebras X and an algebra Y over X ,

ΩY/X = X{dx | x ∈ Y}/Z
(as X -modules) where Z denotes the X -module generated by

d(x · y)− x · dy − y · dx for x, y ∈ Z
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and
dx for x ∈ X

(where all x and y are considered as elements of X or Z in the sense
described using vector spaces (4.4)).

We may then write a long exact sequence
(4.10)

. . .A⊗B Ω1
B/Y∅,∅

// Ω1
A/Y∅,∅

��
Ω1

A/B

��
A⊗B ΩB/Y∅,∅

// ΩA/Y∅,∅
// ΩA/B // 0

Since B can be considered as a “polynomial algebra” over Y∅,∅, it has
no deformations, and therefore Ω1

B/Y∅,∅ vanishes. Hence, (4.10) gives

that Ω1
A/Y∅,∅ is the kernel of the map

(4.11) Ω1
A/B → A⊗B ΩB/Y∅,∅ .

(Recall that, by definition,

(4.12) H1
Y∅,∅

(A,A) = HomA(Ω
1
A/Y∅,∅ ,A).)

First note that by Theorem 6.3 of [17] (which has an obvious analogue
here over a semisimple pre-Tannakian category), we have

(4.13) Ω1
A/B

∼= TorB1 (A,A).

We can further express

TorB1 (A,A) ∼= J ⊗B A.
The map (4.11) then corresponds to differentiation

d : J ⊗B A → ΩB/Y∅,∅ ⊗B A.
Again, since B is a polynomial algebra on the generators G, we have

ΩB/Y∅,∅
∼= BG,

(identifying the generators dg on the left hand side with g on the right
has side for g ∈ G), and therefore, we have

ΩB/Y∅,∅ ⊗B A ∼= AG
giving the claim of Theorem 4.5 by (4.12).

□
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5. Geometric Conditions for Rep(GL(c))-Algebras

In this section, we will define some “geometric” conditions on al-
gebras in Rep(GL(c)), such as being locally finite, finitely presented,
field-like, and étale. We shall also prove Theorems 1.4 and 1.3 stated
in the Introduction.

In Subsection 5.1, we define locally finite and finitely presented
Rep(GL(c))-algebras. In Subsection 5.4, we define étale Rep(GL(c))-
algebras by studying modules in Rep(GL(c)) and conclude Theorem
1.4. In Subsection 5.6, we construct a fully faithful tensor functor from
the quasi-pre-Tannakian category obtained from the Tc-algebra corre-
sponding to a Rep(GL(c))-algebra to its category of finitely generated
modules. In Subsection 5.8, we define field-like Rep(GL(c))-algebras,
and restate and prove Theorem 1.3.

5.1. Notions of Finiteness for Rep(GL(c))-algebras. Let us recall,
for a Rep(GL(c))-algebra A, the decomposition (4.1):

A =
⊕
(λ,µ)

⊕
i∈Iλ,µ

Yλ,µ.

Definition 5.2. We call a Rep(GL(c))-algebra A locally finite if for
every pair of Young diagrams λ, µ, the indexing set Iλ,µ in the decom-
position (4.1) is finite.

Another notion of finiteness is the following:

Definition 5.3. We call a Rep(GL(c))-algebra A finitely presented if
there exists a finite set of generators G and a finitely generated ideal of
relations J ⊂ Sym(G) such that

A = Sym(G)/J .

(Note that a finitely presented Rep(GL(c))-algebra may not neces-
sarily be locally finite: For example, the symmetric algebra on a single
generator of type λ = (1), µ = (1), i.e.

Sym(Y1,1) =
⊕
n∈N0

Symn(Y1,1)
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contains infinitely many copies of Y1,1.)

5.4. Étale Rep(GL(c))-algebras and Theorem 1.4. Recall Defini-
tion 4.2 of a module over an algebra in Rep(GL(c)).

For any Rep(GL(c))-algebra A, we may construct a class of examples
of A-modules corresponding to objects of Rep(GL(c)) by considering,
for a simple object Yλ,µ, the object

A⊗ Yλ,µ ∈ Rep(GL(c))

with the multiplication map

(5.1) µA ⊗ IdYλ,µ : A⊗A⊗ Yλ,µ → A⊗ Yλ,µ

where µA denotes the algebra multiplication of A. (These are precisely
the free A-modules on a single generator G = {gλ,µ} of type Yλ,µ, see
(4.5).)

We define an A-module M to be finitely generated if it can be ex-
pressed as a quotient of a finite direct sum of A-modules of the form
A⊗Yλ,µ. (In other words, M is finitely generated if there exists a finite
set of generators G and a surjection

AG ↠ M
of A-modules.)

Denote by A-Mod the category of A-modules and morphisms which
preserve A-multiplication. Let A-Modfg be the full subcategory on
finitely generated modules. The category A-Mod has a tensor product
⊗A defined in the natural way, making A (considered as a module over
itself via its algebra structure) the unit. This makes A-Mod into an
(abelian) tensor category. A-Modfg is an additive subcategory closed
under the tensor product.

Definition 5.5. We call a Rep(GL(c))-algebra A étale when the cat-
egory A-Modfg is semisimple.

The statement of Theorem 1.4 in the Introduction is now precise,
and follows from Theorem 4.5:

Proof of Theorem 1.4. SupposeA is a finitely presented, étaleRep(GL(c))-
algebra. By Theorem 4.5, it suffices to prove that

(5.2) HomA(Ker(d : A⊗Sym(G) J → AG),A)
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is finitely generated.
Since A is finitely presented, we may assume that G is a finite set and

that J is a finitely generated ideal. Therefore, the source and target
of the map

(5.3) d : A⊗Sym(G) J → AG

are finitely generated A-modules.
Since A is étale, the category of finitely generated A-modules is

semisimple, and therefore the kernel of the map (5.3) is also a finitely
generated A-module. Since, again, the category of finitely generated
A-modules is semisimple, the Hom space (5.2) is finitely generated.

□

5.6. A functor from a QPT category to modules over its corre-
sponding Rep(GL(c))-algebras. Let us consider the QPT category
constructed from the Tc-algebra T which corresponds to A, i.e. satis-
fies Φ(T ) = A, (which is well-defined up to natural isomorphism). To
simplify notation, we shall denote this category by

CA := CT

for the remainder of this section.

Now we can construct a functor

Ξ : CA → A-Modfg,

defined by sending the basic object X generating CA to the A-module

X 7→ A ⊗ Y(1),∅ ∈ Obj(A-Modfg)

and its dual to

X∨ 7→ A ⊗ Y∅,(1) ∈ Obj(A-Modfg).

We therefore have

X⊗m ⊗ (X∨)⊗n 7→ A ⊗X⊗m ⊗ (X∨)⊗n ∈ Obj(A-Modfg)

where on the left hand side X denotes the basic object of CA, while on
the right hand side it denotes the basic object of Rep(GL(c)).
It remains to define maps

(5.4)
HomCA(X

⊗m ⊗ (X∨)⊗n, X⊗k ⊗ (X∨)⊗ℓ) →
→ HomA-Modfg(A⊗X⊗m ⊗ (X∨)⊗n,A⊗X⊗k ⊗ (X∨)⊗ℓ)
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for m,n, k, ℓ ∈ N0. By adjunction, the source of (5.4) is

HomA-Modfg(A⊗X⊗m ⊗ (X∨)⊗n,A⊗X⊗k ⊗ (X∨)⊗ℓ) =

= HomRep(GL(c))(X
⊗m ⊗ (X∨)⊗n,A⊗X⊗k ⊗ (X∨)⊗ℓ),

which, by the definition of CA, is identified with the source of (5.4).

Lemma 5.7. The constructed functor

Ξ : CA → A-Modfg

is fully faithful.

Proof. Faithfulness is clear. Ξ is full since morphisms in the target
category are quotients of morphisms from free modules. By adjunction,
those correspond to morphisms from Yλ,µ in Rep(GL(c)), which can be
realized in CA by picking out morphisms transforming under the given
Σc
m,n-simple module. □

5.8. Field-like Rep(GL(c))-algebras and Theorem 1.3. Recall Def-
inition 4.3 of ideals in a Rep(GL(c))-algebra.

Definition 5.9. We call an algebra A in Rep(GL(c)) field-like if it
contains no non-zero ideals.

In particular, for an algebraA over Rep(GL(c)) which has a maximal
ideal J , the quotient A/J is a field. We say a Tc-algebra is field-like
if its corresponding algebra over Rep(GL(c)) is a field.

The condition of A being field-like implies that the ∅, ∅ part of A,
meaning the algebra ⊕

i∈I∅,∅

C,

corresponding to the term A(∅, ∅) (see (4.3)), is a field. Additionally, it
implies that the category CA corresponding to A contains no negligible
morphisms (for a summary of negligible morphisms, see for example,
[6]).

Now, we may finally use Ξ to give the following restatement of The-
orem 1.3:

Theorem 5.10. For a locally finite field-like Rep(GL(c))-algebra A,
the following are equivalent
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(1) The category CA is semisimple

(2) The functor

Ξ : CA → A-Modfg

is an equivalence of categories

(3) The category A-Modfg has strong duality

(4) The category A-Modfg is pre-Tannakian.

(5) A is an étale Rep(GL(c))-algebra

Proof. The implication that (1) ⇒ (2) is clear since, by Lemma 5.7, Ξ
is fully faithful.

To prove (2) ⇒ (5), we note that A-Modfg has colimits. Thus,

xn = 0 ⇒ tr(x) = 0

(Exercise 8.18.9 of [5]). Therefore, the semisimplification (see [6]) of
A-Modfg is semisimple. However, by our assumption of A being field-
like, CA has no negligible morphisms, and therefore, since we are as-
suming that Ξ is an equivalence of categories, neither does A-Modfg.
Hence, A-Modfg is semisimple already.

It is clear that (5) ⇒ (3).

We see that (3) ⇒ (4) since (3) implies that in A-Modfg we have
cokernels and strong duality, and therefore we also have kernels.

Finally, to prove (4) ⇒ (1) we note that (4) implies that CA embeds
into a pre-Tannakian category. Hence, again, by [5], Exercise 8.18.9,
it is semisimple, since CA has no negligible morphisms because A is
field-like.

□

Example 5.11. Consider the semisimple pre-Tannakian category

(5.5) C = Rep(GL(a)×GL(c− a))

where c, a, c− a /∈ Z. Denote the identity on the basic object X by ι.
Then we have disjoint idempotents r, r′ ∈ End(X) where r + r′ = ι,
tr(r) = a, tr(r′) = c− a, tr(ι) = c. Then the element

x =

√
c− a

a
r −

√
a

c− a
r′



26 SOPHIE KRIZ

is over Y1,1. One has

(5.6) Sym2(Y1,1) = Y∅,∅ ⊕ Y1,1 ⊕ Y2,2 ⊕ Y(12),(12).

The first two summands in (5.6) give us products

· : Y1,1 ⊗ Y1,1 → Y∅,∅, ⋆ : Y1,1 ⊗ Y1,1 → Y1,1.

Proposition 5.12. The Rep(GL(c))-algebra A corresponding to the
category C of (5.5) is given by

(5.7) A = Sym(Y1,1)/(x · x− c, x ⋆ x− c− 2a√
a(c− a)

x)

Proof. The relations are easily verified. To show that these are the
only relations, one notes that End(X⊗n) can be represented as the
free module on permutations σ on {1, . . . , n} where each pair (i, σ(i))
is colored black (corresponding to ι) or red (corresponding to x). The
elements x·x, x⋆x then calculate tr(x◦x), and the traceless component
of the composition x ◦ x, respectively. We see therefore that these
determine all the relations in the algebra A. □

Now one has

(5.8) d(x · x− c) = 2x · dx

(5.9) d(x ⋆ x− c− 2a√
a(c− a)

x) = (dx) ⋆ x+ x ⋆ (dx)− c− 2a√
a(c− a)

dx.

We see that by applying ?·x to the relation (5.9), and adding a suitable
multiple of the relation (5.8), we get 0, thus constructing a non-trivial
element in Ω1

A/Y∅,∅ over Y∅,∅. By semisimplicity of A (which follows

from Theorem 5.10), this gives a non-zero element

(5.10) α ∈ HomA(Ω
1
A/Y∅,∅ ,A).

(In fact, it is not difficult to check by examining A in low degrees that
every other element of (5.10) is its multiple.) The element α corre-
sponds to the deformation of A corresponding to varying the number
a.
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