ON THE CANONICITY OF THE SINGULARITIES OF
QUOTIENTS OF THE FULTON-MACPHERSON
COMPACTIFICATION

SOPHIE KRIZ

ABSTRACT. We prove that quotients of the Fulton-MacPherson
compactification of configuration spaces of smooth projective va-
rieties of dimension > 1 by permutation groups have canonical
singularities.

1. INTRODUCTION

Suppose X is a smooth projective variety over C of dimension N.
Consider the ordered configuration space of n distinct points

F(X,n) C X"

Then we have the Fulton-MacPherson compactification F(X,n) (see
[1]), which we will briefly recall in Section 2.

Now fix some subgroup G C ¥,,. Then we can construct the geomet-
ric invariant theory quotient

Z =F(X,n)/G

by covering the scheme F'(X,n) by affine open subsets preserved by
the group action and then taking the rings of invariants of the corre-
sponding coordinate rings.

The main result of this note is the following

Theorem 1. When N > 1, the quotient singularities of Z are canon-
ical, but not necessarily Gorenstein.

We refer the reader to [5] for the definition of canonical and Goren-
stein singularities. For N = 1, the statement of Theorem 1 is false
for example when X = P!, n = 3. Note that if the singularities were
Gorensitein, the statement of Theorem 1 would be trivial, since quo-
tient singularities are rational and Gorenstein rational singularities are
canonical, (see Corollaries 11.13, 11.14 of [3] and Proposition 5.13 of
[4]). Counterexamples to the Gorenstein property will be clarified in

the process of our proof.
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Corollary 2. Let X be a unirational smooth projective variety of di-
mension N > 1. For m € N where mKy forms a Cartier divisor on Z
(which ezist since Z is a quotient of a smooth variety by a finite group,
see for example, [5]), we have the following vanishing of global sections:

['(Z,mKy) = 0.

Proof. Since Z = F(X,n)/G has canonical singularities by Theorem 1,
for a resolution of singularities

f:Y—2
we obtain
Ky = f"Kz + ZmiEi

where E; denote exceptional divisors and m - m; € Z>q. Thus,
[(Z,mKz) =T(Y, f'mKz) =T(Y,mKy - Y _m-m;E;) C (Y, mKy)

(the inclusion follows from including sections of divisor greater than or
equal to > m-m;E;, an effective divisor). Hence, since Y is unirational
we have

T(Y,mKy) =0
(see [6], Proposition 3.1). Thus,
[(Z,mK,) = 0.

U
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2. THE FULTON-MACPHERSON COMPACTIFICATION

The Fulton-MacPherson compactification F'(X,n) of [1] is obtained
from the product X™ by a sequence of blow-ups of strict transforms of
the diagonals in X™ performed in a suitable order. We can describe its
closed points as follows:

Fix a point # € X and a finite set S with cardinality |S| > 2. Then
we define an S-screen at x by induction on |S]. If |S| = 2, S = {s1, s2},
an S-screen consists of the data of a pair

(g, s,) € F(Ty,2)/ Gy X T,

where we consider the action of the tangent space T, on F(T,,2) by
shifting and the action of G,, on F(T,,2) and T, by scaling, therefore
combining to a G, x T, -action.
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If S'-screens at = have been defined for |S’| < |S|, then an S-screen
at x consists of a system of non-empty disjoint sets

Sy T0---118,, = S,

points
(x1,...,xm) € F(Ty,m)/Gy, x T,

(where, again, the G,, X T,-action on the mth configuration space
F(T,,m) is given by the actions of G,, and T, by scaling and shifting,
respectively), and for each ¢ € {1,...,m} with |S;] > 1, an S;-screen
at z. (Note that for any point y € T, the tangent space of T, at y is
again 7},).

Now the closed points of F/(X,n) correspond bijectively to the data
consisting of non-empty disjoint sets S, ...,.S,, such that

(1) S;1---10S, ={1,...,n},
and an m-tuple
(2) (l‘17axm)€F(X7m)

and for each i € {1,...,m} with |S;| > 1, an S;-screen at z;.

The algebraic variety F'(X,n) is defined by performing blow-ups of
diagonals in a precisely defined order [1]. For the purposes of the
present paper, we only need the following statement:

Proposition 3. ([1]) Locally, analytically, a neighborhood of a point

of F(X,n) given by (1), (2) and S;-screens at x; whenever |S;| > 2, is
obtained by a sequence of blow-ups of

11z
i=1
at strict transforms Eg of the loci
Ag ={(x1,...,x,)|xs = 21 for s,t € S}

over all sets S involved in the definition of any of the S;-screens, in
any order such that Eg is blown up before Ep when T' C S.

O
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3. PROOF OF THEOREM 1

We begin by discussing the isotropy groups G which can arise in
the action of the symmetric group %,, on F(X,n). Non-trivial isotropy
can occur when permutation action coincides with identification by the
actions of G,, x T,. The most general case when this happens is as
follows:

For a subgroup H C g (where ¥g denotes the symmetric group on
S), we define an H-symmetrical S-screen at x as follows: If |S| = 2,
then any S-screen at = is Yg-symmetrical. If H'-symmetrical S’-screen
have been defined for 2 < || < |S]|, an H-symmetrical S-screen at x
occurs when we have an embeddings

(3) ZJM C G, x T,

(4) ZIM C Ey,

where the image of the generator (4) consists of only M-cycles and at
most one 1-cycle (ip) acting on the points z; in the same way as (3),
and H;-symmetrical S;-screens for representatives of the orbits of (4)
transformed to the remaining S;-screens by (3), where

Gcz/M [ H
(i)

resp.




or

By induction, it follows that

Proposition 4. A point of F(X,n) given by (1), (2) and S;-screens
at x;, 1 € J is G-fixed if and only if

Gc]é:

ieJ
where each of the S;-screens at x; is G;-symmetrical.

O

Proposition 3 implies that any element of order 2 in G acting on a
G-symmetrical screen is a quasi-reflection (since it acts trivially on the
blow-up coordinates). Thus, we have

Proposition 5. Suppose a point x € F(X,n) is G-fized for G C %,.
Then the 2-Sylow subgroup Gy € G is normal and the small group
associated with G in the sense of [2] is G /G a).

U

Now let the 1-dimensional complex representation of Z/M where the
generator acts by (¥, be denoted by z%,. Then the Theorem of Reid,
Shephard-Barron, and Tai ([2], Theorem 2.3 (ii)), a quotient singularity
of a small group G is canonical if and only if each element g € G of
order M acts by

D@ 2
where
(5) ko—+ -+ ke > M.

Since this condition cannot be spoiled by adding more coordinates, it
suffices to consider the case of a G-symmetrical screen where G = Z /M
in (4) acting with only one orbit. Additionally, it suffices to assume
that all sets S; satisfy |S;| = 1 (since otherwise, again, we would only
add coordinates).
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By Proposition 5, in this case, we have a sum of regular representa-

tions
@ ciz/m]

in which we are blowing up the trivial subrepresentation @, C. This
is equivalent to blowing up the origin 0 in the sum of reduced regular
representations

(6) Pciz/m).

Denoting the coordinates of (6) by

(7) xlv"'va(Ml)a
the blow-up coordinates can be chosen as

TN (M-
(8) xl7ﬁ,.”’m‘
L1 1
Thus, if we choose the coordinates (7) to be invariant under the Z/M

action, they will represent (6) as

(9) D D

N 1<k<M-1

Assuming x; correspond to z%/[, (8) then is represented by

(10) 2%4@ @ (k: ) MODM@@< @ (k— ])MODM)‘

1<k<M—1,k+#j 1<k<M—1

—~—

Note that in the first summand of (10), z}; 7 is missing from C[Z/m]
(since there is no 29, summand in (9)), and there is an extra 2}, sum-

mand. In the remaining N — 1 summands of (10), again the summand

2177 is missing from C[Z/m] (and the summand =, occurs instead).
This produces the lowest value of ky +. .. kn(/—1) when j = 1. Even in
the case j = 1, however, the sum is always > M except when M = 3
and N = 1 (which leads to the counterexample mentioned in the Intro-
duction). One also sees that ki +. .. kn(s—1) is not necessarily divisible
by M (even in the case N > 1), which is the condition for the singu-
larity being Gorenstein by a Theorem of Khinich and Watanabe ([2],
Theorem 2.3 (i)). This completes the proof of Theorem 1.
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